=Fial

Weather and Climate Intelligence
for an Increasingly Weather
Dependent Grid

A Summary of the ESIG Weather Inputs Task Force
Report and Proposed Next Steps

Justin Sharp
Technical Leader

1( / Support and content provided by:
Avista DPAG E 51 G G rl d L'E'B

Sharply
ENERGY SYSTEMS Focused
INTEGRATION GROUP Understanding Reweresble Ressucces

December 3, 2024

in X f

www.ep ri.com © 2024 Electric Power Research Institut



http://www.epri.com/
https://www.facebook.com/EPRI/
https://twitter.com/EPRINews
https://www.linkedin.com/company/epri

EPRI Load Forecasting Initiative ¢ LOADFORECASTING

Improved load forecasts at operational and planning timescales™ will drive more efficient
investment decisions and better grid performance.

EPRI launched a 24-month initiative (ending in Q4 2025) to address critical needs in load
forecasting that will work across three areas:

Industry Coordination
01 Enable knowledge-sharing and
collaboration among utilities, ISOs/RTOs, etc.

Long-Term Forecasting (Planning)

02 Develop methodologies and
guidance to incorporate new load drivers

Short-Term Forecasting (Operations)
03 Develop methodologies and guidance to
mitigate changes in forecast accuracy

Website: msites.epri.com/LFI

*we are defining “planning timescales” as >1-year ahead
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A Report of the Energy Systems

Report Landing Page

* Executive Summary

*  Main Report

*  Summary Report

= °* Meteorology 101

The project was convened and supported Scan for report
by ESIG. Additional funding was provided by landing page
GridLab and Sharply Focused. While largely objective, some of this
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presentation represents my own views,
some of which may not necessarily be
the official views of task force members
or member organizations.
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Motivation: The Energy Transition
THE ELECTRIC SYSTEM IS CHANGING

AND IS FULL OF UNCERTAINTY

THE SECTOR HAS TO EVOLVE ITS
METHODS ACCORDINGLY

FOR CAPACITY ACCREDITATIO!

Findings included in seminal consensus-based reports from s

the ESIG Rethinking Resource Adequacy initiative

g The quality of power system studies becomes increasingly dependent
on characterization of weather. Analysis must incorporate weather
more comprehensively

The Evolving Role of Extreme Weather
Events in the U.S. Power System with
High Levels of Variable Renewable
Energy

The Evolving Role of Extreme Weather Events in the U.S. Power | S
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Shaf'p,y System with High Levels of Variable Renewable Energy o

@ Focused (Abstract: https://www.osti.gov/biblio/1837959 | Full Report: https://doi.org/10.2172/1837959) |Erse. =
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The Evolving Energy — Weather Nexus
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Scan to learn more in the four-part
series Weather and Climate
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Electricity System Weather-Dependence

Aerosols Clouds Precipitation

Temperature

type, cover, depth type, amount

5
-

Groundwater Snow

recharge, . cover, pack,
evaporation, runoff melt, evaporation

Insolation ==

Solar Hydro Thermal Transmission Wind
Generation Generation Generation & Distribution Generation

Typical magnitude is approximated by the thickness of the lines.

» While all environmental variables are interdependent, these are some of the strongest internal links.
— Dependence of the electricity system on the climate system.

.. . . Source: ESIG Weather Data for Power System Planning
_> Strength of dependence is highly variable and depends on asset type and location. https://www.esig.energy/weather-data-for-power-
» Degree of dependence can be greatly amplified by specific weather and climate conditions. system-planning/

© 2024 Electric Power Research Institute, Inc. All rights reserved. = =] r=d|
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Power system models have always incorporated weather

— Treatment mostly concerned with impact of temperature

on load, and sampling of hydro years
— Data needed from urban areas (with plenty of
observations), and existing streamflow measurements

Obs. of weather impacting wind and solar output are not
widely available and MUST BE SYNTHESIZED

— Fields vary rapidly across short distances and times, and
are needed for remote areas
— Observations are sparse, have a short history, and where
they exist they are mostly proprietary
The complex interaction between variables impacting load,
wind, and solar MUST now be considered, and must be
coincident and physically consistent (in time and space),and
chronological.
The interconnectivity in time and space yields complex, yet
organized, multi-dimensional probability distributions that
must be realistic for accurate power system analysis.
DERs/storage and other weather impacts on G,T, and D add
more layers of complexity.

U¥W WEF—-GFS 1.33km Domain

Fest: 32.00 h Valid: 20 UTC Wed 20 Nov 24

10m Wind Speed (knots)
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The Main Attributes of Time Series Data Necessary Source: ESIG Weather Data for Power System Planning
to Meet General Power System Modeling Needs Jupsll el energy/weather-daia-lor-oer:

Including the Include the necessary variables at sufficient spatio-temporal resolution and
necessary variables accuracy to reflect actual conditions that define the generation potential at
current and future wind/solar sites and temperature at load centers

Covering multiple Cover multiple decades with consistent methodology and be extended on an
decades with ongoing ongoing basis to capture the most recent conditions and allow climate trends
extension to be identified

Coincident and Are coincident and physically consistent, in space and time, across weather
physically consistent variables

Validated Are validated against real conditions with uncertainty quantified

Documented Are documented transparently and in detail, including limitations
and a guide for usage

Periodically refreshed Are periodically refreshed to account for scientific and technological
advancements
Available and Publicly available, expertly curated, and easily accessible

accessible

9 © 2024 Electric Power Research Institute, Inc. All rights reserved. =l
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o 3 o The biggest issues are one or more of the
!Emshng Weather and Climate I?ata following
IS Inadequaie for COmprehen$|Ve Insufficient validation and uncertainty
Analysis Of Modern Power systems qguantification (true for all datasets)

= Insufficient spatial or temporal resolution

ERAS = Insufficient time history/lack of ongoing
OPEMICUS
Europe’s eyes on Earth = Distributions that don’t match reality, especially

for extreme events

= Data use from non-static modeling platforms

= A lack of knowledge of the limitations of
current datasets and the downstream impact
of biases and inaccuracies

Why does this matter?

= You can’t correctly predict supply and demand
if the weather data isn’t good. Sometimes,
you’ll be WAY off.

= Coincident weather data is need to assess
compound risks to generation, transmission
and distribution.

10 © 2024 Electric Power Research Institute, Inc. All rights reserved. = =] r=d|
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all the needs. Mixing and matching causes physical

e om Lo
HRRR® 3 km Yes/No Unideal Basic us.
TWJ:Ei ” 2km No Yes No Basic Various
WTK-LED® 2':(:,“/ 4 No Notyet | Notyet Uﬂ"{;’;‘:’;‘;ﬁ;ﬁ" Various TABLE 2
Summary of Current Power System Modeling Weather Input Data Sources
NSRDB* 4/ | o min | 1998- Yes/No 2Ey Yes Yes Basic | Mostof globe
60 km present only
_— . e | o [ _— - : Summary of the most applicable datasets globally
E m/so. o/ Yes O solar es SSIDly asic urope
L5 that are (or can be) used to provide weather inputs
60 min/ K 0 Not the . | . .
conusa04+ | km | 15min No [ intended contnentsl | for power system analysis tasks, especially for
(precip) use - . qe . . .
o 1990 e - ey | providing estimate of site-level generation, and
Sl 1.5km 28l 2019 No based New Zealand . H
- concurrent weather-driven load and generation
. Non- aries.
Obsoriing [kl 17 | Voo tes/No Nottor | Vares. | wsaaly | US| vares outage risks. The degree to which the needs of
Networksi . . . . .
R s systems each column heading are met is estimated with
Variable . .
Renewable | Non- but Varies, color coding. See documentation for each dataset
Ene_rgy uniform. rarely Varies Yes/ but Varies Usually Usually Very limited . .
Project | Variabe e Usually uscal poor  none for all details. Footnotes on next page. P76, main
years report.
Propriet Non- Variable.
St:?iszcaaﬁfy unig;m' Usually r:ﬁ:;llye Varies | . Usually No Very limited
Srapes QI | e neompiEe Source: Energy Systems Integration Group

B Fully Met [ Close to Being Met | Partially Met == Met in a Very Limited Way B Not Met at All B Not Enough Info. for Determination rved. =2l



How Bad is it Really? A Use Case Specific Validation

= We must validate according to the use case. E.g. For RA, the distributions, and especially the tails,
matter more than the averages

= The distribution of coincident tail events MUST be close to reality

= Example here:
— WINDTK data in the BPA area.
—  Wind resource in BPA BA is notoriously difficult to predict with NWP => WFIP2 Project

= Complex terrain in the region needs a minimum of 1.33 km resolution to resolve. More on this later.

= Stable boundary layer issues in the wintertime. => Low wind AND high load

Bias of WINDTK Derived Generation relative to Actual BPA Generation
These biased low w00

wind speed events Tail event deviations

frequently coincide ~ co* can be >7.X'
with high load events ~ ** ¢-8. BA \.Nlde o
due to regional ™ I I generation of 3/0' and
mesoscale | °* &M Ml T B = B R model-based estimates
-2.0% of 23%!

meteorology

-4.0%

12 © 2024 Electric Power Research Institute, Inc. All rights reserved. (= =dr={]



Don’t We Produce This Data and
Successfully Use it in Operations?

Yes, we do. Which leads to the radical
statement that:

Historical supply and demand estimations used in

power system planning analysis are often less
accurate than forecasts used in operations!

Why? Proprietary plant datasets are available and used for training/validation of operational forecasts, more
attention is paid to them, and we only need data for next few days, versus for the last few decades.

© 2024 Electric Power Research Inst itute, Inc . All rights reserved . = =] r=d|



Our Weather “Intelligence” is Inadequate

We are transitioning to a much more weather dependent

electric system:

 Demand is becoming much more weather dependent

* Wind and solar are instantaneously defined by weather

e Other infrastructure is at increasing risk from weather
Grldded Weather‘ Data Yet, our weather intelligence isn’t even close to adequate

«  Physically consistent weather variables * Uncoordinated, lacking vision and leadership

Multi-decadal, historical and future * Not created with sector needs in mind

Producer(s)
Create initial and ongoing gridded archives
Bias correction
Ongoing generic R&D




We Need Vision, Investment & Leadership

ectric System

Holistic View of a Weather Inteligence Support Framework For

Zacy

ongoing gridded archive

Create initi
Bias ce on
Co ate with curators on access

Gridded Weather Data Ground Truth Data going Oversight:

_ : : Requirements
Phy5|.caIIy con5|sftent.weat.her varlgbles gathering/update
Multi-decadal historical with ongoing Weather and power data from Trans-disciplinary
consistent extension, and multiple futures RE fleet

Periodically refreshed Dedicated power system field

At a fidelity that can represent actual grid environmental data
conditions (supply, demand, T&D)

Validator(s)
QC of validation data
Ve ion and uncertainty quantificatio
of gridded>data

Coordinatex

coordination
Feedback facilitation
R20 Coordination

4

oducers/curators

Ongoing Sector Specific R&D
Methodological improvemer
Refresh Recommendations




Weather Dependence and Complexity are
Increasing Rapidly =

e D
_.-:-. '.'.__ "

Weather Input Datasets for

Power System Modeling
A NEEDS ASSESSMENT AND GUIDANCE FOR

USING EXISTING DATASETS

There is an Imperative for Dedicated, £ S et
Accurate, and Expertly Curated Weather
Information to Support the Energy Transition!

Weather/Climate Are Becoming Central

The risks resulting from inaction:

* Reliability issues tied to renewables |
. . . 4 A Report of the Energy Systems _:\\ ",_
* Inefficient system design and planning gt g’ Hestror ®

Datasets Project Team E S | G
2023
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https://www.esig.energy/weather-data-for-power-system-planning/

N RSLARIEINIERR  Analysis of our increasingly weather dependent system
cEEESL B L. | must be data driven

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
eeeeeee

BBBBB

WIND 2007~
Toolkit: 2 2014 : Yes o Various.
2km/4 3year/ NN . . | o | | . [N Unknown, , dataset "
LED km [ 2MIN 20 year g Notyet |RUSERES S not yet available WS
Akm/ | 30 min | 1998 1 es | ves/N o | Solar | ves Yes | | Basic | Mostofgiobe
m | 0™ precent only

NSRDB' 60k
n o [
CERRA® km/5.5 No/Yes | Nosolar | Yes Possibly | | Basic | Europe o
60min/ Not the ’ | I
cccccccc 4km | 15 min o |Ukmiiy intended Continental
Probably end us.

ppppppp

Australia/
hhhhh

12 kmy 90— Yes/
15km 2019 ° Probably New Zealand [ ] [ ] ?
Varies. r
Public
Observing Sl 1O | varioble Yes/No Novser | veries | usuatly u::;u Varies S o t c o m I n g S o a va I a e a t a °

NNNNNNNN
sssssss

eeeeeeeee

........
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

aaaaaaaaaaaa
yyyyy

reliable | Varies | Usualy

One solution is to fly blind and largely ignore the problems and hope they wash
out in the analysis. This is often the current practice.

Garbage In = Garbage Out

Learn more in the four-part video
series Weather and Climate .
Intelligence for the Energy Transition
produced by Sharply Focused for
GridLab and hosted on GridLab’s
LinkedIn Page

There are achievable, better options.
I’ll take you through a (methodologically
agnostic) proposed approach.

17 © 2024 Electric Power Research Institute, Inc. All rights reserved. (= =dr={]



Requirements Gathering and Selection Process

Process
Data Producer Selection Competition

Select
Data
Producer

Solicit
Producers

Entity
Synthetic Data

(One Color Per Producers?

Type)

' Synthetic Data Producer?

Data Flow

»

Funding Agency

Coordinating Entity?!

-

\

\_

Liaise with

Validation Coord’ing
Entity

IMay all be the same organization. 2 Should not be the same organization; creates a conflict of interest.
18 © 2024 Electric Power Research Institute, Inc. All rights reserved.

Requirements Gathering
Led By Coordinating Entity
Input From All Stakeholders

Stakeholders an
Funders
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Production, Validation, and Curation Processes
Coordinating Entity?!

Process

Entity
Liaise with Liaise with
Validation Coord’ing Curation
Entity Entity

(One Color Per
Type)

M=)

Data Flow

Synthetic Data Producer?

»
»

Produce

Historical Ongoing
Time Extension
Series

Requirements Refinement
Led By Coordinating Entity
Curation Entity? Input From All Stakeholders

Data archive and
provision (synthetic,
validation, tuning)

Funding Agency

User‘ Feedback to Funders
Education

and
Advice

Managing
Entity

IMay all be the same organization. 2 Should not be the same organization; creates a conflict of interest.
19 © 2024 Electric Power Research Institute, Inc. All rights reserved. (= =dr={]



Production, Validation and Curation Processes, with Periodic Refresh

=2l

Process
Data Producer Selection Competition

Select
Data
Producer

Solicit
Producers

Entity

(One Color Per Synthetic Data

Type)

Producers? Validation

Liaise with
Coord’ing
Entity

Liaise with
Curation
Entity

M=)

Data Flow

»

Synthetic Data Producer?

Produce

Historical Ongoing
Time Extension
NERES

Curation Entity?

Data archive and
provision (synthetic,

Funding Agency validation, tuning)

User
Education
and
Advice

Feedback to
Managing
Entity

IMay all be the same organization. 2 Should not be the same organization; creates a conflict of interest.
20 © 2024 Electric Power Research Institute, Inc. All rights reserved.

Requirements Refinement
Led By Coordinating Entity
Input From All Stakeholders

Stakeholders and
Funders

=2l



How Much Will It Cost?

Rough figures based on costs for high volume NWP work for high-cost

case (1-km CONUS NWP) back to 1990, extended continually to 2035

with extensive validation.

= Selection process with comprehensive validation and comparison to
existing datasets: $2-3M

= |nitial dataset production: $8-15 M. Ongoing $1-2 M/yr. Includes all storage

= |nitial dissemination and curation tasks: S1 M. Ongoing: $400-700K/yr.
Management: $S200K/yr

= Validation and uncertainty quantification: S500K/yr + Cost to Acquire
Measurements

— LEVERAGING THE RE BUILDOUT IS IMPERATIVE (as is standardization)
— Consider cost sharing the physical assets to incentivize cooperation
— Industry support level and validation thoroughness ultimately sets the cost

= The value of an observational network to support data production and validation
needs detailed cost-benefit analysis. In the Al world, quality ground truth data is king.

Custom 1990-2035 Climate Dataset for Electrification: $35-70M + validation hardware costs

Expected grid decarbonization investment by 2035: $330-740B1

-,1 NREL 2022: https:/iwww.energy.gov/eere/articles/nrel-study-identifies-opportunities;and-challenges-achieving:us;transformational-goal =Pl



Getling into Weeds

. All Data Is Not Created Equal
. The I.\|\11pqct of Grid Spacing

Computer Resources

!

| Forecast Equations |

rCoordinate SystemA
!

| Parameterization Scheme |

Weather stations forecast points (3)

Numerical grid forecast points (7x7x6)




Representation at 30 km Grid Spacing
(About the same as ERAS)

1215 W 1210°W__1205°W 1200 W|

REMUAE G ATE .'
o A . Sy
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Hypothetical Cross Sections Showing Model Representations
of a Complex Topography at Different Grid Spacing

Representation at 1 km Grid Spacing
(The WIND Toolkit has 2 km Resolution)

A3 km representation of
this mountain range has five
peaks and four valleys.

AtS km, narrow peaks and
valleys are lost and the crest
is lower. The complexity
behind the crest is lost and
becomes a wide valley.

At 27 km, the range becomes
a simple peak with a smooth
up and downslope on either
side of the crest, and the
crest shifts eastward

27 km 56 km

The top plot shows a cross-section of hypothetical complex topography represented at 3 km grid
spacing. The middle plot uses the average of sets of three 3 km points for each 9 km point. In the
bottom plot, three 9 km points were averaged to get to each 27 km peint.

40.0° \ I L ,' S
1250w 1225 w 1200 W 1175"W 1150 W 1125 W




An Example of Resolution Impacts

1km WRF GORGE RESEARCH SIMULATION Init: 1200 UTC Sat 24 Apr 10
Fest: 9.00 h Valid: 2100 UTC Sat 24 API‘ 10 (1‘1—00 PDT Sat 24 Apl' ]_D) Windspeed and Vectors: 20100424:2100
120 W - _~ = - - . P

e > — - - - >

46.0° N )7 o~ = «— o7 j / / [

100 £

455 N§ ~— Cm=i [ S - - LN *— e

50 §

-—'—-:P- . - - - .
122.0° W 121.5" W - 121.0° W 120.5° W 120.0° W
I . . . : I . . . . - L I
LT T T I T T 11 o :
0o =2 4 8 8 10 12 14 18 18 20 22 =24 28 2 80 32 34 ms! 0 L = 3 . 5 6 i 8 L

Model Info: V3.0 No Cu YSU PBL Ferrier Ther-Diff 1.0 km, 30 levels, B sec
LW: RRTM SW: Dudhia DIFF: simple EM: 2D Smagor

25 © 2024 Electric Power Research Institute, Inc. All rights reserved. (= =dr={]



Weather datasets For Power Systems Should...

= ...have spatial and temporal scales relevant to the
system being modeled. See example on right.
— Accurately capture the resource drivers and their variability

GFS 2m Tmp (F), 10m Wind (kt), MSLP (mb)
init Wed 2022-06-08-12Z, valid: Thu 2022-06-09-00Z, FO12 hr

— Capture the uncertainty in estimates of the resource drivers
— Do the same for drivers of system load

L L s . & ° 3 8 8 5 8 8 3 8 8 3

Weathernerds.org

Not All Data Is Created Equal. Model Data # Observations

26 © 2024 Electric Power Research Institute, Inc. All rights reserved. = =] r=d|



Weather datasets For Power Systems Should...

= ...have spatial and temporal scales relevant to the
system being modeled. See example on right.
— Accurately capture the resource drivers and their variability
— Capture the uncertainty in forecasts of the resource drivers
— Do the same for drivers of system load/other weather risks

= ...be concurrent and physically consistency

— All variables represent the same time chronology and are
from dynamically consistent sources

- Mixing and matching should be avoided if possible and if
done the consequences should be analyzed

= Mixing examples: NSRDB and WINDTK; different NWP
models on right; statistical models and observations

NAM 2m Tmp (F), 10m Wind (kt), MSLP (mb)
init Wed 2022-06-08-122, valid: Thu 2022-06-09-00Z, FO12 hr

L L s . &° 388 5 88438 8 3

Weathernerds.org

Not All Data Is Created Equal. Model Data # Observations

27 © 2024 Electric Power Research Institute, Inc. All rights reserved.
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Weather datasets For Power Systems $

\

hould...

HRRR 2m Tmp (F), 10m Wind (kt), MSLP (mb)
init Wed 2022-06-08-12Z, valid: Thu 2022-06-09-00Z, FO12 hr

= ...have spatial and temporal scales relevant to the

system being modeled. See example on right. u_ | 10s
— Accurately capture the resource drivers and their variability .
(.
- Capture the uncertainty in forecasts of the resource drivers oo, :
— Do the same for drivers of system load NS s
- - NSy .
= ...be concurrent and physically consistency S8Z 3 "
N 200
~ Allvariables represent the same time chronology and are oS {({ ;
from dynamically consistent sources gg% 2% § {g% s
— Mixing and matching should be avoided if possible and if IR § %&&h -
done the consequences should be analyzed b S S e SRR .
FREEEEEEINNN
= Mixing examples: NSRDB and WINDTK; different NWP K § %é‘ é%}\éj:é'&&t -3
. . . b -48
models on right; statistical models and observations . é § é %é &é&&* 4

. . . . LLLLLLELLLL =4

= ...provide a 30+yr, updated time history with a f $eessssssss 77

consistent methodology that minimize biases, trends, | §§§§§§§§%§ { ;-_
and “artifacts” SRTTRTTTTITRRLLY Weathernerds.org

Not All Data Is Created Equal. Model Data # Observations

28 © 2024 Electric Power Research Institute, Inc. All rights reserved. (= =dr={]



Weather datasets For Power Systems Should...

= ...be validated and have uncertainty quantified. \
= Which of these representations is right? Most useful? }

— They can’t all be right!
= Have you validated the d

29

R\
GFS 2m Tmp (F), 10m Wind (kt), (mb)

init: Wed 2022-06-08—12Z, valid: Thu 2022-06-09-00Z, FO12 hr |

ta you use?

HRRR 2m Tmp (F), 10m Wind (kt), MSLP (mb)
init: Wed 2022-06-08-12Z, valid: Thu 2022-06-09-00Z, FO12 hr

init: Wed 2022-06-08-12Z, volid: Thu 2022-06

§
T

8 & &§ &8 &8 & &8 %

© 2024 Electric Power Research Institute, Inc. All rights reserved.

NAM 2m Tmp (F), 10m Wind (kt), MSLP (mb)
-09-00Z, FO12
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Not All Data Is Created Equal. Model Data # Observations

8 &§ &§ &8 8 3 8 8

= Light, moderate, strong
wind?

~ = Cloudy or sunny?
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Slide adapted from content

More Nuance: Offshore Validation Example oo emze e

permission

_ _ Hudson North Hourly Average Wind Speed
= Typical analyses look at standard metrics such as s anin o1 1708y o 148 o 1220101905

40 | | ]

bias, MAE, RMSE, and correlation between 1 emas avmssoota
measured and simulated data _
= Here ERA5 160 m wind speed data evaluated with
hourly average (+/- 30 mins) “Hudson North” Lidar

measurements over a ~ 2-yr period

RMSE :1.79928

= Analysis indicates fairly good performance
— R? of about 0.90
— Bias (ERAS5 a bit low): -0.83 m/s
- MAE: 1.34 m/s
— Similar performance results at other nearby measurement

ERA5 Wind Speed (m/s)

0 20 30 40

sites Lidar Wind Speed (m/s)

So ERA5 should be fine for offshore wind integration studies?
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° ® ® Slide adapted from content
The Impact of Data Assimilation Cycles rom . ohn Zsck, MESO
permission
) . 2000-2023 ERAS Average 1-h Absolute Wind
= The ERAS data is created with a DA scheme where Speed Change (m/s) by Month & Hour of Day

there are two major data assimilation cycles per day

If we examine the average absolute value of the 1-hr
wind speed change by month and time of day we see
larger average changes occur at the transition time
between data assimilation periods (0500 EST and
1700 EST)

The Impact varies substantially by time of year

Therefore, ramp event analysis using the ERAS data is
suspect for this location...and likely others

Month

MN 1T 2 3 4 5 & 7 8§ 9 10 IINoomlI3 14 15 16 17 I8 19 20 21 22 23

Hour Ending (EST)
This is among the list of known problems listed on the ERA5 web page...but who

has time to read the manual or footnotes?

8. ERADBL diurnal cycle for near surface winds: the hourly data reveals a mismatch in the analysed near surface wind speed between the end of one assimilation cycle and the
beginning of the next (which occurs at 9:00 - 10:00 and 21:00 - 22:00 UTC). This problem mostly occurs in low latitude oceanic regions, though it can also be seen over
Europe and the USA. We cannot rectify this problem in the analyses. The forecast near surface winds show much better agreement between the assimilation cycles, at
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Low Hanging Fruit for Validation and Uncertainty Quantification

Comprehensive industry wide data transparency and
sharing is required: Met., generation, and availability data

— Little proprietary value per site but a tremendous untapped asset if
made public across all generators

This will enable validation and UQ of synthetic datasets
which is imperative for valid application. Ground truth data
is also key to the model improvement process

ERCOT is leading the way. Others should follow ASAP_,

~

— This might require legislation/regulation.

© 2024 Electric Power Research Institute, In
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User Knowledge/Education

Overview of the Current World of
Datasets for Power System Planning

J Wide Range of Methods to Construct Datasets

o A few fundamental types of approaches

o Enormous number of significant variations within types

 Therefore: Wide Range of Datasets Exist

o Typically have very different attributes depending
on how they were constructed

o Consistency of data attributes (e.g. spatial/temporal
correlations) between datasets should not be assumed

FrlursCuseet .
[:-uu s | Slide courtesy of:

o Critical need to evaluate comparative performance

on parameters/scales important to specific
applications

Dr. John W. Zack

Principal
MESO. Inc.

Tro NY
ATMOSPHERIC RESENRCH
FORECASTING + SIMULATIONS

Let's examine the key attributes of the fundamental types of approaches. ..

Used with permission.

It's Complicated!!!
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Summary

= Weather impact on the electric system is increasing significantly in complex,
interdependent ways that need to be considered in planning and operations

= Current weather datasets and practices for their use are inadequate and
urgently need updating. Key issues:
- Lack of attention to validation and uncertainty quantification

— Lack of understand of the inaccuracies, biases, and limitations of available synthetic
weather data. They should not be treated like observations.

— Lack of holistic vision, sector coordination, and funding to fix the problem
— Lack of sector weather and power data sharing to improve modeling and validation

= Producing quality fit-for-purpose weather datasets is achievable, and an
imperative ongoing need for the sector. Not a once and done research project.

= Industry momentum to move forward is building

= EPRI’s has the trans-disciplinary skills to coordinate this with multiple partners
— A strong match for Public-Private Partnership
- Looking for utility partners to team with to push forward the process
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