

Distribution System Planning Introduction

2023 Avista Electric DSP

DPAG 1 – March, 2023

Damon Fisher, P.E. Principal Engineer, System Planning

Welcome to the first DPAG meeting

Today's Agenda

- Meeting Reminders
- Introductions
- Distribution Planning Advisory Group
- Training: Power delivery 101
- Avista's Distribution System
- Distribution Planning: Basics
- Final thoughts and what's next

Virtual Meeting Reminders

- Please mute mics unless commenting or asking a question
- Raise hand or use the chat box for questions or comments
- Please try not to speak over the presenter or a speaker
- Public meeting this meeting is being recorded

Avista's Planning Team

Distribution Planning Advisory Group Vision

- Provide expertise and support towards informing a transparent, robust, holistic planning process for electric system operations and investment.
- Contribute to and inform the long-term plan to ensure operational efficiency and customer value are maximized.

Distribution Planning Advisory Group Goals

- Inform stakeholders about the electric system
- Provide greater transparency in planning process
- Provide opportunity for feedback
- Open to all stakeholders
- Flexible to adjustments

Distribution Planning Advisory Group Strategy

	January - March	April - June	July - September	October - December	
Meetings	2-3 hours in February	rs in February 2-3 hours in April 2-3 hours in June 2-3 hours in June		TBD	
Topics	 DPAG Introduction Distribution System and Electrical Concepts Avista's Distribution System Overview Planning Processes Load Forecast and DER Potential Assessment 	 Distribution Planning Process Performance Criteria System Needs Identification Identify Solutions Solution Examples 	 Review Solution Selection DER Potential Assessment Update Hosting Capacity Review System Plan 	 To be determined 	

- What does the grid do? It connects sources of energy to the consumers of energy.
- Energy Sources = Hydro, wind, solar, thermal, efficiency
- Energy Consumers = Lights, refrigerators, motors, AC, EV's, storage

• As energy is put onto the grid, energy needs to flow off the grid. Balance needs to be maintained.

Electricity, Energy and Power

- Electricity is energy in the form of charged particles that are static or moving.
- Energy delivered is the quantity of work done
- Power is how fast the work was done

Energy and Power are closely related by time

- Capacity = \$\$
 - The power that is possible
 - Same units as Power (Watts)
 - Generation Capacity
 - Constant (ish)
 - Variable

- Delivery Capacity
 - Temperature dependent

- Power: Flow rate
- Capacity: Size of the pipe (max flow rate)
- Energy: Total Flow
- Voltage: Pressure

Power Delivery 201

Power Delivery 201

VISTA

Avista's Distribution System

2022 QUICK FACTS

Avista Utilities

Population of Service Area	1,700,000
Miles of Transmission Line:	
230kV	
115kV	
500kV	500
Miles of Distribution lines	
Miles of Natural Gas Distribution Mains	
Percent of Utility Operating Revenues	
by Jurisdiction—Retail Revenue	
(Actual Sales to Customers)	
Washington	62%
Idaho	
Oregon	

Avista Service Area

Avista's Distribution System

- 130 Distribution Substations
- 360 Feeders
- ~410,000 electric customers
- Feeder capacity varies in rural areas.
- Feeder capacity in urban areas ~10MW (2-3 thousand homes)
- Voltages range 12.5kV to 34.5kV

Avista's Distribution System

- 300 Feeders with SCADA
- Washington has AMI meters

Appliance	Cost Usage						<	Mar 18, 2023)
Year	Month	Day							🚔 Filter
is chart displa	vs vour energy use	ae for each 5-minute pe	riod Missing sma	rt meter data or es	stimates may be pres	ent and do not effe	ct vour mont	hlv bill.	
6 kWh	ys your energy asa		iou. Missing sind					ну ын.	70 °F
5 kWh									60 °F
4 kWh				0	00			~	50 °F
3 kWh			_q	0				00	40 °F
2 kWh	<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							30 °F
1 kWh									20 °F
1.00000									10°F

System Planning

- Ensure electric distribution infrastructure is adequate to serve customers now and in the future.
- Historically, an endeavor in maintaining voltage and adequate capacity.
 - Bigger conductor
 - More feeders
 - Larger transformers
 - More substations

weet on Redicappenney/Tetty com

VISTA

27

Regression
 Forecasting

 Known developments map

• Feeder Demand

• Feeder Curves

 Build a system model in Synergy Electric

 A Model is a computer representation of the distribution system that simulates what <u>might</u> happen in reality.

₩. ₹

Re-run

✓ Loa

• 10 Year load flow analysis

₩∙	Model	Analysis	Planning	Performance	DER Capacity	Protect	ion Relial	bility Net	works To	ools View	s Forge	Automatio	on Supp	ort <u>Cont</u>	rols Edit	
录		🔁 🔍		pen 🔁		5	<u></u>									
De un		This		🌯 🔰 Export to Data	base Save P											
Ke-run	Reports R	leport	in Excel	rt.	Save N	Chan	ters									
	Report	(cport	III EXCE	File	Master Tem	nlate Printi	ing									
Ma	Map - 4 Multi-year Analysis - 6															
													Feeder	Details - Lo	ad-Flow	
> Ru	n Summary	/		Feeder / Sub	Parameter	Year 2022	Year 2023	Year 2024	Year 2025	Year 2026	Year 2027	Year 2028	Year 2029	Year 2030	Year 2031	Year 2032
* LO	ad-Flow			7	7	7	7	7	7	7	7	7	7	7	7	7
	Summary			MEA12F1	Volts	118.79	118.34	115.98	116.63	116.51	116.45	116.40	116.34	116.27	116.21	116.16
	Feeder / Si	ub Sendout	İ. İ.	MEA12F2	Volts	118.79	118.34	115.98	116.63	116.51	116.45	116.40	116.34	116.27	116.21	116.16
	Load Deta	ils		MEA12F3	Volts	118.79	118.34	115.98	116.63	116.51	116.45	116.40	116.34	116.27	116.21	116.16
	Transforme	ers		MEA12F1	Rated kV	13.20	13.20	13.20	13.20	13.20	13.20	13.20	13.20	13.20	13.20	13.20
	Conductor	Details		MEA12F2	Rated kV	13.20	13.20	13.20	13.20	13.20	13.20	13.20	13.20	13.20	13.20	13.20
	Eeeder Det	taile		MEA12F3	Rated kV	13.20	13.20	13.20	13.20	13.20	13.20	13.20	13.20	13.20	13.20	13.20
	Cub Datail			MEA12F1	Pct pf	90.97	91.17	91.58	91.75	91.74	91.73	91.72	91.71	91.70	91.69	91.68
	Sub Detail	S		MEA12F2	Pct pf	85.66	86.87	87.16	85.57	85.56	85.54	85.52	85.51	85.49	85.47	85.45
				MEA12F3	Pct pf	96.90	96.86	93.89	94.21	94.52	94.49	94.46	94.43	94.41	94.37	94.34
				MEA12F1	Pct Loading	71.49	75.45	80.63	78.99	79.32	79.62	79.92	80.60	80.91	81.22	81.53
				MEA12F2	Pct Loading	68.42	76.11	82.14	71.02	71.38	71.73	72.08	72.43	73.17	73.53	73.89
				MEA12F3	Pct Loading	31.83	32.18	67.78	69.44	72.20	72.47	72.75	73.03	73.31	73.59	73.87
				MEA12F1	Min Volts	116.99	117.07	115.97	116.61	116.49	116.44	116.38	116.33	116.26	116.20	116.14
				MEA12F2	Min Volts	114.80	114.28	112.92	114.47	114.28	114.15	114.03	113.91	114.47	114.32	114.20
				MEA12F3	Min Volts	116.72	116.97	113.21	112.77	113.35	113.26	113.18	113.10	112.99	112.88	112.79
				MEA12F1	Max Pct Loading	72.57	72.67	72.77	72.84	72.95	73.05	73.15	73.26	73.37	73.43	73.53
				MEA12F2	Max Pct Loading	165.74	166.46	167.37	168.11	168.96	169.79	170.63	171.48	172.22	173.07	173.93
				MEA12F3	Max Pct Loading	49.25	49.47	66.78	68.42	71.14	71.41	71.68	71.95	72.22	72.50	72.78
				MEA12F1	kW Losses	137.33	152.54	170.10	156.32	157.44	158.45	159.51	160.91	162.15	162.53	163.63
				MEA12F2	kW Losses	211.46	252.83	285.49	218.03	220.32	222.39	224.55	227.24	229.66	230.88	233.13
				MEA12F3	kW Losses	30.32	30.56	129.70	133.83	139.13	139.98	140.92	142.29	143.39	143.43	144.40
				MEA12F1	kW Demand	7405.60	7814.66	8237.19	7857.24	7890.97	7915.48	7940.10	7978.41	8002.46	8037.61	8062.66
				MEA12F2	kW Demand	6704.27	7524.75	8009.35	6802.67	6839.98	6869.14	6898.45	6927.82	6980.12	7008.92	7038.71
				MEA12F3	kW Demand	3671.51	3690.58	7628.34	7941.51	8291.54	8315.73	8340.03	8364.29	8400.63	8424.34	8448.93
				MEA12F1	Amps	366.02	386.31	412.84	404.44	406.12	407.66	409.20	412.69	414.27	415.85	417.44
				MEA12F2	Amps	350.30	389.71	420.55	363.65	365.45	367.25	369.05	370.86	374.61	376.45	378.30
				MEA12F3	Amps	191.31	193.41	407.39	417.36	433.94	435.57	437.22	438.88	440.57	442.25	443.93

• Performance Criteria

Category ²	Outage ³	Thermal Performance	Voltage Performance ⁴	Regulator Performance	Current Imbalance	Voltage Imbalanc e	Customers Experiencing Interruption ⁵	Customers Experiencing Sustained Outage Longer than 2 Hours ⁶	Notes
D0 - No Contingency	None	< 80% Continuous ⁷	118V < Volt < 127V	-12 < tap < +12	Line loading > 90%: 5% Line loading > 80%: 10% Line loading >70%: 15% Line loading < 70%: 20%	3%	N/A	N/A	 Seasonal load transfers can be used
	Loss of one of the following:								 Field switching can be used to restore
D1 - Feeder Contingency	1. Feeder Lockout	< 95%	114V ⁸ < Volt < 127V < 4V Deviation ⁹	-15 < tap < +15	Line loading > 90%: 10% Line loading < 90%: NA	5%	3000 or 10MVA	Suburban: 500 Rural: 3000	customers Generator curtailment may be required for restoration
	2. Generator Outage/Off	Continuous					0	0	
	3. Automatic Transfer Switch Operation						N/A	N/A	
D2 – Multiple Contingency (Common Structure ¹⁰)	Loss of one of the following: 1. Loss of two feeders on common structure 2. Loss of three feeders on common structure	< 95% Continuous	114V< Volt < 127V		None	5%	4000	500	
D3-	Loss of one of the following:				None				 Feeder breaker and/or regulator
Substation	1. Feeder Regulator	< 95%	114V ~ Volt ~ 127V	-15 < tap < +15		5%	3000	0	bypass is acceptable
Contingency	2. Feeder Breaker	Continuous	114VS VOILS 12/V				3000	0	
	3. Substation Transformer						6000	Suburban: 0 Rural: 1500	

 Well scoped projects go to project delivery

Questions?

Next steps

- We are currently working on the system assessment. Expect an update on the findings.
- Next meeting will include a deeper dive into grid resources, non-wire alternatives and the expectations of planning in the future.
- If you have a topic suggestion, please send it to-DistributionPlanning@avistacorp.com

