

Distribution Planning Advisory Group

System Needs

DPAG 2 – August 2025

Agenda & Meeting Etiquette

Agenda

- Introductions and Logistics
- Distribution System Needs
- Transmission System Needs
- Transmission Capacity Needs
- Generation/Load Interconnections
- Future Meeting Topics
- Questions & Discussions

Meeting Etiquette

- Meetings will be recorded & posted
- Mute speakers & cameras optional
- Questions in the chat or use the "raise hand" feature
- Respect diverse opinions

Presenters & Topics

Amber Blackstock
Principal System Planning Engineer

David ThompsonSystem Planning Engineer

Generator Interconnection and

Large Loads

System Planning

Transmission System

Dean SprattPrincipal System Planning Engineer

Avista's Planning Cycle

Stakeholder Engagement

System Operations

Planning, Engineering and Field Implementation

4 = 216-00

Distribution System Needs

Amber Blackstock | Principal System Planning Engineer

Evaluating the Distribution System

System metrics

- 420 feeders, 183 transformers
- 1 in 10 conditions adjusted for weather normalization

Location	Heavy Summer	Heavy Winter
Colville	103°	-19°
Sandpoint	102°	-10°
Lewiston	108°	-10°
St Maries	102°	-14°
Spokane	104°	-17°
Othello	108°	-15°
Silver Valley	102°	-14°

Forecasted Demand

- Use three years of historical measurement
- Multi-variable regression at feeder level
- Distributed Energy Resource Potential Assessment

Identified Capacity Constraints

Substation Projects

	Count	Cost
Rebuild	2	\$21 M
Expansion	3	\$32 M
New	4	\$76 M

Equipment operating beyond 80% of its rated capacity, pre-project.

	2025	2034
Transformers	35	47
Feeders	32	49

Key Focus Areas

- Colville
- East Lake CDA
- Lewiston
- Post Falls/Rathdrum
- Moscow
- North Spokane
- Sandpoint

Summer Results – Pre-Project

NAME	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
CDA124	89%	93%	97%	100%	102%	104%	106%	107%	109%	110%	111%
M15 - XFMR #1	96%	98%	99%	101%	102%	103%	104%	105%	105%	106%	106%
LOL - XFMR #3	92%	95%	97%	99%	100%	102%	103%	104%	104%	105%	106%
PVW - XFMR #1	80%	85%	89%	92%	95%	98%	100%	102%	103%	104%	105%
LOL1266	82%	86%	90%	93%	96%	98%	100%	101%	102%	104%	104%
GLN - XFMR #1	91%	93%	95%	97%	98%	99%	100%	101%	101%	102%	102%
PVW241	76%	81%	85%	88%	91%	94%	96%	98%	100%	101%	102%
TEN - XFMR #2	94%	95%	96%	97%	98%	98%	99%	99%	100%	100%	100%
PDL - XFMR #1	94%	95%	96%	97%	97%	98%	98%	99%	99%	99%	99%
SPT - XFMR #2	93%	94%	95%	95%	96%	97%	97%	97%	98%	98%	98%
VAL - XFMR #1	94%	94%	94%	94%	94%	94%	94%	94%	94%	94%	94%
PRA - XFMR #2	94%	94%	94%	94%	94%	94%	94%	94%	94%	94%	94%
LOL1359	90%	91%	91%	92%	92%	92%	93%	93%	93%	93%	93%
PF213	77%	80%	83%	85%	87%	88%	90%	91%	92%	92%	93%
GLN12F2	75%	78%	81%	84%	86%	87%	89%	90%	91%	92%	92%
SIP - XFMR #3	92%	92%	92%	92%	92%	92%	92%	92%	92%	92%	92%
SIP12F1	92%	92%	92%	92%	92%	92%	92%	92%	92%	92%	92%
K34	82%	83%	85%	86%	87%	88%	89%	89%	90%	91%	91%
ROS - XFMR #2	91%	91%	91%	91%	91%	91%	91%	91%	91%	91%	91%

Summer Results – Post-Project

NAME	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
CDA124	89%	79%	82%	85%	87%	89%	90%	91%	92%	93%	94%
M15 - XFMR #1	96%	98%	99%	101%	102%	103%	63%	64%	64%	64%	64%
LOL - XFMR #3	92%	95%	97%	99%	90%	92%	93%	94%	59%	60%	60%
PVW - XFMR #1	80%	75%	78%	82%	35%	36%	37%	38%	39%	39%	40%
LOL1266	82%	86%	90%	93%	75%	77%	78%	79%	85%	86%	86%
GLN - XFMR #1	91%	93%	95%	97%	98%	59%	60%	60%	61%	61%	61%
PVW241	76%	63%	67%	70%	33%	35%	36%	36%	37%	37%	38%
TEN - XFMR #2	94%	95%	96%	97%	98%	98%	99%	82%	82%	82%	83%
PDL - XFMR #1	94%	95%	96%	97%	97%	98%	98%	99%	99%	99%	99%
SPT - XFMR #2	93%	94%	95%	55%	55%	56%	56%	56%	56%	57%	57%
VAL - XFMR #1	94%	41%	41%	41%	41%	41%	41%	41%	41%	41%	41%
PRA - XFMR #2	94%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
LOL1359	90%	91%	91%	92%	90%	90%	90%	75%	71%	72%	72%
PF213	77%	80%	83%	85%	62%	63%	64%	65%	66%	66%	67%
GLN12F2	75%	78%	81%	84%	86%	83%	85%	86%	87%	88%	89%
SIP - XFMR #3	92%	92%	92%	92%	92%	92%	92%	92%	92%	92%	92%
SIP12F1	92%	92%	92%	92%	92%	92%	92%	92%	92%	92%	92%
K34	82%	83%	85%	86%	87%	88%	89%	89%	90%	91%	91%
ROS - XFMR #2	91%	91%	91%	91%	91%	91%	91%	91%	91%	91%	91%

Winter Results – Pre-Project

NAME	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
M15 - XFMR #1	108%	111%	113%	115%	117%	119%	120%	121%	122%	123%	123%
K34	100%	102%	103%	105%	106%	107%	108%	109%	110%	111%	111%
SPT - XFMR #2	104%	105%	106%	107%	108%	108%	108%	109%	109%	109%	110%
ORI - XFMR #1	104%	104%	105%	105%	105%	106%	106%	106%	106%	106%	106%
VAL - XFMR #1	106%	106%	106%	106%	106%	106%	106%	106%	106%	106%	106%
MLN12	99%	100%	101%	102%	102%	103%	103%	103%	103%	104%	104%
M15515	76%	81%	86%	89%	93%	95%	98%	100%	101%	103%	104%
OGA611	86%	89%	92%	95%	97%	98%	100%	101%	102%	103%	103%
OGA - XFMR #1	84%	88%	90%	93%	95%	97%	98%	99%	100%	101%	102%
BLU321	86%	89%	92%	94%	96%	97%	99%	100%	101%	101%	102%
SPAS_SP_12	97%	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%
TUR116	93%	94%	94%	95%	95%	95%	95%	96%	96%	96%	96%
PRV - XFMR #1	92%	92%	92%	93%	93%	93%	93%	93%	93%	94%	94%
SPA - XFMR #1	93%	93%	93%	93%	93%	93%	93%	93%	93%	93%	93%
M15514	85%	87%	88%	89%	90%	91%	92%	92%	93%	93%	93%
KAM1291	91%	92%	92%	92%	92%	92%	93%	93%	93%	93%	93%
GRV - XFMR #1	90%	90%	91%	91%	91%	92%	92%	92%	92%	92%	92%
MLN - XFMR #2	88%	89%	89%	90%	90%	90%	91%	91%	91%	91%	91%
MIS - XFMR #1	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%

Winter Results – Post-Project

NAME	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
M15 - XFMR #1	108%	111%	113%	115%	117%	119%	64%	64%	64%	65%	65%
K34	100%	102%	103%	105%	106%	107%	108%	109%	110%	111%	111%
SPT - XFMR #2	104%	105%	106%	60%	60%	60%	61%	61%	61%	62%	62%
ORI - XFMR #1	104%	104%	105%	105%	43%	43%	43%	43%	43%	43%	43%
VAL - XFMR #1	106%	47%	47%	47%	47%	47%	47%	47%	47%	47%	47%
MLN12	99%	100%	101%	102%	102%	103%	103%	103%	103%	104%	104%
M15515	76%	81%	86%	89%	93%	95%	25%	25%	26%	26%	26%
OGA611	86%	89%	92%	95%	64%	22%	22%	22%	22%	22%	22%
OGA - XFMR #1	84%	88%	90%	93%	69%	24%	24%	24%	24%	25%	25%
BLU321	86%	89%	92%	94%	33%	34%	35%	35%	35%	35%	35%
SPAS_SP_12	97%	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%
TUR116	93%	94%	94%	95%	95%	95%	95%	96%	96%	96%	96%
PRV - XFMR #1	92%	92%	92%	93%	93%	93%	93%	93%	93%	94%	94%
SPA - XFMR #1	93%	93%	93%	93%	93%	93%	93%	93%	93%	93%	93%
M15514	85%	87%	88%	89%	90%	91%	61%	61%	61%	61%	62%
KAM1291	91%	92%	92%	92%	92%	92%	93%	93%	93%	93%	93%
GRV - XFMR #1	90%	90%	91%	91%	91%	92%	92%	92%	92%	92%	92%
MLN - XFMR #2	88%	89%	89%	90%	90%	90%	91%	91%	91%	91%	91%
MIS - XFMR #1	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%

System Needs East

• Bronx

Rathdrum

Pleasant View

Poleline

Carlin Bay

Bunker Hill

System Needs East

System Needs South

Moscow

Lewiston

System Needs Spokane

- Glenrose
- Metro
- Melville

System Needs Spokane

Milan

Spokane Industrial Park

Liberty Lake

System Needs West

- Orin
- Valley

System Needs West

Correction Action Plans

Solutions

- Operational
 - Phase Balance
 - Load Transfer
- Non-Wire Alternatives
- Equipment Sizing
- Feeder addition
- Substation Expansion
- New Substation

Transmission System Needs

Load Service

Dean Spratt | Principal System Planning Engineer

Load Growth Assumptions

Summer Balancing Area Forecast

Winter Balancing Area Forecast

- Vehicle and building electrification included
- 1-in-10 probability of weather occurrence (104° and -20°)

Transmission Performance Criteria

Planning Horizons

- Near Term 1-5 years
- Long Term 5-10+ years

System Conditions

- Peak loading
- Light loading
- Sensitivities

Performance

- Meet applicable facility ratings
- N-1 loss of single facility
- N-1-1 loss of any two facilities

Beacon Transmission Reinforcement

Figure 9: Beacon 230/115kV Transformer and Bell 230/115kV Transformer Outage – 2030 Heavy Summer Scenario

Coeur d'Alene Station Voltage Support

Figure 13: Coeur d'Alene – Ramsey 115kV and Dalton – Rathdrum 115kV Transmission Line Outage – 2030 Heavy Summer Scenario

Grangeville Station Voltage Support

Figure 27: Dworshak – Orofino 115kV and Lolo – Nez Perce115kV Transmission Line Outage – 2030 Heavy Winter Scenario

Kootenai County Transmission Reinforcement

Figure 24: Rathdrum 115kV Bus-tie Breaker Failure – 2030 Heavy Summer Scenario

Lewiston 230kV Transmission Reinforcement

Figure 20: Dry Creek – North Lewiston 230kV and the Hatwai – Lolo 230kV Transmission Line Outage – 2030 Heavy Summer Scenario

Northwest Transmission Reinforcement

Figure 17: Five Mile – Francis & Cedar 115kV and Northwest – Westside 115kV Transmission Line Outage – 2030 Heavy Summer Scenario

Palouse Transmission Reinforcement

Figure 22: Moscow 230/115kV and Shawnee 230/115kV Transformer Outage – 2030 Heavy Summer Scenario

Sandpoint Transmission Reinforcement

Figure 22: Cabinet 230/115kV Transformer and Libby 230/115kV Transformer Outage – 2030 Heavy Winter Scenario

West of Lancaster Constraint

Figure 30: Beacon - Rathdrum 230kV and Boulder - Rathdrum 230kV Transmission Line Outage – 2030 Light Summer Scenario

West Spokane Transmission Reinforcement

Figure 11: Blue Bird – Garden Springs 230kV and Garden Springs – Westside 115kV Transmission Line Outage – 2030 Heavy Summer Scenario

Transmission System Needs

Contractual Capacity and Integrated Resource Plan Support

Dean Spratt | Principal System Planning Engineer

Avista's Commercial Transmission Constraints Avista Load Service Avista Internal Transmission **PINESTREET AVA.BPAT** Regional Transmission AVAT.NWMT MIDC AVA.SYS **Available Transmission Capacity (ATC) by Path as of January 2026*** West of **Transmission Path** Inbound ATC **Outbound ATC West of Hatwai** 0 MW 0 MW WALLAWALLA AVA.SYS - AVA.BPAT 221 MW 1335 MW DRYCREEK **AVA.SYS - PINESTREET** 62 MW AVA.SYS - AVA.NWMT 382 MW 0 MW LOLO

AVA.SYS - LOLO

0 MW

33 MW

Transmission Expansion Projects

Generator Interconnections

Large Load Studies

David Thompson | System Planning Engineer

Generator Interconnections

Cluster Number	Cluster Area	Request Status	MW Output	Туре	County	State	POI	Customer Requested COD
Q59	NA	Suspended	60	Solar/Storage	Adams	WA	Roxboro 115kV Station	Suspended LGIA
Q60	NA	Suspended	150	Solar/Storage	Asotin	WA	Dry Creek 230kV Station	Suspended LGIA
Q97	NA	Suspended	100	Solar/Storage	Nez Perce	ID	Lolo 230kV Station	Suspended LGIA
TCS-03	T7a - Big Bend	Suspended	80	Solar/Storage	Adams	WA	Warden 115kV Station	Suspended LGIA
TCS-14	T6 - Lewis Clark	Construction	375	Wind/Storage	Garfield	WA	Dry Creek 230kV Station	TBD
CS23-06	CA5 - Palouse	LGIA	220.5	Wind	Whitman	WA	Shawnee - Thornton 230kV	12/15/2025
CS23-12	CA7 - Big Bend	LGIA	199	Storage	Franklin	WA	Saddle Mountain - Walla Walla 230kV	1/10/2027
CS23-13	CA1 - West Plains	LGIA	40	Solar	Lincoln	WA	Davenport 115kV Station	6/31/2024
CS23-14	CA1 - West Plains	LGIA	40	Solar	Spokane	WA	Airway Heights - Silver Lake 115kV	6/30/2027
CS24-01	CA8A - S. Othello	SGIA	999kW	Solar	Adams	WA	S. Othello 13kV	10/1/2024
CS24-02	CA8D - Third & Hatch	SGIA	500kW	Storage	Spokane	WA	Third & Hatch 13kV	8/1/2025
CS24-07	CA8B - Othello	SGIA	2	Solar	Adams	WA	Othello 13kV	12/10/2024
CS24-09	CA8C - Othello	Draft SGIA	9.5	Solar	Adams	WA	Othello 13kV	8/1/2025
CS24-14	CA1 - West Plains	Phase Two Restudy	40	Solar	Spokane	WA	South Fairchild Tap 115kV	6/30/2028
CS24-15	CA1 - West Plains	Phase Two Restudy	300	Wind/Storage	Lincoln	WA	Bluebird 230kV Station	12/31/2027
CS25-01	CA5 - Palouse	Phase One Study	120	Wind	Spokane	WA	Benewah 230kV Station	12/31/2028
CS25-02	CA7 - Big Bend	Phase One Study	126	Wind	Adams	WA	Saddle Mountain 230kV Station	12/31/2030
CS25-03	CA1 - Spokane	Phase One Study	100	Storage	Spokane	WA	Northeast 115kV Station	1/1/2030
CS25-04	CA3 - Coeur d'Alene	Phase One Study	101.5	Natural Gas	Kootenai	ID	Rathdrum 115kV Station	5/30/2027
CS25-05	CA3 - Coeur d'Alene	Phase One Study	101.5	Natural Gas	Kootenai	ID	Rathdrum 115kV Station	5/30/2029
CS25-06	CA2 - Stratford	Phase One Study	54	Solar & Storage	Grant	WA	Chelan-Stratford 115kV	8/31/2031
CS25-07	CA5 - Palouse	Phase One Study	199	Wind	Whitman	WA	Thornton 230kV Station	12/16/2029
CS25-08	CA1 - Spokane	Phase One Study	250	Storage	Spokane	WA	Boulder 230kV Station	5/4/2029
CS25-09	CA7 - Big Bend	Phase One Study	375	Solar & Storage	Adams	WA	Saddle Mountain - Wanapum 230kV	5/1/2030
CS25-11	CA6 - Lewis Clark	Phase One Study	300	Wind	Garfield	WA	Dry Creek - Talbot 230kV	12/1/2029
CS25-12	CA6 - Lewis Clark	Phase One Study	160	Solar & Storage	Garfield	WA	Dry Creek - Talbot 230kV	12/1/2029
CS25-13	CA7 - Big Bend	Phase One Study	150	Solar & Storage	Adams	WA	AVAHub25-04 230kV Station	12/31/2030
CS25-14	CA7 - Big Bend	Phase One Study	199	Solar & Storage	Adams	WA	Neilson 230kV Station	12/31/2030
CS25-15	CA5 - Palouse	Phase One Study	200	Wind	Spokane	WA	Benewah 230kV Station	1/12/2030
CS25-16	CA7 - Big Bend	Phase One Study	150	Wind	Adams	WA	Neilson 230kV Station	1/12/2030
CS25-17	CA1 - Spokane	Phase One Study	200	Wind	Spokane	WA	Bluebird 230kV Station	1/12/2030
CS25-18	CA8 - Melville	Phase One Study	5	Solar	Spokane	WA	Melville 13kV	6/30/2026

Active studies for 4,100 MWs of non-Avista owned generation through 2030

2025 Cluster Studies

Cluster Area 7 (Big Bend) – Cost Estimate Example

	Transmission Provider Interconnection Facilities	Station Equipment Network Upgrades	Shared Network Upgrades	Total
CS25-02	\$800,000	\$2,150,000	\$62,275,000	\$65,225,000
CS25-09	\$775,000	\$11,425,000	\$185,350,000	\$197,550,000
CS25-13	\$725,000	\$12,575,000	\$74,150,000	\$87,450,000
CS25-14	\$975,000	\$9,500,000	\$98,375,000	\$108,850,000
CS25-16	\$975,000	\$9,500,000	\$74,150,000	\$84,625,000
Total	\$4,250,000	\$45,150,000	\$494,300,000	\$543,700,000

2025 Cluster Study Map CA3 - Coeur d'Alene Lake Roosevelt Spokane National Recreation Area CA1 - Spokane 120MW-CS25-15 CA2 - Stratford CS25-13 150MW CS25-16 150MW 199MW CA5 - Palouse CS25-12 160MW CA7 - Big Bend **TotalMW** CA1 - Spokane 700 CA2 - Stratford 54 CA6 - Lewis Clark CA3 - Coeur d'Alene 203 CA5 - Palouse CA6 - Lewis Clark 460 WA State Parks GIS, Esri, TomTom, Garmin, FAO, NOAA, USGS, Bureau of Land CA7 - Big Bend 1000 Management, EPA, NPS, USFWS 0 12.5 25 50 Miles CA8 - Melville Interconnection Cluster Areas Transmission Line Requests ---- 115 kV Name ____ 230 kV Resource Type CA1 - Spokane 500 kV CA2 - Stratford Energy Storage - 60 kV CA3 - Coeur d'Alene Natural Gas Deenergized Solar CA5 - Palouse — Other Solar/Energy Storage CA7 - Big Bend Publish Date: June 5, 2025 CA8 - Melville

Large Load Studies

Large Load Request Process Overview (Any Load Request Size Exceeding 1.5 MVA)

Application 30 Days Fill out Large Load Request Application, available at myavista.com/ about-us/large-load-service-request.

 Avista will provide notification within 3 business days of receiving the application.

- 2 Scoping 30 Days
- Prepare your project overview information and questions for the scoping meeting.
- Avista Large Power Solution Team will provide you answers and guide you to the next step.

- 3 Study 30 – 180 Days
- You will have 30 days after the scoping meeting to commit to study agreement.
- Please refer to the "Required Study Details" table below for information.

4 Review 30 Days

- Any material changes to the original study input will require a new study if Avista is able to provide service.
- You will have 30 days to decide whether to proceed with service agreement if Avista is able to provide service.

- 5 Execute
- A tailored large load service agreement will be developed based on the specifics of the project.
- Please ensure that the large load service agreement is executed prior to the commencement of construction.

- Fifteen current Large Load requests
- 3,400MW total requests, ranging from 2MW to 1000MW
- Regional concentrations in the West Plains and Rathdrum areas

www.myavista.com/about-us/large-load-service-request

Request Size	Study	Deposit	Timeline	Deliverables	Customer
1.6 - 8 MVA	Capacity Study	\$5,000	30 Days	Capacity acknowledgement, project details including cost and schedule, and next steps if Avista is able to provide service.	Properly filled out application.
8.1 - 25 MVA or Insufficient Grid Capacity	Distribution Impact Study	\$20,000	60-90 Days	Facility violations, system modifications, estimates of scope, schedule and cost if Avista is able to provide service.	Facility oneline, class of load, redundancy requirements, preferred resource, seasonal coincident peaks.
Over 25 MVA or Transmission Service Requested	Transmission Impact Study	\$40,000	60-180 Days	Facility violations, contingent facilities, resource requirements and system modifications, customer facility requirements, estimate of scope, schedule and cost if Avista is able to provide service.	Facility oneline, class of load, redundancy requirements, preferred resource, seasonal coincident peaks.

Wrap-Up

Next Steps

Continue System Assessment Technical Studies

- DER Potential Study scenario
- N-1 contingency analysis

Development of Corrective Action Plans

- Complete System Assessment report
- Detailed project studies in 2026

Topic suggestions email: DistributionPlanning@avistacorp.com

Avista's O'Gara 115kV / 13kV Substation, South of Harrison, ID

Q&A

Solving future energy system challenges today

