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Appendix K 

Climate Change 

 

The process of integrating climate change into the load forecast starts with estimating the 
long-run trend in the 20-year average of annual heating degree days (HDD) and cooling 
degree days (CDD). Ideally, trending the 20-year moving average introduces climate 
change while still maintain a smoothed measure of normal (average) weather.  Figure K.1 
demonstrates the issues that need to be considered when choosing a method to introduce 
climate change using HDD.     

Figure K.1: Issues Related to Forecasted HDD and CDD

 

Line A reflects the most recent 20-year moving average (HDD20) ending with the current 
calendar year (yc). In the current IRP, this is the 2000-2019 period. Without a climate 
change adjustment, Line A is the assumed normal weather over Yc+n. Line A will only shift 
up or down as the 20-year average is updated with a new year of HDD data. If climate 
change is occurring, then line A will gradually shift down over time along the vertical axis.   
 
A forward-looking climate change adjustment to line A requires introducing a trended 
moving going forward in time—this is shown by line B or C. However, a method that 
produces line C is problematic because, compared to line B, it introduces a significant 
amount of year-to-year variation over the forecast period. In turn, this produces significant 
amount of volatility in forecasted load, revenues, and earnings that may not be acceptable 
to the planning process. However, even if a method produces a smooth trend over the 
forecast horizon, another problem can arise. Specifically, if the method that produces line 
B generates large shifts in the slope and intercept between forecast runs (i.e., the forecast 
completed in year y versus the forecast completed in year y+1), this method will also 
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produce a level of volatility that may not be acceptable. This is shown by line B* compared 
to line B. This analysis shows that the method chosen should be stable over and between 
forecast runs, yet still capture the current best guess path of climate change over the 
forecast horizon.        
 
The method used by Avista, starts with an analysis of the 20-year moving average of HDD 
and CDD using a 20-year moving average time-series going back to 1967. In other words, 
the first observation in the time series is the 20-year moving average for the period 1948-
1967, where 1948 is the start of Avista’s (AVA) annual billing adjusted HDD data 
(discussed above). After analyzing the time-series behavior of both series, the following 
time series regression equations are estimated: 
 

[1A]  ∆𝐻𝐷𝐷 , = 𝛿 + 𝜃 ∆𝐻𝐷𝐷 , + 𝜃 ∆𝐻𝐷𝐷 , + 𝜃 ∆𝐻𝐷𝐷 , + 𝜃 ∆𝐻𝐷𝐷 , +

𝜃 ∆𝐻𝐷𝐷 , + 𝜖  

[2A]  ∆𝐶𝐷𝐷 , = 𝛿 + 𝛾 ∆𝐶𝐷𝐷 , + 𝛾 ∆𝐶𝐷𝐷 , + 𝛾 ∆𝐶𝐷𝐷 , + 𝛾 ∆𝐶𝐷𝐷 , +

𝛾 ∆𝐶𝐷𝐷 , + 𝜖  

Here, εy is a white noise, mean zero error term. 

Assuming model stationarity, the constant value δ can be used to calculate the long-run 
expected change in annual HDD and CDD: 

[3A]  𝜇∆ =
( )

 

[4A]  𝜇∆ =
( )

 

This can then be applied to the current 20-year moving average to generate trended 
values out a total of N years: 

[5A]  𝐹(𝐻𝐷𝐷 , ) = 𝐻𝐷𝐷 , + 𝑛𝜇∆  𝑓𝑜𝑟 𝑛 = 1, … , 𝑁 

 

[6A]  𝐹(𝐶𝐷𝐷 , ) = 𝐶𝐷𝐷 , + 𝑛𝜇∆  𝑓𝑜𝑟 𝑛 = 1, … , 𝑁 

For most IRPs, N = 25. If monthly values are needed over the forecast period, then the 
annual values can be allocated monthly as follows: 

[7A]  𝐹(𝐻𝐷𝐷 , , ) = ℎ 𝐹(𝐻𝐷𝐷 , )  𝑤ℎ𝑒𝑟𝑒 ℎ =  
∑

,
 𝑓𝑜𝑟 𝑡 = 𝐽𝑎𝑛, … , 𝐷𝑒𝑐 

[8A]  𝐹(𝐶𝐷𝐷 , , ) = 𝑐̅ 𝐹(𝐶𝐷𝐷 , ) 𝑤ℎ𝑒𝑟𝑒 𝑐̅ =  
∑

,
𝑓𝑜𝑟 𝑡 = 𝐽𝑎𝑛, … , 𝐷𝑒𝑐 
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Here, ℎ  and 𝑐̅  are the 20-year average share of HDD and CDD, respectively, in month 
t. These monthly values can be used to convert the annual IRP simulation model forecasts 
to monthly values or, alternatively, adding climate change to the peak load forecast. It 
should be noted that an analysis of the share of HDD and CDD by month going back to 
1948 do not show any apparent trends. This suggests, even under climate change, the 
relative allocation of HDD and CDD across the months each year will not change 
significantly going forward. 

Returning to the annual, trended moving average forecasts of HDD and CDD, those can 
be used to estimate the long-run impact on annual residential UPC (UPCr,y) in the face of 
climate change, which can be applied to the long-run annual residential UPC forecast in 
the IRP simulation model. This process starts with the following regression model: 

[9A]  𝑈𝑃𝐶 , = 𝛼 + 𝛼 𝐻𝐷𝐷 + 𝛼 𝐶𝐷𝐷 + 𝛼 𝑇∗ + 𝛼 𝐷 + 𝛼 𝐷 +

𝜖  
 
Here HDDyAVA and CDDyAVA are the actual Avista adjusted degree days in year y; T* is a 
linear trend starting with T*= 1 in 1997 (the beginning of the historical series); the 
structural change dummies control for a change in data reporting after 1999 and the LEAP 
gas program that ended in 2019;and εy is N(0, σ). None linear trends were also tried, by 
the linear trend produced the best fit on the annual data. Using the estimated coefficients 
(a), a forecast for UPC under climate change can be generated as follows:  

[10A]  𝐹 𝑈𝑃𝐶 , = 𝑎 + 𝑎 𝐻𝐷𝐷 , + 𝑛𝜇∆ + 𝑎 𝐶𝐷𝐷 , + 𝑛𝜇∆ + 𝑎 𝑇∗ +

𝑛  𝑓𝑜𝑟 𝑛 = 0, … , 𝑁 

Simplifying terms: 

[11A] 𝐹 𝑈𝑃𝐶 , = 𝑎 + 𝑎 𝐻𝐷𝐷 , +  𝑎 𝐶𝐷𝐷 , + 𝑎 (𝑇∗ + 𝑛) + (𝑎 𝜇∆ +

𝑎 𝜇∆ )𝑛 
 
[12A]  𝐹 𝑈𝑃𝐶 , = 𝑎 + 𝑎 𝐻𝐷𝐷 , +  𝑎 𝐶𝐷𝐷 , + 𝑎 𝑇∗ + 𝑛 + 𝑏𝑛 𝑤ℎ𝑒𝑟𝑒 𝑏 ≡

 (𝑎 𝜇∆ + 𝑎 𝜇∆ ) 
Note that 𝑏 ≡  (𝑎 𝜇∆ + 𝑎 𝜇∆ ) is treated as the annual marginal impact of total 
climate change on UPC. Using the times series questions [3A] and [4A], we have µΔHDD 

= -9.6 and µΔHDD = 3.4. Combining these with the estimated values of a1 = 0.732 and a2 = 
1.170 we have:  
 
[13A]  𝑏 =  𝑎 𝜇∆ + 𝑎 𝜇∆ = 0.732 ∙ (−9.6) + 1.170 ∙ (3.4) = −3.049 
 
This means the net impact of falling HDD and rising CDD is to reduce residential UPC 
approximately 3 kWh a year, or a total cumulative impact b·N. Note that in the case of the 
NPCC data, [x.x] becomes: 
 
[14A]  𝑏 = 0.732 ∙ (−38) + 1.170 ∙ (8) = −18.455 
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In the context of the IRP simulation model, it is necessary to convert the annual load and 
energy forecasts into a monthly number. Without climate change, this is straightforward 
because it only requires extrapolating out the most recent 5-year forecast using the 
forecasted long-run annual growth rates from the simulation model. This approach 
essentially assumes the share of load by month in each year will not change significantly 
over time, which is equivalent to assuming the most current 20-year moving average of 
HDD and CDD is constant over the forecast horizon (see again Line A in Figure 1A).    
 
However, with climate change, the share of load occurring each month will change 
overtime. This means a method for estimating those future monthly load shares is 
necessary to allocate the annual load values from the IRP simulation model. Since total 
load can be trended over time, the method chosen here estimates a regression using the 
first difference of month-to-month changes in total load and HDD and CDD, monthly 
dummies (Dt,y), and an ARIMA error correction term to account for short-term 
autocorrelation:   

[15A] ∆𝐿 , = 𝛽 +  𝛽 ∆𝐻𝐷𝐷 , +  𝛽 ∆𝐶𝐷𝐷 , +  𝜷𝟑,𝑺𝑫𝑫𝒕,𝒚 +

𝐴𝑅𝐼𝑀𝐴𝜖 , (𝑝, 𝑑, 𝑞)(𝑝 , 𝑑 , 𝑞 )  
 
Here ΔLt,y = Lt - Lt-1; ΔHDDt,yAVA = HDDtAVA - HDD t-1AVA; ΔCDDt,yAVA = CDDtAVA - CDD t-1AVA. 
Note that as will be shown shortly, β0 reflects the growth in load that occurs each month 
over the forecast horizon. If β0 > 0, then this reflects positive load growth; β0 = 0 means 
no load growth; and β0 > 0. 
 
For the purposes of forecasting future load shares, the ARIMA portion is ignored and the 
forecasted change in load relies solely on the estimated coefficients (b). This is done 
because simulations including and excluding error term corrections found little impact 
after the first year: 
 
[16A] 𝐹 ∆𝐿 , = 𝑏 +  𝑏 𝐹 ∆𝐻𝐷𝐷 , , + 𝑏 𝐹 ∆𝐶𝐷𝐷 , , + 𝒃𝟑,𝑺𝑫𝑫𝒕,𝒚 𝒏 𝑓𝑜𝑟 𝑛 =

1, … , 𝑁 
 
Given [16A] and forecast of HDD and CDD, a monthly load forecast can start with, L12,Yc, 
the last actual value for December of the most recent full calendar year, and the forecast 
would carry to year N. For simplicity, note that the forecast notation, F(·), has been 
dropped:  

𝐿 , = 𝐿 , + ∆𝐿 ,  

𝐿 , = 𝐿 , + ∆𝐿 ,  

𝐿 , = 𝐿 , + ∆𝐿 ,  

⋮ 
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𝐿 , = 𝐿 , + ∆𝐿 ,  

𝐿 , = 𝐿 , + ∆𝐿 ,  

𝐿 , = 𝐿 , + ∆𝐿 ,  

⋮ 

𝐿 , = 𝐿 , + ∆𝐿 ,  

𝐿 , = 𝐿 , + ∆𝐿 ,  

⋮ 

𝐿 , = 𝐿 , + ∆𝐿 ,  

𝐿 , = 𝐿 , + ∆𝐿 ,  

 

This process generates a series of total load values for each calendar year, n, over the 
forecast horizon.   
 

[17A]  𝐿 = 𝐿 ,  

 
Therefore, for each year, n, the forecasted load share over that year can be calculated 
as:    
 

[18A]   ,
= 𝜆 , = 1 

The monthly load shares can be applied to the annual forecast values in the simulation 
model convert the annual forecasts to monthly values. However, prior to this allocation, it 
may be required to manually adjust the estimated constant, b0, so that the average annual 
load growth rate associated with [16A] matches the average annual growth rate from the 
IRP simulation model. That is, because [16A] is being estimated from historical data, b0 
reflects historical non-weather related growth. This can be seen by re-arranging [17A] as 
follows: 

[19A]  𝐿 = 𝐿 , = 𝐿 , ( ) + 𝐿 , + ∆𝐿 ,  𝑓𝑜𝑟 𝑛 = 1, … , 𝑁 

Substituting in the estimated regression [16A]: 

[20A] 𝐿 = 𝐿 , ( ) + 𝐿 , + (𝑏 +  𝑏 ∆𝐻𝐷𝐷 , , +

 𝑏 ∆𝐶𝐷𝐷 , , + 𝒃𝟑,𝑺𝑫𝑫𝒕,𝒚) 
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[21A]  𝐿 = 12𝑏 + 𝐿 , ( ) + 𝐿 , + ( 𝑏 ∆𝐻𝐷𝐷 , , +

 𝑏 ∆𝐶𝐷𝐷 , , + 𝒃𝟑,𝑺𝑫𝑫𝒕,𝒚) 

 
[21A] shows that for any calendar year, non-weather-related load accumulates by 12b0.  
Accounting for the accumulation over all N periods: 
 

[22A]  𝐿 , = 𝐿 , + ∆𝐿 , + ∆𝐿 , + ∆𝐿 , … + ∆𝐿 , ( ) +

∆𝐿 ,  

 

[23A]  𝐿 , = 𝐿 , + (∑ ∆𝐿 )  

 

[24A]  𝐿 , = 𝐿 , + 𝑏 +  𝑏 ∆𝐻𝐷𝐷 , +  𝑏 ∆𝐶𝐷𝐷 , + 𝒃𝟑,𝑺𝑫𝑫𝒕,𝒚  

 

[25A] 𝐿 , = 𝐿 , + 𝑁12𝑏 + 𝑏 ∆𝐻𝐷𝐷 , +  𝑏 ∆𝐶𝐷𝐷 , + 𝒃𝟑,𝑺𝑫𝑫𝒕,𝒚  

 

Non-weather related load accumulation over all N periods is N12b0.   

To integrate climate change into the peak load model, note that any 20-year moving 
average can be used to calculate the implied average temperature associated with a 
given month, t; note that C is the cut-off for CDD and HDD, which Avista sets at 65 
degrees, and D is the number of days in month t: 

 [26A]  𝐶𝐷𝐷 , , =
,

=
 , ,

=  
, , ∙ 

=

∙ ∙ , ,

= −𝐷 ∙ 𝐶 + 𝐷
, ,

= −𝐷 ∙ 𝐶 + 𝐷𝑇 , , ⇒ 𝑇 , , =
∙ , ,    

 

[27A]  𝐻𝐷𝐷 , , =
,

=
 , ,

=  
 ∙ , ,

=

∙ ∙ , ,

= 𝐷 ∙ 𝐶 − 𝐷
, ,

= 𝐷 ∙ 𝐶 − 𝐷 ∙ 𝑇 , , ⇒ 𝑇 , , =
∙ , ,   

 

Given forecasted values for the 20-year moving average of HDD and CDD (equations 
[5A] and [6A]), the formulas above are used to calculate the implied 20-year moving 
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average of average temperature forecasted for month t. The average annual change in 
this temperature can be applied to calculate the expected change in average summer 
and winter peak temperatures for integrating climate change into the peak load forecast. 
Note that the growing (summer) or falling (winter) temperatures with act to accelerate 
growth (in the case of summer) or decelerate growth (in the case of winter), in addition to 
any impact associated with assumed economic growth. Thus: 

[28A]  ∆𝑇 , =
, , , ,

( )
 𝑓𝑜𝑟 𝑒𝑖𝑡ℎ𝑒𝑟 𝐶𝐷𝐷 𝑜𝑟 𝐻𝐷𝐷 𝑓𝑜𝑟 𝑚𝑜𝑛𝑡ℎ 𝑡 

 

[29A]  𝐹(𝐴 , , ) =
, ,

+ 𝑛 ∙ ∆𝑇 ,  𝑓𝑜𝑟 𝑛 = 1, … , 𝑁 𝑦𝑒𝑎𝑟𝑠 

[30A]  𝐹(𝐴 , , ) =
, ,

+ 𝑛 ∙ ∆𝑇 ,  𝑓𝑜𝑟 𝑛 = 1, … , 𝑁 𝑦𝑒𝑎𝑟𝑠  

From each series At,y, MAX is based on maximum daily average temperature and MIN is 
based on minimum average daily temperatures. The first expression on the right of the 
equals sign is the current 20-year historic average of MAX and MIN temperatures. The 
second expression is the trending factor applied to the 20-year average. These trended 
averages can then be converted back into CDD and HDD to be used in the peak-load 
forecast model. These provide a trended values of CDD and HDD associated with peak 
load.  
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