

2025 Electric Integrated Resource Plan Technical Advisory Committee Meeting No. 4 Agenda Tuesday, April 9, 2024 Virtual Meeting – 8:30 am to 10:00 am PTZ

Topic Introductions

Future Climate Analysis

Staff John Lyons

Mike Hermanson

Economic Forecast & Five-Year Load Forecast

Grant Forsyth

2025 IRP TAC 4 Introductions

John Lyons, Ph.D. Technical Advisory Committee Meeting No. 4 April 9, 2024

Today's Agenda

Introductions, John Lyons

Future Climate Analysis, Mike Hermanson

Economic Forecast & Five-Year Load Forecast, Grant Forsyth

Remaining 2025 Electric IRP TAC Schedule

• TAC 5: April 23, 2024: 8:30 to 10:00 (PTZ)

- Long Run Load Forecast (AEG)
- Review Planned Scenario Analysis

• TAC 6: May 7, 2024: 8:30 to 10:00 (PTZ)

- Conservation Potential Assessment (AEG)
- Demand Response Potential Assessment (AEG)

• TAC 7: May 21, 2024: 8:30 to 10:00 (PTZ)

- Variable Energy Resource Study
- Portfolio/Market Scenarios

• TAC 8: June 4, 2024: 8:30 to 10:00 (PTZ)

- Load & Resource Balance and Methodology
- Loss of Load Probability Study
- New Resources Options Costs and Assumptions

• TAC 9: June 18, 2024: 8:30 to 10:00 (PTZ)

- IRP Generation Option Transmission Planning Studies
- Distribution System Planning within the IRP & DPAG update

Remaining 2025 Electric IRP TAC Schedule

- Technical Modeling Workshop: June 25, 2024: 9:00 am to 12:00pm (PTZ)
 - PRiSM Model Tour
 - o ARAM Model Tour
 - New Resource Cost Model
- TAC 10: July 16, 2024: 8:30 to 10:00 (PTZ)
 - Preferred Resource Strategy Results
 - Washington Customer Benefit Indicator Impacts
 - Resiliency Metrics
- TAC 11: July 30, 2024: 8:30 to 10:00 (PTZ)
 - Preferred Resource Strategy Results
 - Portfolio Scenario Analysis
 - LOLP Study Results
- TAC 12: August 13, 2024: 8:30 to 10:00 (PTZ)
 - Preferred Resource Strategy Results (continued)
 - Portfolio Scenario Analysis (continued)
 - LOLP Study Results (continued)
 - $\circ \quad \text{QF Avoided Cost}$

4

Remaining 2025 Electric IRP TAC Schedule

- September 2, 2024- Draft IRP Released to TAC.
- Virtual Public Meeting- Natural Gas & Electric IRP (September 2024)
 - Recorded presentation
 - Daytime comment and question session (12pm to 1pm- PST)
 - Evening comment and question session (6pm to 7pm- PST)

IRP Climate Change Analysis

Forecasted streamflow and temperature changes for 2025 IRP Analysis

Mike Hermanson, Senior Power Supply Analyst April 9, 2024

Overview

- Data sources and methodology
- Hydrogeneration
- Temperatures for load forecast
- Temperatures for peak load forecast

Data Sources

- Climate and Hydrology Datasets for RMJOC Long-Term Planning Studies: Second Edition
 - River Management Joint Operating Committee (RMJOC)
 - BPA, US Army Corps of Engineers, US Bureau of Reclamation
 - Research Team
 - University of Washington, Oregon State University
- Part I Unregulated stream flows
- Part II Reservoir Regulation and Operations
- Wind data University of California-Merced
 - Data from 20 climate models downscaled using the MACA (Multivariate Adaptive Constructed Analogs).

Global Climate Models

- Global Climate Models (GCMs)
 - Coarse resolution ranging from 75 to 300 km grid size
 - Provides projections of temperature and precipitation, and other meteorological variables (wind)
 - Multiple Representative Concentration Pathways (RCP 4.5 & RCP 8.5)
 - 10 GCM models used in study
 - CanESM2 (Canada)
 - CCSM4 (US)
 - CNRM-CM5 (France)
 - CSIRO-Mk3-6-0 (Australia)
 - GFDL-ESM2M (US)
 - HadGEM2-CC (UK)
 - HadGEM2-ES (UK)
 - inmcm4 (Russia)
 - IPSL-CM5-MR (France)
 - MIROC5 (Japan)

Emissions Scenarios

Representative Concentration Pathways

- Description by Intergovernmental Panel on Climate Change (IPCC)
 - RCP2.6 stringent mitigation scenario
 - RCP4.5 & RCP6.0 intermediate scenarios
 - RCP8.5 very high GHG emissions
- RMJOCII Study evaluated RCP4.5 and RCP8.5
- RCP4.5 and RCP6.0 similar likely range by the end the IRP planning horizon

	Sooporio	2046-2065		2081-2100	
	Scenario	Mean	Likely range	Mean	Likely range
Global Mean Surface Temperature Change (C°)	RCP2.6	1.0	0.4 to 1.6	1.0	0.3 to 1.7
	RCP4.5	1.4	0.9 to 2.0	1.8	1.1 to 2.6
	RCP6.0	1.3	0.8 to 1.8	2.2	1.4 to 3.1
	RCP8.5	2.0	1.4 to 2.6	3.7	2.6 to 4.8

Downscaling Techniques

- Downscale GCM data to finer resolution necessary to model hydrology
 - Statistical methods to represent variation within large grid size
 - Two methods used (BCSD, MACA)
 - Bias Corrected Spatial Disaggregation
 - Multivariate Adaptive Constructed Analog

Modeling Climate Change Impacts on Hydrogeneration

- Hydrologic models
 - Downscaled temperature and precipitation is input to hydrologic models.
 - Hydrologic models use soil, geology, slope, vegetation, aspect, snow cover, etc. to model how precipitation translates into runoff and streamflow.
 - 2 different hydrology models used.
 - 1 version of PRMS model
 - 3 versions of VIC model
- Hydro regulation models
 - Unregulated streamflow is input to reservoir models of Columbia River system to generate regulated flows.

VIC

PRMS

Modeling Climate Change Impacts on Hydrogeneration

VISTA

2025 IRP Hydrogeneration

- BPA selected 19 of the 80 scenarios that encompass a sufficient range of uncertainty.
- Three regulated river flow data sets utilized:
 - BPA 1929-2018. Most recent data available from BPA for each Avista project.
 - 2019 utilized actual flow.
 - 2020-2045 used climate change data set.
- Median of 19 BPA selected scenarios was used in the flow data set.
- All flows were combined into one data set (1929-2045) and ran in Plexos to estimate generation for Noxon, Cabinet, Long Lake, & Little Falls
- Run-of-river projects were estimated utilizing regression analysis based on historical relationship of river flow and generation.

Comparison of Annual (aMW) of Avista Hydro Projects

	90-Year Hydro (1929-2018)	Recent 30-Year (1994-2024)	Climate Change (2019-2049)
Mean	446	459	472
Median	363	390	408
Standard Deviation	224	204	211
10 th Percentile	227	276	262

Note: Does not include Mid-C due to contractual changes during planning horizon that impact generation quantities

- Recent 30-year shows slight increase in annual energy
- Climate change scenarios show an increase in annual energy consistent with the projection of overall increase in precipitation in the Northwest

2024-2045 Trend

VISTA

11

2024-2045 Trend

AVISTA

2024-2045 Trend

AVISTA

Climate Change Temperatures for Load Forecast

- Data:
 - Daily max and min temperature for Spokane airport through 2045 that correspond to the 19 BPA scenarios.
 - Data for both RCP4.5 and RCP8.5
- Temperatures for load forecast will use RCP4.5 for January May and October – December, and RCP8.5 for June – September.
- Approach will allow representation of increasing temperatures over the IRP period without losing cold events that are important to plan for.

Climate Change Temperatures for Load Forecast

RCP4.5/RCP8.5 Hybrid

- Peak load model utilizes minimum/maximum daily average temperature for each season.
 - Winter January through May, and October through December
 - Summer June through September
- Winter uses RCP 4.5 and Summer uses RCP 8.5
- Median of minimum/maximum average daily temperature for each season of all models.
- Winter peak is based on a 76-year* moving average, summer peak is based on a 20-year moving average.

Seasonal Daily Average Annual High Temp RCP8.5 20 Year Rolling Average of Actual and Median of modeled values Actual Temperatures 86.76 °F 84.47°F 958 960

Peak load estimate is a 1-2 event

Seasonal Daily Average Annual High Temp RCP 4.5

Peak load estimate is a 1-2 event

Seasonal Daily Average Annual Low Temperature RCP4.5

• Peak load estimate is a 1-2 event

Seasonal Daily Average Annual Low Temperature RCP8.5

• Peak load estimate is a 1-2 event

Climate Change Impacts to Wind Generation

• Evaluated modeled wind speed in the north/south and east/west direction for a historical time period (1950-2005) and climate futures using the RCP4.5 and RCP8.5 (2006-2099) for the location of our Palouse Wind Project.

IRP Climate Change Approach Summary

- Proposed approach utilizes both RCP 4.5 (winter) and RCP 8.5 (summer)
 - Description by Intergovernmental Panel on Climate Change (IPCC)
 - RCP2.6 stringent mitigation scenario
 - RCP4.5 & RCP6.0 intermediate scenarios
 - RCP8.5 very high GHG emissions
 - RCP4.5 & RCP6.0 are similar in IRP planning horizon
- Hydrogeneration Proposing to utilize latest BPA regulated flows (1929-2018), one year of actuals and median of BPA selected climate models. Monthly flows were used in Plexos to develop generation.
- Peak Load Forecast Proposing to use moving average of previous 20 years (summer peak) and 76 years (winter peak).
 - Used seasonal peak temperature (low and high)

TAC Meeting April 9, 2024

2025 IRP: Economic Conditions and Preliminary Medium-Term Forecasts

Grant Forsyth, Ph.D. Chief Economist Grant.Forsyth@avistacorp.com

"This presentation is 40 minutes of a finite life you will never get back."

-Grant Forsyth, April 9, 2024.

Service Area Economy: Non-Farm Employment Structure

Comments

- Employment structure very similar to the U.S.
- Employment dominated by private services. Without service sector growth, very little employment growth will be generated.
- Majority of public sector employment is local and related to education.
- If agriculture is considered, it would account for about 1% to 1.5% of employment.

ANISTA

Service Area Economy: Non-Farm Employment

Service Area Economy: WA-ID Metro Population Growth

Comments

- Population growth drives most of our customer growth.
- Significantly higher than U.S. growth because of inmigration. Without inmigration, growth would look like U.S. or be lower.
- Growth is highest on the ID side.
- Strong employment growth is correlated with strong population growth...but
- Historical relationships may be changing due to high housing prices, but it's not clear at this point.

Service Area Economy: Spokane+Kootenai Residential Units Permitted

Total Spokane+Kootenai Single Family, WA-ID

Total Spokane+Kootenai Apartments, WA-ID

Comments

- Strongly connected to population growth.
- Held up surprisingly well given increase in interest rates.
- Prices of single-family housing have not declined significantly. The supply side remains constrained.
- Apartments and duplexes are still and important source of new housing in both WA and ID. Duplexes are counted as "single family" in the graph.
- Starting this year, ADUs are now covered by Construction Monitor.

Source: Construction Monitor and author's calculations.

The Energy Forecast: Basic Approach

7

Medium-Term Forecast: Basic Approach

Economic Assumptions: U.S. GDP Growth Assumptions

Comments

- Long-run growth is the sum of population growth and labor productivity growth.
- U.S. continues to have weak productivity growth and weak population growth.
- The Fed's long-run expectation for GDP growth has fallen from 2% to 1.8% (red line). This is the growth rate assumed from 2029 to 2045.
- Long-run GDP growth must exceed 1.6% for industrial load to grow.

ANISTA

Economic Assumptions: Population Growth

Medium-Term Energy Forecast: Native Load

AVISTA

11

Medium-Term Energy Forecast: Native Load since 2005

Comments

- Prior to 2021/2022, the housing bubble period was the last significant step up in native load.
- The hybrid work environment will have some permanence, but commercial buildings still need to be heated and cooled.
- Dashed black line reflects an adjustment for a specialized contract with a large customer with self-generation.

ANISTA

Medium-Term Retail Forecast: Washington vs. Idaho

13

Questions?

