

ELECTRIC INTEGRATED RESOURCE PLAN 2005

						GEN		
-	***			-	11	1	(1)	-
	121	***	••••		"	租	III	B
	-	-	-	-	100		-	
			.iii	,iff				1

1

WASHINGTON WATER POWER

APPENDICES VOLUME 1 AUGUST 31, 2005

Technical Advisory Committee Meeting Agendas

Appendix A

Avista Utilities Technical Advisory Committee/External Energy Efficiency Board Meeting October 23, 2003

Thursday, October 23

Integrated Resource Plan and DSM

10:00 AM - 2:00 PM

- 1. DSM in the 2003 IRP
 - Errata filed in July
 - Assumptions
 - Results
- 2. Integration methodologies
 - Avoided cost price signal
 - Full integration into AURORA model
 - Approach used in 2003 IRP (Errata)
- 3. Integration specifics (2003 IRP as example)
 - Cost attributes
 - Supply curves
 - "Resource" bundles
 - Load research
 - Other resources
 - Distribution efficiencies (e.g., CVR)
 - Peak shaving efficiencies (e.g., voluntary curtailment, TOU)
- 4. Issues to consider
 - Quality of inputs
 - Usefulness of outputs
 - Is AURORA smarter than Jon?
 - o Examples
- 5. Next steps

Lunch provided

12 Noon

Avista Utilities 2005 Integrated Resource Plan Technical Advisory Committee Meeting No. 2 August 4, 2004

• Introductions	9:30a	Kalich
• Overview of Planning Process and Review of IRP Schedule	9:40a	Young
• TAC Participant Brainstorm on IRP Topics	10:00a	Folsom
 Review of October 2003 DSM Meeting 	11:00a	Powell
• Lunch Speaker & Lunch	12:00p	Anderson
Load Forecast	1:00p	Barcus
• Future Resource Requirements (L&R)	3:00p	Fletcher
• Adjourn	3:30p	

Avista Utilities 2005 Integrated Resource Plan Technical Advisory Committee Meeting No. 3 Agenda January 25, 2005

	<u>Topic</u>	<u>Time</u>	<u>Staff</u>
1.	Introductions	10:00	Barcus
2.	Review of 2 nd TAC Meeting	10:15	Kalich
3.	Overview of Natural Gas Forecast	11:00	Gall
4.	Capacity Planning Overview	11:30	Kalich
5.	Lunch Speaker (and lunch)	12:00	Folsom
6.	Capacity Planning Overview, Cont.	12:45	Kalich
7.	Load Forecast Update	1:15	Barcus
8.	Loads and Resources Update	1:45	Lyons
9.	Imputed Debt	2:15	Thoren
10.	Overview of Feb. 17 TAC Meeting	2:45	Kalich
11.	Adjourn	3:00	

Avista Utilities 2005 Integrated Resource Plan Technical Advisory Committee Meeting No. 4 Agenda 4th Floor Technology Room—Avista Headquarters, Spokane February 17, 2005

	Topic	<u>Time</u>	<u>Staff</u>
1.	Introductions	10:00	Kalich
2.	Review of 3 rd TAC Meeting	10:15	Kalich
3.	IRP Modeling Overview	10:30	Gall
4.	Modeling Futures and Scenarios	11:00	Kalich
5.	More on Modeling Assumptions	11:45	Gall
6.	Lunch and AURORA _{XMP} Demo	12:15	Gall
7.	Modeling Emissions in IRP	1:15	Lyons
8.	Supply-Side Resource Alternatives	2:45	Gall/Lyons
9.	Selection of Future TAC Dates	3:30	Kalich
10.	Adjourn	4:00	

Avista Utilities 2005 Integrated Resource Plan Technical Advisory Committee Meeting No. 5 Agenda 4th Floor Technology Room—Avista Headquarters, Spokane March 23, 2005

	Topic	<u>Time</u>	<u>Staff</u>
1.	Introductions	10:00	Barcus
2.	Review of 4 th TAC Meeting	10:15	Lyons
3.	DSM Integration Into IRP	10:30	Powell
4.	Stochastic (Risk) Modeling Part 1	11:30	Kalich
5.	Lunch and Transmission Planning Discussion	12:00	Cloward
6.	Stochastic (Risk) Modeling Part 2	1:00	Kalich
7.	Preliminary Capacity Expansion Results	1:30	Gall
8.	Update on Scenarios & Futures	2:15	Lyons
9.	2005 Draft IRP Outline	2:45	Lyons
10.	Adjourn	3:00	

Avista Utilities 2005 Integrated Resource Plan Technical Advisory Committee Meeting No. 6 Agenda May 18, 2005

	Topic	<u>Time</u>	<u>Staff</u>
1.	Introductions	10:00	Barcus
2.	Review of 5 th TAC Meeting	10:15	Lyons
3.	Natural Gas Price Forecast Update	10:30	Gall
4.	Base Case Results	10:45	Gall
5.	LP Module/Selection Criteria	11:45	Kalich
6.	Lunch	12:30	
7.	Transmission Planning	1:00	Waples
8.	Scenario Results	2:00	Lyons
9.	Avoided Costs	2:45	Kalich
10.	Action Item for 2005 IRP	3:15	Kalich
11.	Housekeeping Items	3:45	Lyons
12.	Adjourn	4:00	

Avista Utilities 2005 Integrated Resource Plan Technical Advisory Committee Meeting No. 7 Agenda June 23, 2005

	Topic	<u>Time</u>	<u>Staff</u>
1.	Introductions	10:00	Barcus
2.	Review of 6 th TAC Meeting	10:15	Lyons
3.	Hydro Upgrades	10:30	Kalich
4.	Emissions	11:00	Lyons
5.	Lunch	12:00	
6.	DSM	1:00	Powell
7.	Preferred Resource Strategy	3:00	Kalich
8.	Adjourn	4:00	

Technical Advisory Committee Members

Appendix B

2005 IRP TAC Member List

Name	Organization	Phone Number	E-Mail	TAC1	TAC2	TAC3	TAC4	TAC5	<u>TAC6</u>	<u>TAC7</u>
Aliza Seelig	Puget Sound Energy	425.462.3122	aliza.seelig@pse.com		Х					
Andy Ford	WSU		FordA@mail.wsu.edu			Х		Х	Х	
Bruce Folsom	Avista Utilities	509.495.8706	bruce.folsom@avistacorp.com	Х	Х	Х			Х	
Charlie Grist	NPCC	503.222.5161	cgrist@nwcouncil.ort							Х
Chris Bevil	Puget Sound Energy	425.456.2757	<u>chris.bevil@pse.com</u>		Х					
Chris Turner	PacifiCorp	503.813.6114	chris.turner2@pacificorp.com		Х					
Clint Kalich	Avista Utilities	509.495.4532	clint.kalich@avistacorp.com		Х	Х	Х	Х	Х	Х
Danielle Dixon	NW Energy Coalition	206.621.0094	danielle@nwenergy.org		Х					
Dave Van Hersett	NW Energy Services	509.838.9190	davev@nwenergy.com	Х	Х	Х			Х	Х
Diane Thoren	Avista Utilities	509.495.4331				Х				
Doug Loreen	Puget Sound Energy	425.454.2988	doug.loreen@pse.com							
Doug Young	Avista Utilities			Х	Х					
Hank McIntosh	WUTC	360.664.1309	hmcintos@wutc.wa.gov		Х	Х	Х	Х	Х	Х
Harry McLean	City of Spokane	509.625.7804	hmclean@spokanecity.org							Х
Heidi Heath	Avista Utilities	509.495.4129	heidi.heath@avistacorp.com							Х
Howard Ray	Potlatch	208.799.1030	Howard.Ray@potlatchcorp.com			Х		Х	Х	
James Gall	Avista Utilities	509.495.2189	james.gall@avistacorp.com			Х	Х	Х	Х	Х
Jamie Stark	Idaho Power	208.388.5648		Х						
Jason Fletcher	Avista Utilities			Х	Х					
Joe Brabeck	Avista Utilities	509.495.4108	joe.brabeck@avistacorp.com					Х	Х	
Joelle Steward	WUTC	360.664.1308	jsteward@wutc.wa.gov	Х		Х				Х
John Lyons	Avista Utilities	509.495.8515	john.lyons@avistacorp.com			Х	Х	Х	Х	Х
John Seymour	FPL Energy	561.691.7138	john_seymour@fpl.com			Х				
Jon Powell	Avista Utilities	509.495.4047	jon.powell@avistacorp.com	Х	Х			Х		Х
Ken Canon	ICNU	503.239.9169	kcanon@icnu.org	Х						
Leonard Coldiron	Potlatch	208.799.7483	Leonard.coldiron@potlatchcorp.com			Х				
Liz Klumpp	WCTED	360.956.2071	ElizabethK@ep.cted.wa.gov	Х	Х		Х	Х		Х
Lynn Anderson	IPUC	208.334.0350	landers@puc.state.id.us	Х						
Mallur Nandagopal	City of Spokane	509.625.7811	MNandagopal@SpokaneCity.org	Х						
Patrick Saad	Dana-Saad Co.	509.924.6711	patsaad@qwest.net				Х	Х		
Randy Barcus	Avista Utilities	509.495.4160	randy.barcus@avistacorp.com		Х	Х	Х	Х	Х	Х
Renee Coelho	Avista Utilities	509.495.8607	renee.coelho@avistacorp.com	Х	Х					
Richard Nagy	Univ. of Idaho	208.885.7350	richardn@uidaho.edu		Х				Х	
Rick Sterling	IPUC	208.334.0351	rsterli@puc.state.id.us		Х	Х	Х	Х	Х	Х
Steve Silkworth	Avista Utilities	509.495.8093	steve.silkworth@avistacorp.com		Х					
Terry Morlan	NPCC	503.222.5161	tmorlan@nwcouncil.org		х					
Tom Dempsey	Avista Utilities	509.495.4960	tom.dempsey@avistacorp.com			х		х		
Tom Eckman	NPCC	503.222.5161	teckman@nwcouncil.org	х				х		
Tom McLaughlin	Potlatch	208.799.1935	Tom.McLaughlin@potlatchcorp.com			х				Х
Yohannes Mariam	WUTC	360.664.1316	ymariam@wutc.wa.gov			х	х			Х

Technical Advisory Committee Meeting Presentation Slides

Appendix C

TAC Presentation Table of Contents

TAC 1

October 23, 2003

Integration of DSM into the IRP

TAC 2

August 4, 2004

- Overview of Planning Process
- TAC Brainstorming Review Summary
- Avista Electric Demand Side
- Management- Update and Proposed Integration
- Clark Fork River Projects Update
- Spokane River Relicensing Update
- 2005 Load Forecast
- Future Resource Requirements

TAC 3

January 25, 2005

- Overview of Natural Gas Forecast
- Sustained Capacity and Planning Margin Concepts
- 2005 Load Forecast Update and Scenarios
- Future Resource Requirement Update
- Imputed Debt Discussion

TAC 4

February 17, 2005

- Modeling Overview and Process
- Modeling Futures and Scenarios
- Modeling Assumptions
- Treatment of Emissions
- Supply Side Options

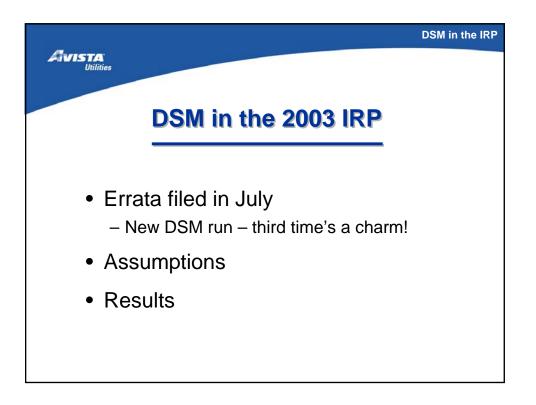
TAC 5

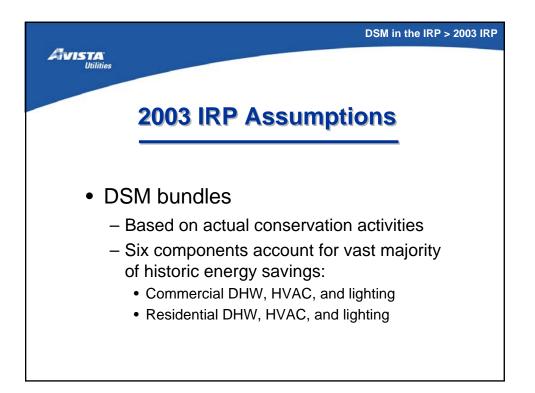
March 23, 2005

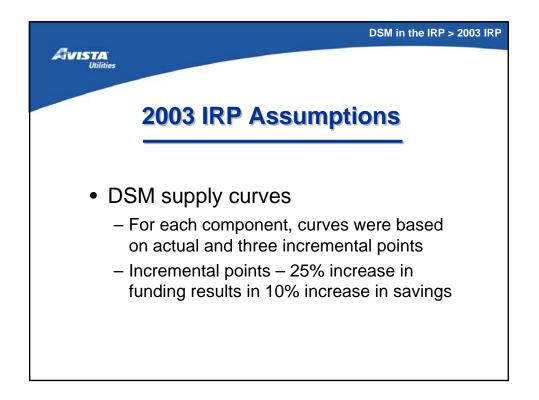
- DSM Integration Brief
- Stochastic Modeling
- Avista's 230kV Upgrade Projects
- Preliminary Long-term Electric Forecast and Capacity Expansion Results
- Modeling Futures and Scenarios
- 2005 Draft IRP Outline

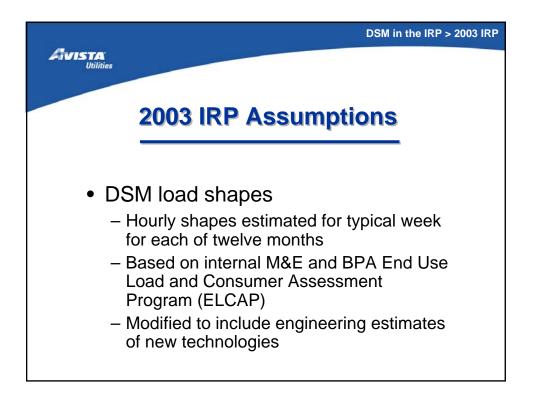
TAC 6

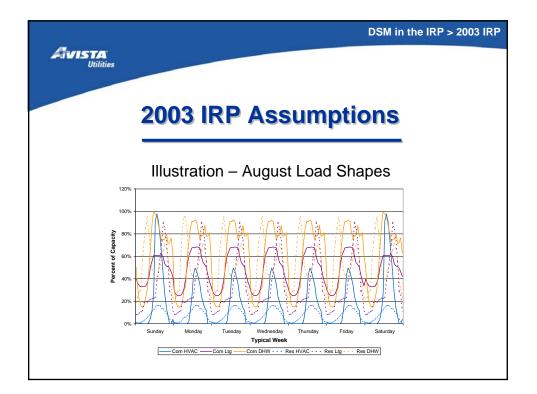
May 18, 2005

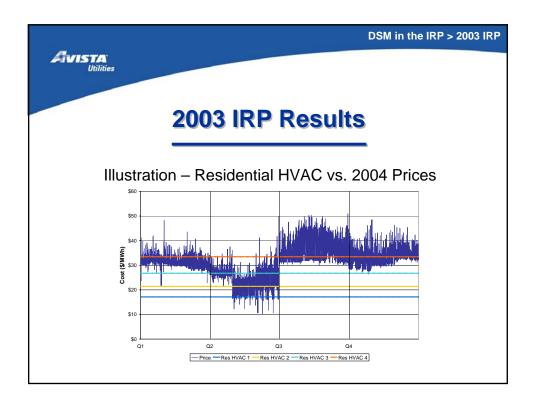

- Gas & Inflation Forecast Update
- Base Case Results- Electric Price Forecast
- LP Module, The Selection Criteria & Efficient Frontier
- Estimated Resource Integration Costs for the 2005 IRP
- Scenario Results
- Avoided Costs

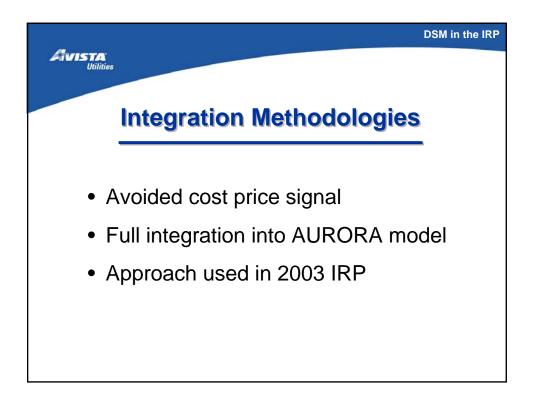

TAC 7

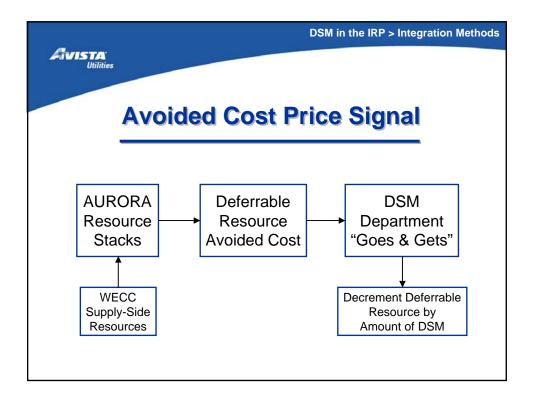

June 23, 2005

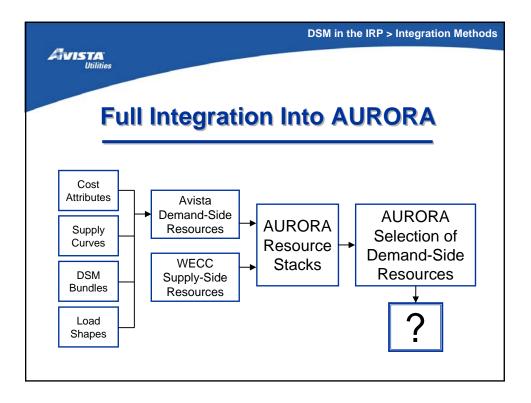

- Hydro Upgrades
- Emissions
- Demand Side Management
- Preferred Resource Strategy

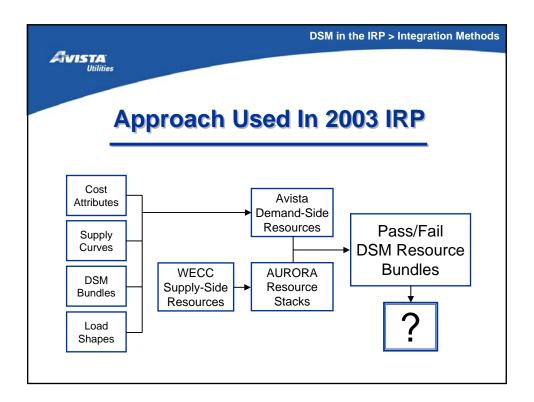


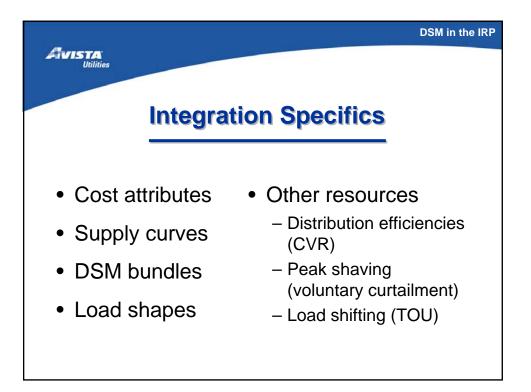



-			
	TE	11:	۲.
		Utilit	ies

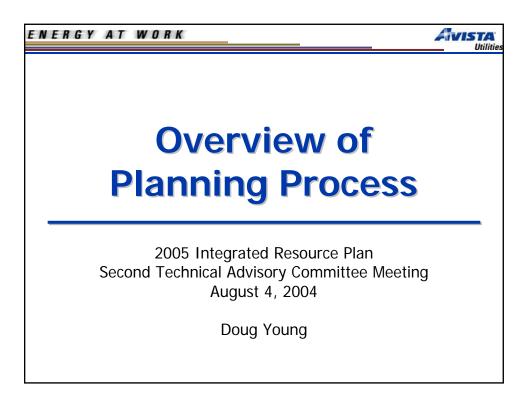

DSM in the IRP > 2003 IRP

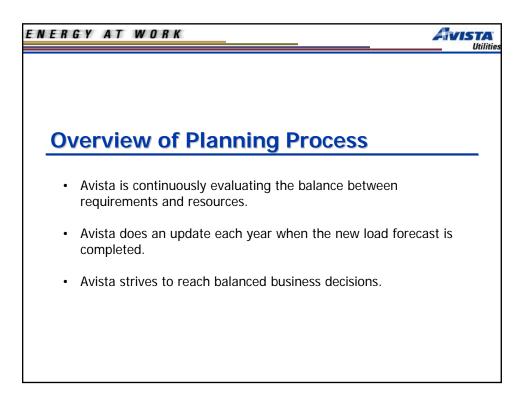

2003 IRP Results

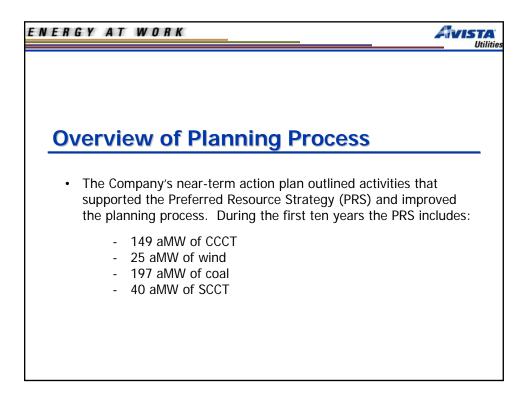

Measure	NPV	Status	Measure	NPV	Status	Measure	NPV	Status
Com DHW 1	64.0	pass	Com HVAC 1	861.8	pass	Com Light 1	3,159.3	pass
Com DHW 2	5.5	pass	Com HVAC 2	1.2	pass	Com Light 2	268.8	pass
Com DHW 3	0.4	pass	Com HVAC 3	-10.5	fail	Com Light 3	21.0	pass
Com DHW 4	0.0	pass	Com HVAC 4	-2.4	fail	Com Light 4	1.4	pass
255 MWh pas	sed		8,480 MWh pa	issed		12,931 MWh	passed	
Res DHW 1	3.3	pass	Res HVAC 1	238.2	pass	Res Light 1	2,664.5	pass
Res DHW 2	-0.3	fail	Res HVAC 2	16.5	pass	Res Light 2	218.4	pass
Res DHW 3	-0.1	fail	Res HVAC 3	0.7	pass	Res Light 3	15.8	pass
Res DHW 4	-0.0	fail	Res HVAC 4	0.0	fail	Res Light 4	0.8	pass
69 MWh passed			1,563 MWh pa	issed		9,007 MWh p	assed	
			32,302 sele 3,142 "odd-l		IRORA			
			2,365 limite 37,810 total		4.32 aMW)			

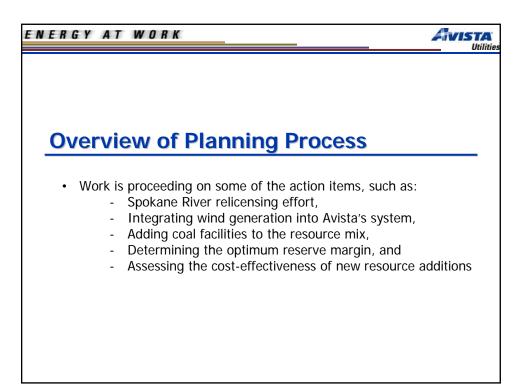


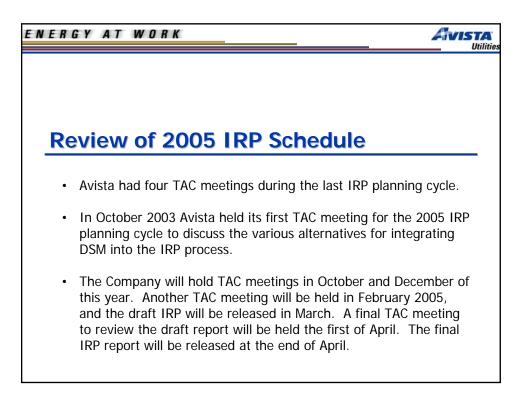






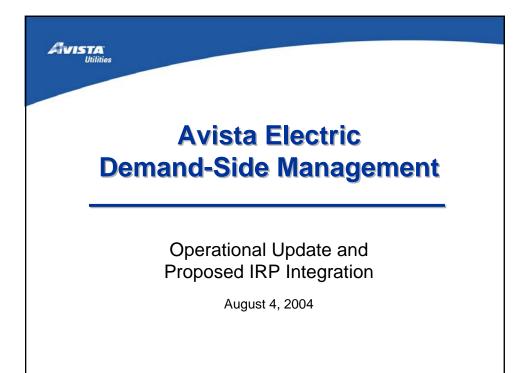


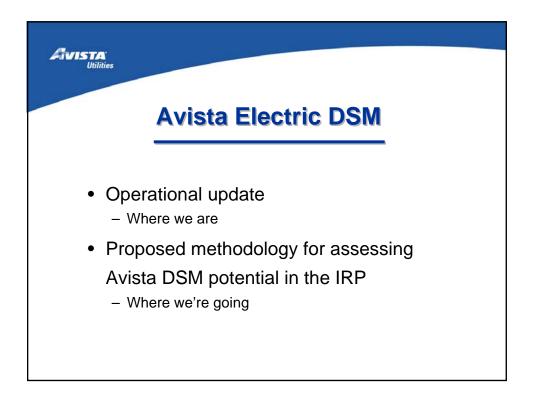


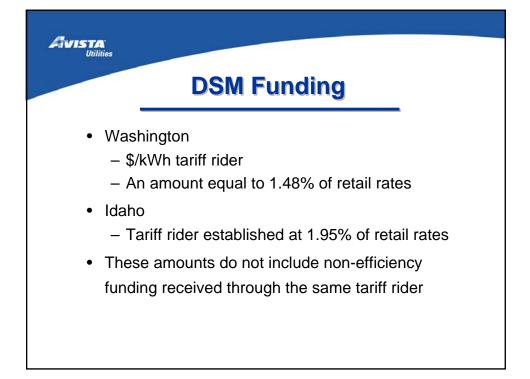


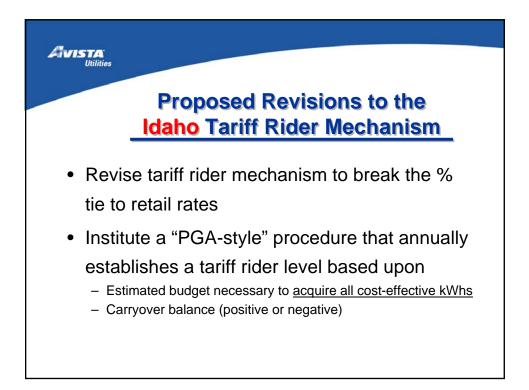

Overview of Planning Process

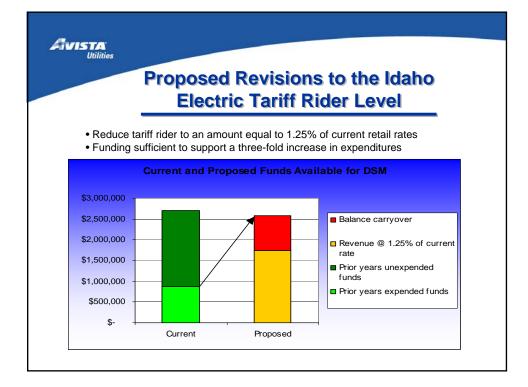
- The Company expects public participation will continue to play an important role in resource planning.
- This is the eighth IRP that will be submitted since 1989.
- The plan's goal is to describe the mix of generating resources and improvements in efficiency that is expected to meet future needs at the lowest cost to the Company and its customers.
- The 2003 IRP focused on developing a set of tools and methods within which potential resource decisions could be evaluated.

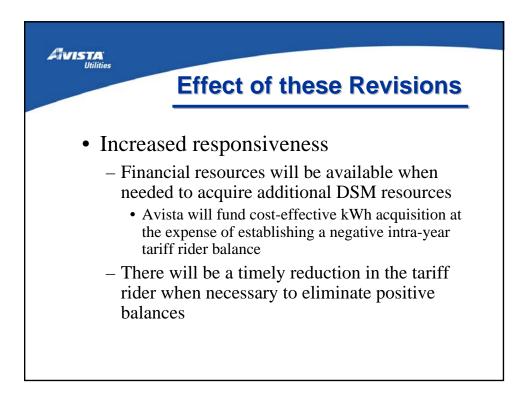


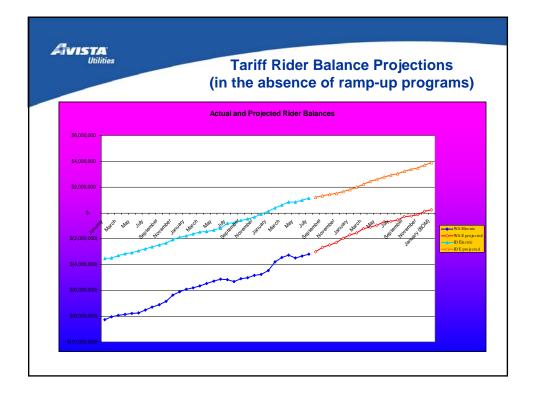

August 4, 2004 IRP TAC Brainstorming Summary

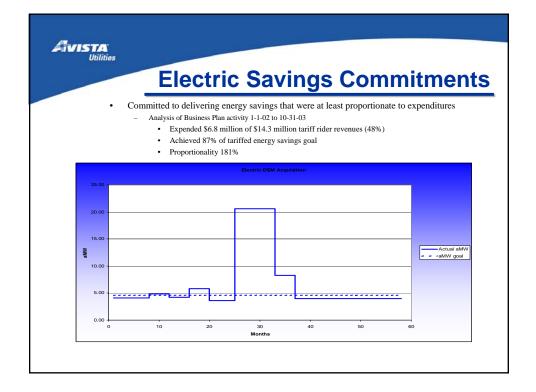

Issue	Area	Index	Details of Issue	Utility Response
1	Risk		consider fuel supply and price risk, as well as value of resource diversity	will be evaluated
			Council is focusing on buy-backs and would like utility to consider it in 2005	
2	DSM	Buybacks	IRP	will include in plan
3	L&R	Capacity	discuss what planning capacity is (single- versus multi-hour peak)	include in plan
			discuss if adjusting hydro maintenance/upgrades would eliminate need for	
4	L&R		additional peaking plants	include in plan
5	L&R	Capacity	Look to hydro for new capacity	include in plan
6	DSM	Codes	Model future code revisions and quantify their impact on load forecast	The econometric forecast methodology captures improved energy codes. Improvements over and above the code are quantified within the DSM resource acquisition.
0	DOIN	Codes		
7	Resources	Cogen	Keep Cogen discussion in '05 IRP	will include in IRP
8	Resources	Cogen	Include discussion on what makes a good cogen project (maybe to appendix?)	look to power council, AVA research
9	Resources	Cogen	emphasize importance of flexibility, dispatchability, as historical projects haven't been perfect fits	include in discussion above
10	Resources	Cogen	Do we have estimate of cogen potential? Consider strength of cogen facility (i.e., how long will it be around) in matrix	include discussion of potential
11	Resources	Cogen	Rate structure makes cogen hard. Consider demand charges with ratchets, seasonal rates, TOU, etc.	include in discussion, recognizing this as rate issue
12	Resources	Cogen	Cogen makes more sense in a transmission constrained region than any other form of generation because it will occur at a load center and it provides twice the usage of some portion of the natural gas	include in discussion
		Contingency	Develop plan for the shelf to use in event of 00-01 happening again (ST	Evaluate the development of DSM-funded contingency plans to include customer buyback
13	Risk		solution for ST problems)	and various emergency DSM options
14	Credit		Discuss pros and cons of PPA versus ownership of resources	include in discussion
15	Resources	DG	discuss DG and its impact on transmission/distribution systems	include in discusion
16	DSM	DSM	Be aggressive on DSM, AVA should consider higher incentives	literature search & consider controlled experiment on higher incentives

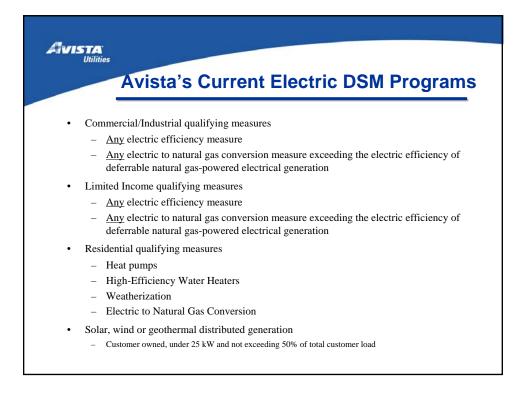

August 4, 2004 IRP TAC Brainstorming Summary

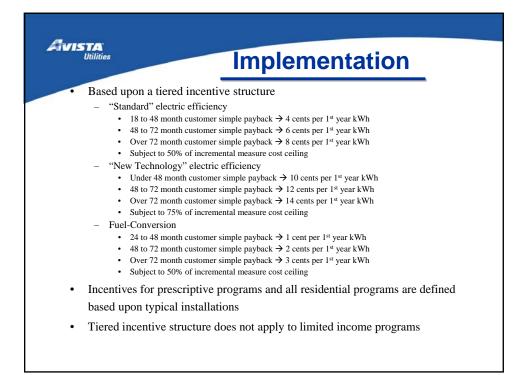

Issue	Area	Index	Details of Issue	Utility Response
				We will review the assumptions and methodology
				behind the slight front-loading of the draft 20-year
				regional supply curve. Avista is currently
				engaging in a significant expansion of DSM
17	DSM	DSM	Evaluate accelerating the DSM acquisition schedule	resource acquisition.
				will be evaluated as scenarios, consider including
18	Resources	Emissions	consider risk of future emission (CO2 and Mercury)	in stochastic runs
			look at a couple levels of mitigation costs when evaluating impact on	
19	Risk	Emissions	resource decisions	will evaluate as scenarios
20	Risk	Gas	consider buying gas model or a consultant forecast	Company purchases Global Insights forecast
21	Resources	IPP	Consider IPP plants in plan	include in plan
22	L&R	L&R	include monthly L&R tables in IRP	will include in tech. Appendix
			Include 24-hour seasonal load shapes for utility, by customer class where	will include system hourly loads by season, as
23	L&R	L&R	available	class-level data is not available
			Evaluate forecasts besides base case, what happens if Fairchild Airforce	will include hi/lo forecasts & scenarios, including
24	L&R	L&R	Base closes, expands	discussion of FAB changes
			look at plans to address supply/demand shocks (FAB closure, Noxon failure,	
25	L&R	L&R	etc.)	include in plan
			If IRP finds it a good idea, recognize need to go in for rate schedule changes	
26	DSM	Load Control	to address cost shifts	include in discussion
			Plan of how utility will address changing conditions (e.g., new load or load	
			loss). How would a LT commitment to a coal plant be addressed if after the	
27	Risk	Loads	decision load fell	include in IRP discussion/scenarios
28	Resources	Nuclear	Consider this resource to address emissions and availability of fossil fuels	add as resource alternative to IRP
			Address how long-term risk planning transitions to short-term risk	
29	Risk	Risk	management procedures	include in discussion
30	Risk	Risk	Evaluate the hedge value of efficiency and renewables	will be included in analysis/discussion
		_		Review regional DSM supply curves to determine
		Supply		if they can be extrapolated to Avista's DSM
31	DSM	Curves	develop supply curves for IRP, possibly starting with NPCC curves	portfolio
32	Trans.	Trans.		include in plan
			Look at studies out there on wind integration to see what the latest	
33	Resources	Wind	information is	will include extensive eval. of wind in IRP

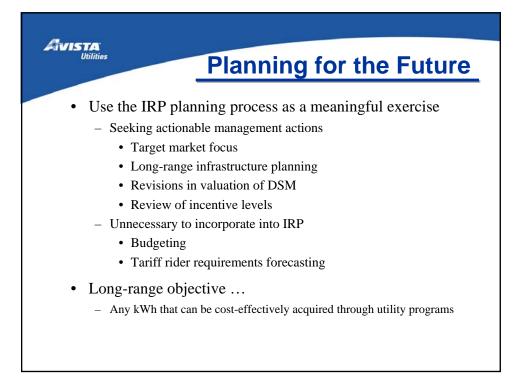


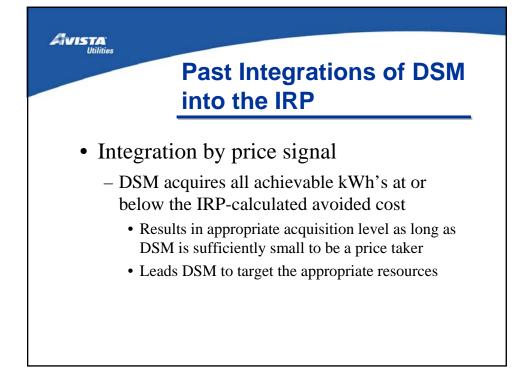


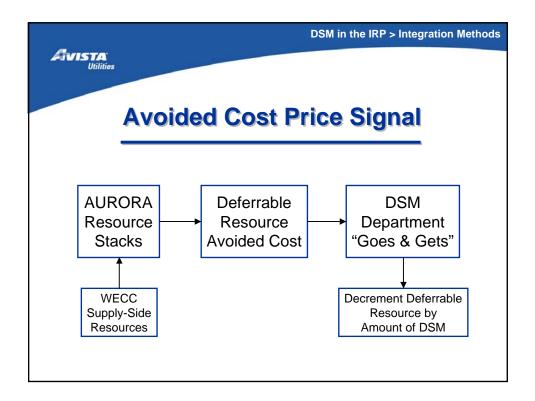


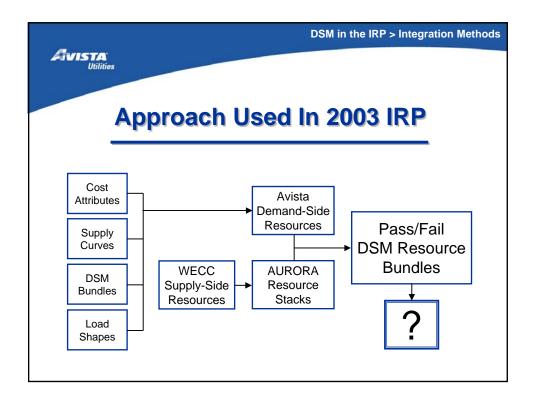

Ramp-up Programs and Targets


• Idaho


- Any cost-effective kWh
 - Without regard to system coincidence
- Implementing a series of "ramp-up" programs
 - 65 concepts developed
 - 25 concepts short-listed
 - 8 programs fielded
 - 9 programs nearing implementation
 - Generating concepts for next wave of programs

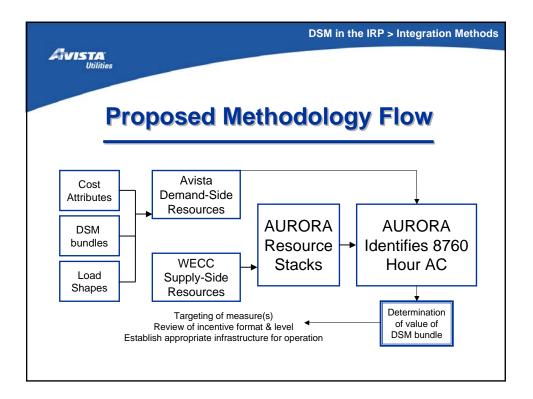


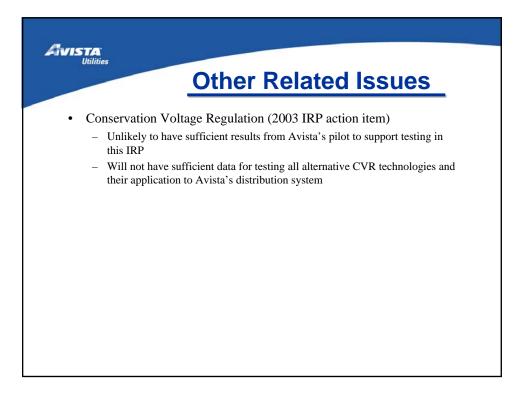


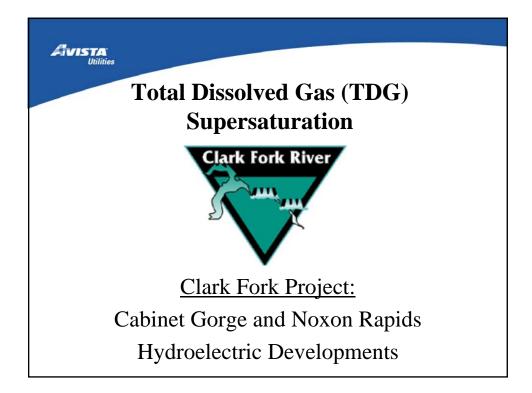


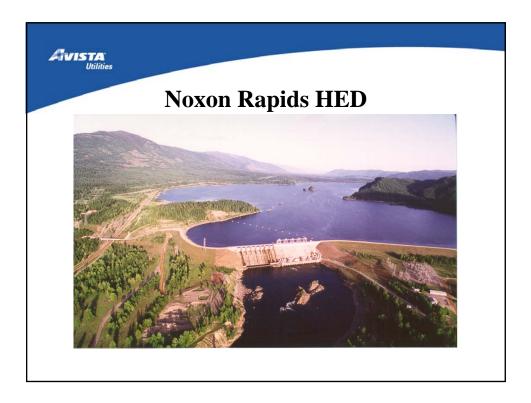
Explicitly Model DSM as a Resource

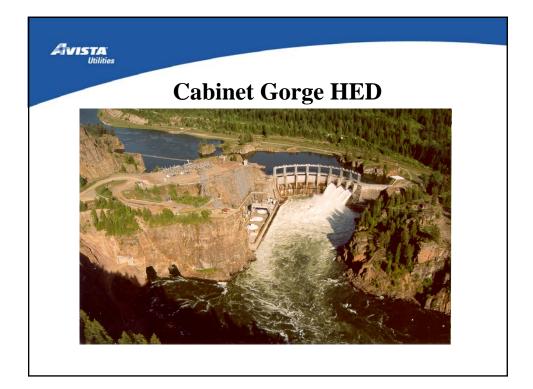
- Define DSM "bundles" that can be characterized within Aurora
 - Modeling issues
 - Defining DSM bundles to mimic supply-side resources
 - Sensitive to load research quality and applicability
 - Difficulty in establishing incremental / decremental resources available
 - Estimates must be specific to Avista service territory
 - Estimates are specific to an assumed time horizon
 - Distinctions between movements in a supply curve vs. movements along a supply curve

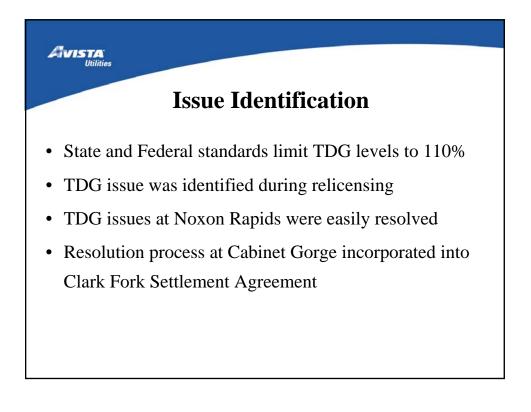

Proposed Methodology Attributes

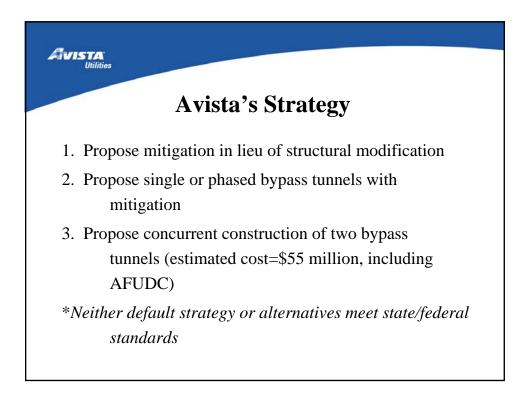

• Adaptation of both the price signal and full integration approach

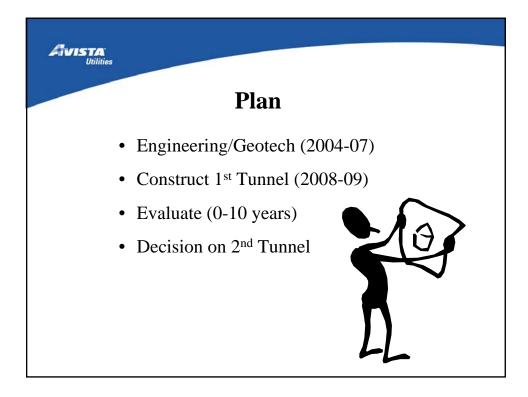

• Specific to the mid- and long-term management decisions regarding DSM operations and infrastructure development.

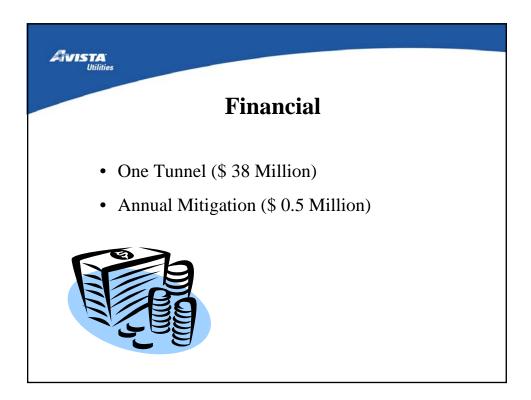

- Should we target system-coincident and/or disproportionately on-peak end-uses?
- Is our current incentive structure in need of revision?
 - Increase or decrease incentive levels?
 - Incorporate a preference for measures based upon load shape?

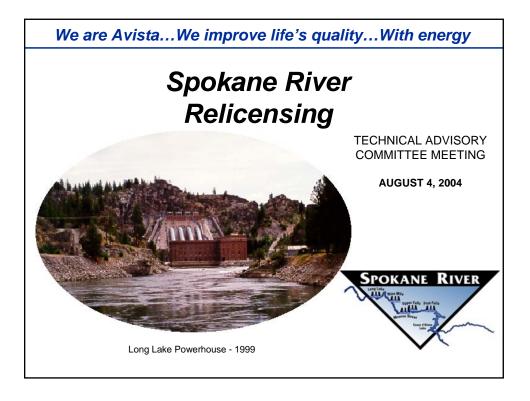


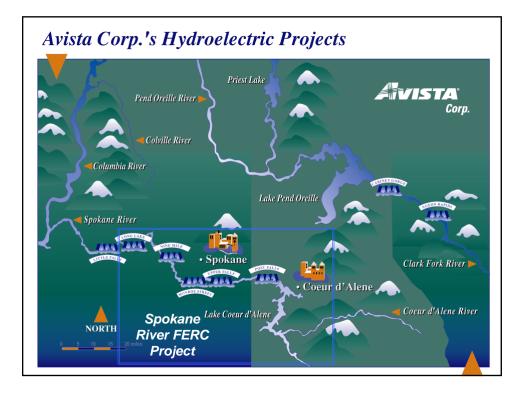


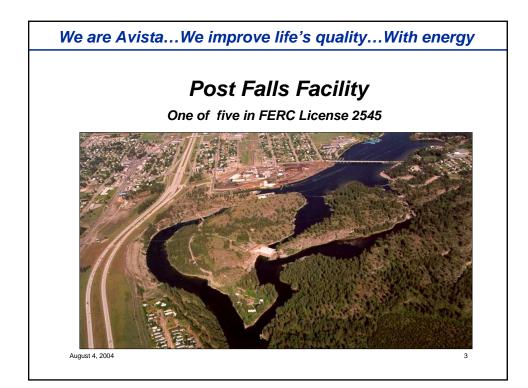


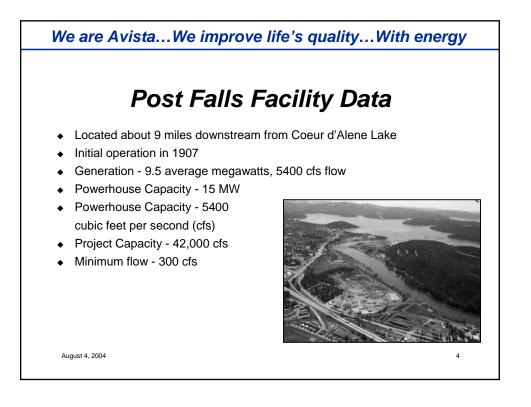


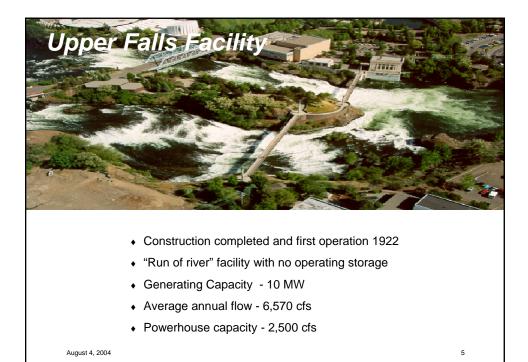


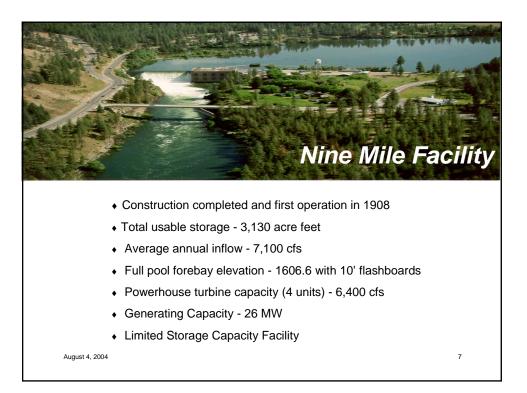

FERC License Requirements

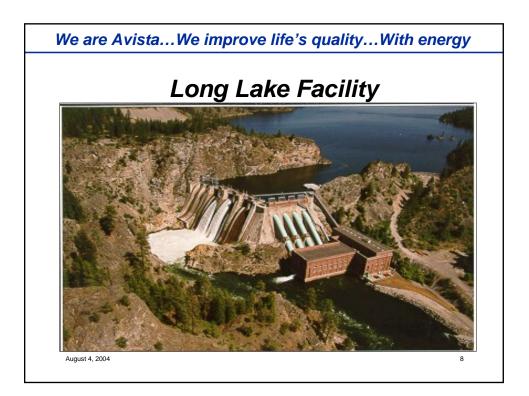

- Monitor TDG levels in the Clark Fork-Lake Pend Oreille system
- Develop interim TDG abatement alternatives
- Conduct biological studies
- Conduct "engineering study" to determine
 "default strategy"
- Develop Gas
 Supersaturation Control
 Program (GSCP) in
 2002

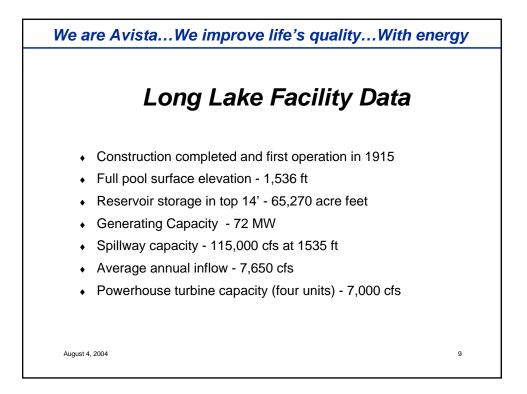


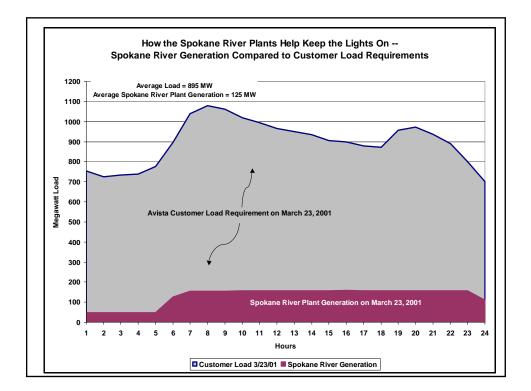


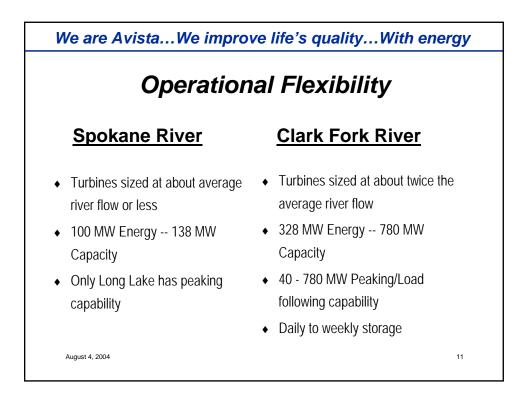


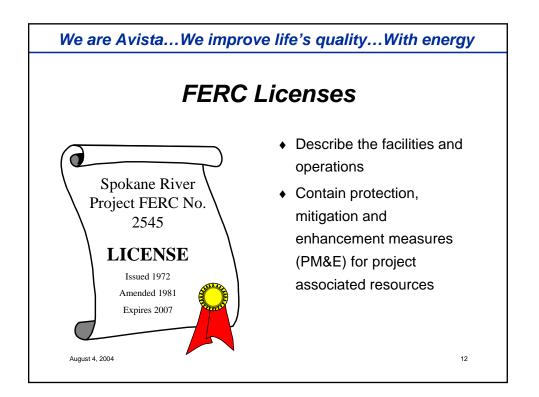


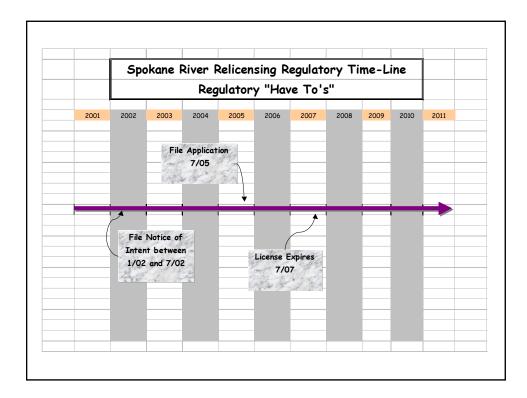


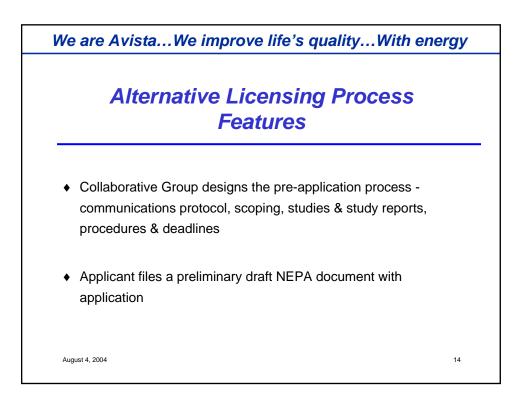


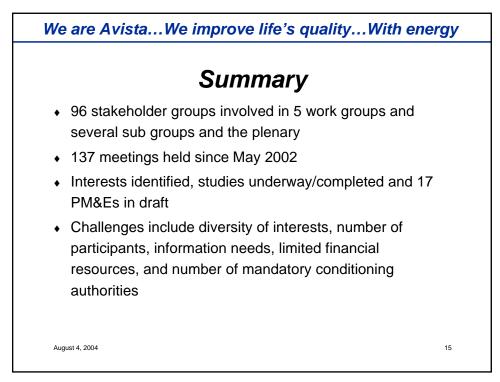


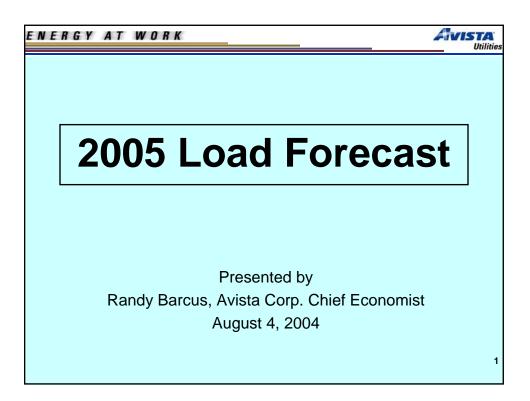

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

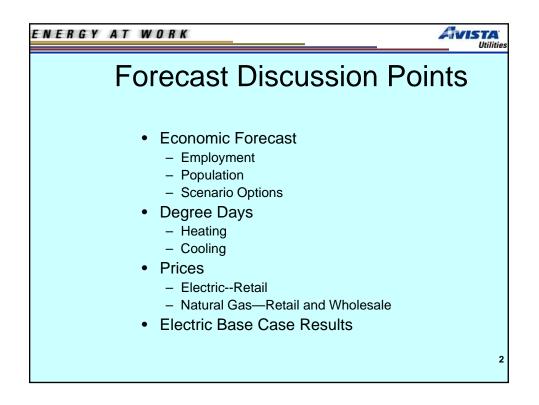


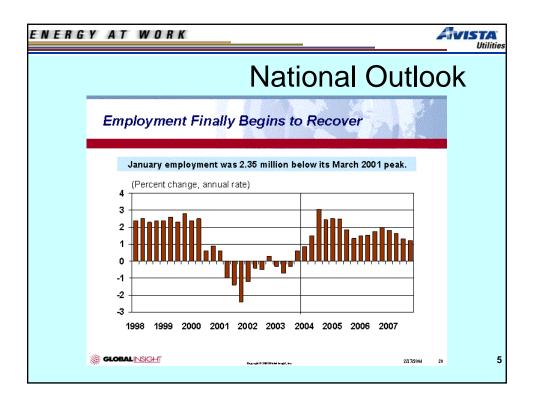


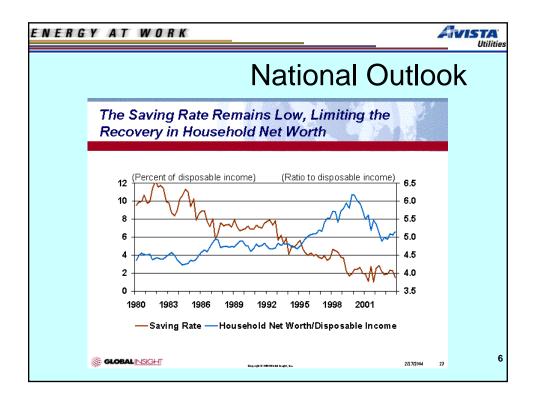


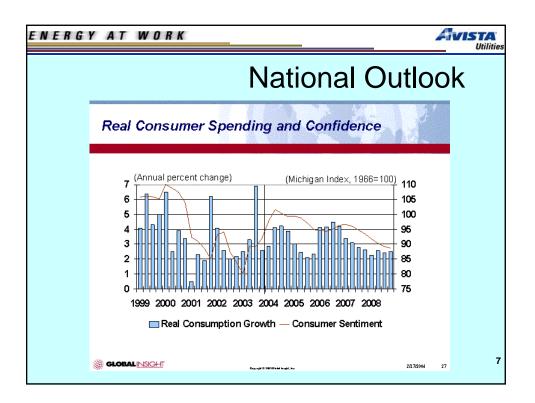


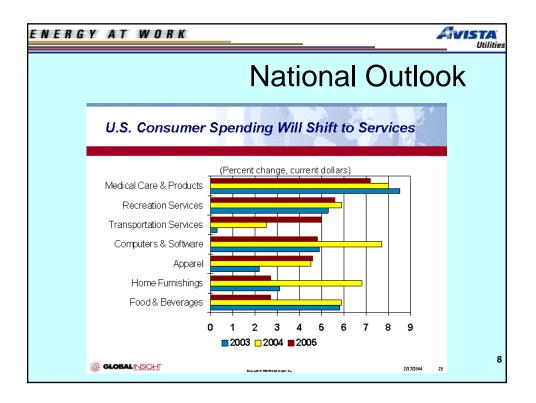


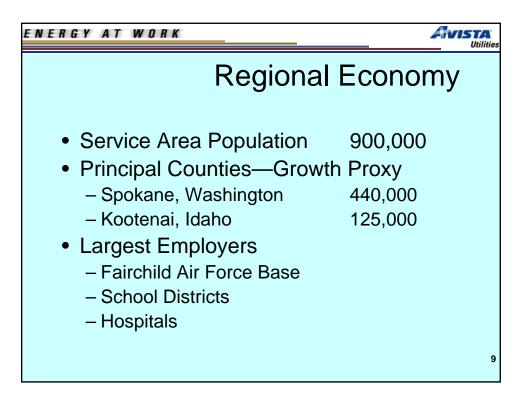


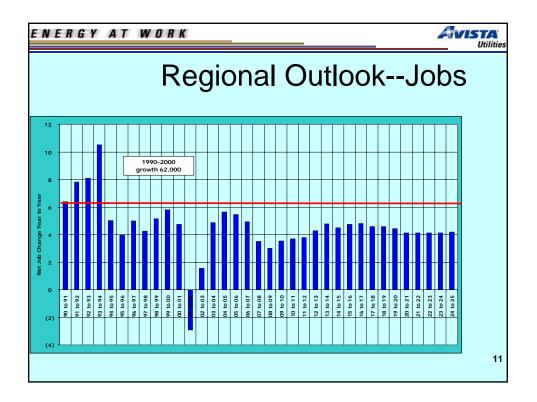


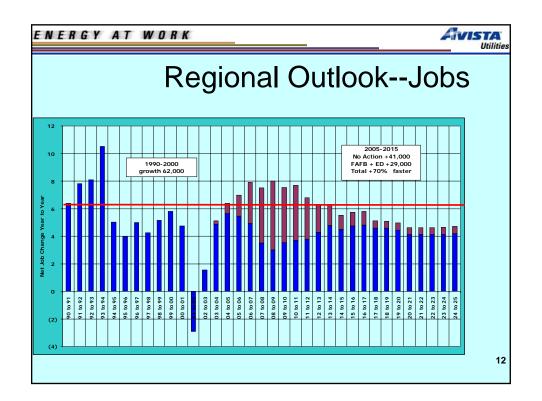


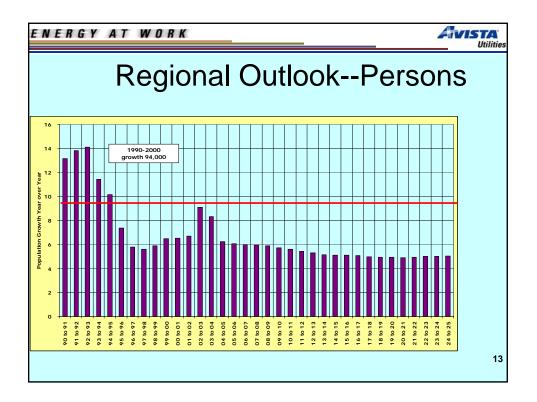


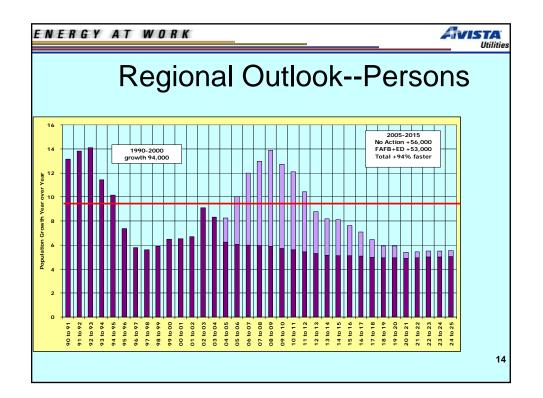


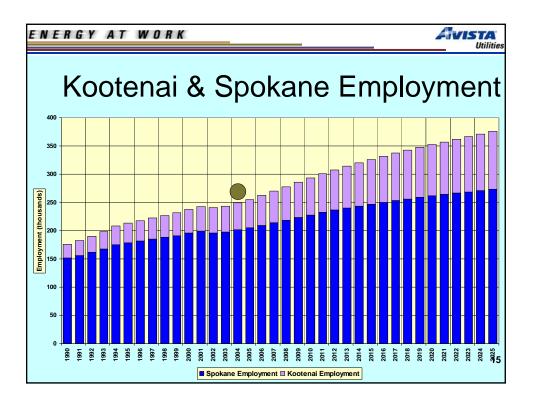

AT WORK						
	Na	atio	na	0	utl	00
The Consumer Markets	: Envi	ronm	ent	ni- Vi		
(Percent change)	1	1				1
	2002	2003	2004	2005	2006	
Real Consumption	3.4	3.1	3.8	3.1	3.5	
Real Disposable Income	3.8	2.5	3.5	3.0	3.8	
Payroll Employment	-1.1	-0.3	1.1	2.3	1.6	
r ajren Empleyment						
Unemployment Rate, %	5.8	6.0	5.6	5.3	5.3	
	5.8 -3.0	6.0 2.0	5.6 8.2	5.3 3.1	5.3 2.7	
Unemployment Rate, %						
Unemployment Rate, % Real Household Net Worth	-3.0	2.0	8.2	3.1	2.7	
Unemployment Rate, % Real Household Net Worth Consumer Price Index	-3.0 1.6	2.0 2.3	8.2 1.4	3.1 1.3	2.7 1.5	
Unemployment Rate, % Real Household Net Worth Consumer Price Index Light Vehicle Sales, millions	-3.0 1.6 16.8	2.0 2.3 16.6	8.2 1.4 17.2	3.1 1.3 17.3	2.7 1.5 17.5	

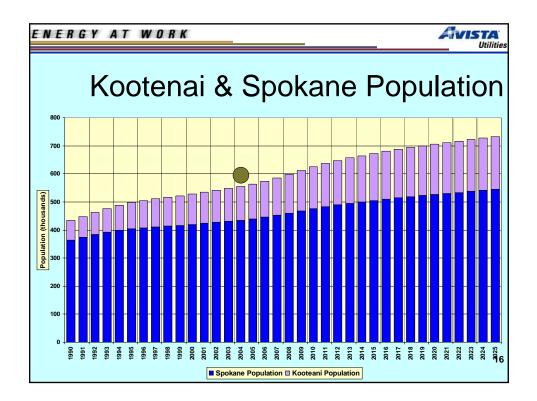


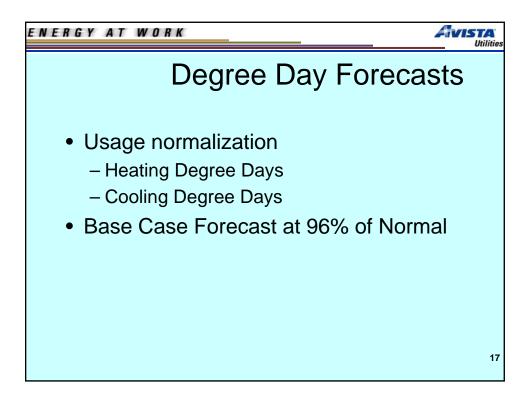


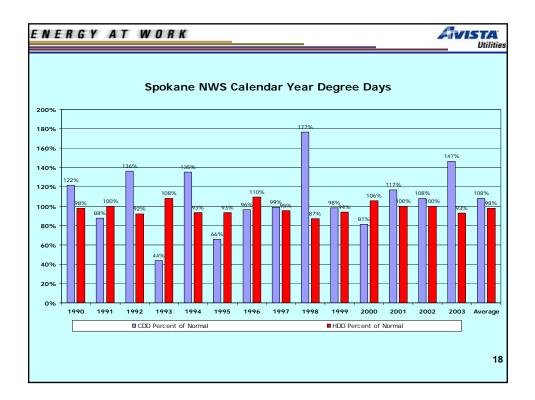


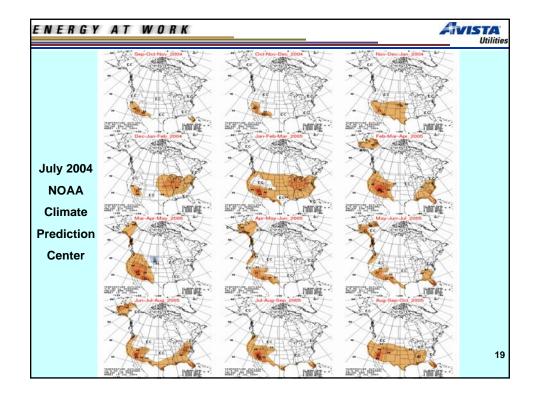


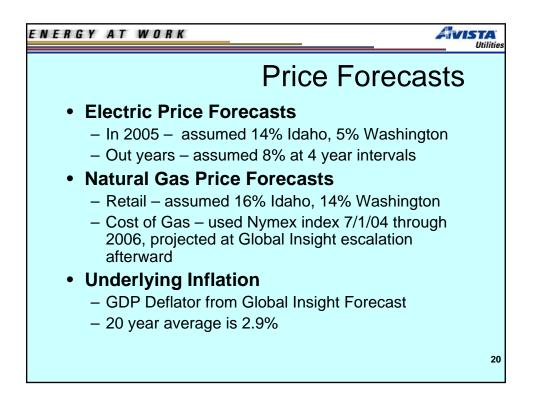


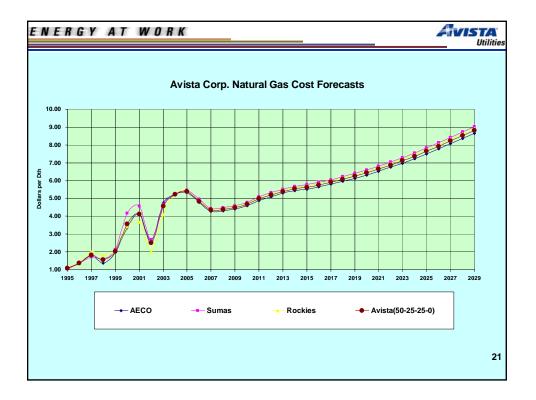


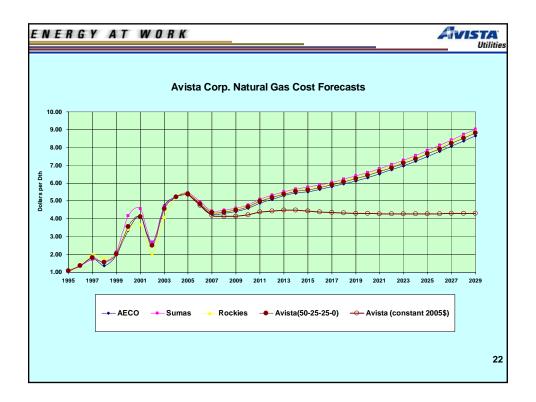


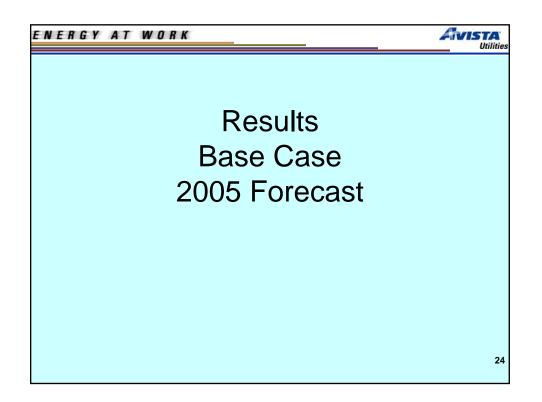


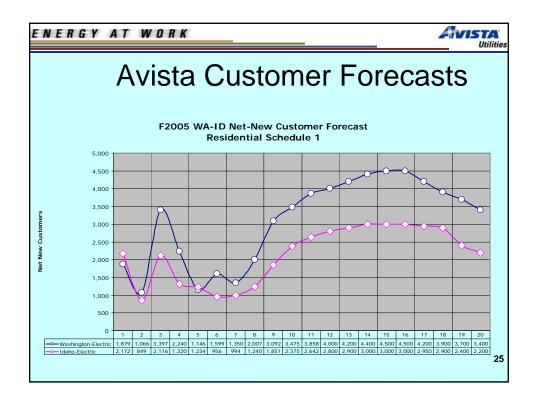


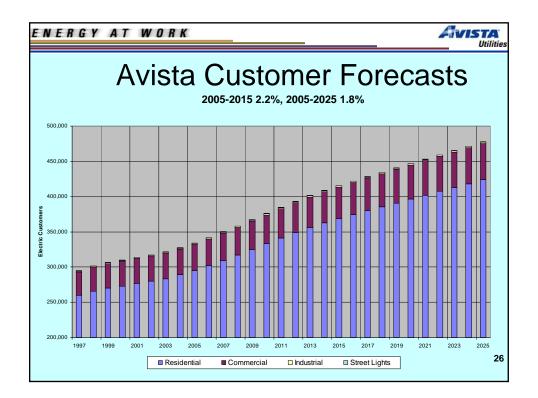


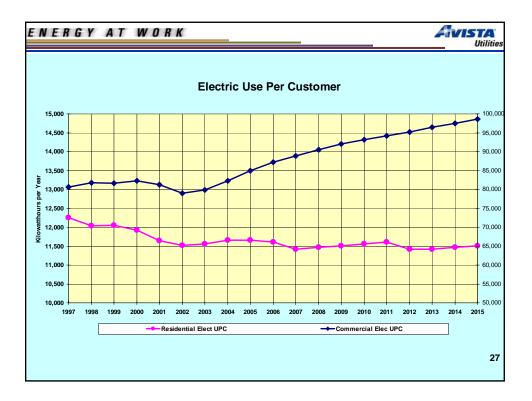


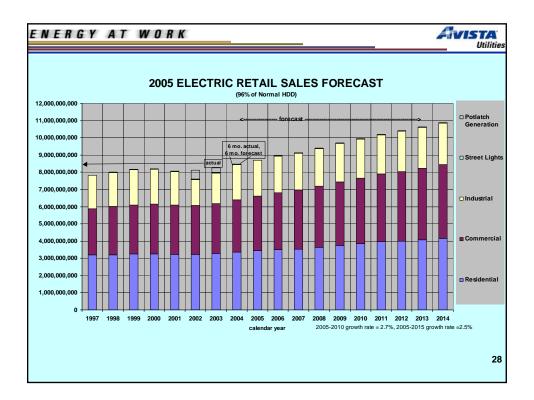


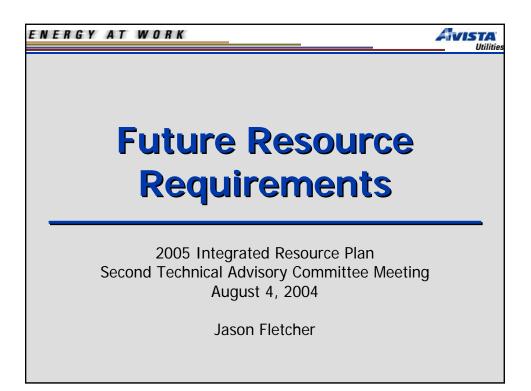







Appendix C 50

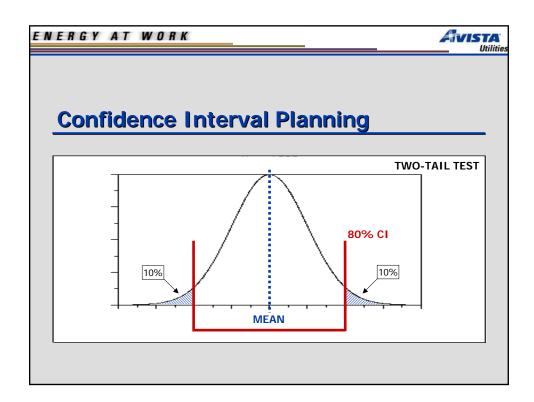


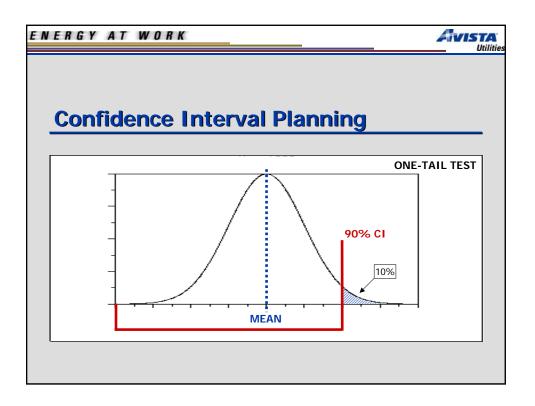


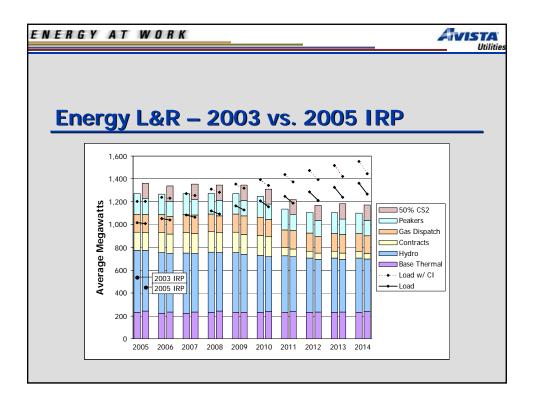
ENE	RG	Y	A 7	W	ORK											4	VISTA Utilitie
					4 - 11										_		
				De	all	ec	ונ	-0	re	cast	[E	:Х	am	IDI	e		
		2004 C	Customer Bills Residential	kWh Residential				Oustomer Bills	kWh			2004	Customer Bills	Industrial	kWh Commercial	Industrial	
		2004 JAN	186,129	274,940,054			2004 JAN	Residential 89.987	Residential 129.609.729			2004 JAN	Commercial 379	industrial 229	1,245,004	1,553,351	
		FEB	186,120	228,408,122			FEB	90,069	109,259,642			FEB	382	232	1,285,056	1,552,317	
		APR	186,014 185,918	205,886,320 169.031.735			MAR	90,099	95,008,145 80,901,886			MAR	380 381	229 228	1,426,908	1,508,680	
		MAY	185,446	148,732,691			MAY	89,908	70,626,910			MAY	379	228	1,618,864	2,036,718	
		JUN	185,440	140,271,521 144,032,921			JUN	89,667 90.876	66,183,041 74,141,475			JUN	379 381	226 232	1,588,999	2,063,535 3.096.872	
		AUG	186,465	171,729,824			AUG	90,686	77,017,657			AUG	386	232	2,998,039	3,935,146	
		SEP	186,883 188.057	164,226,084 157,548,927			SEP	90,942	75,189,889			SEP	383	232	2,671,042	3,274,743	
		NOV	188,057	169,365,396			OCT NOV	91,217 91,429	71,877,797			NOV	385	232	1,778,556	2,482,806	
		DEC	189,559	249,456,620			DEC	92,065	116,915,596			DEC	384	233	993,073	1,517,858	
	ANN Schedule 1	NUAL	186,755 Justomer Bills	2,223,630,215 KWh			ANNUAL	90,585	1,045,198,512		Schedule 31	ANNUAL	382 Customer Bills	231	20,346,419 KWh	26,407,123	
		2005	Residential	Residential		Schedule 1 IDAHO	2005	Oustomer Bills Residential	kWh Residential		IDAHO	2005	Commercial	Industrial	Commercial	Industrial	
		JAN	189,629	276,109,356			JAN	92,087	126,422,976			JAN	389	231	1,305,951	1,859,042	
		FEB	189,620	229,009,393 216,747,162			FEB	92,069	99,419,306			FEB	392	234	1,184,250	1,524,305	
		APR	189,418	178,171,171			MAR	92,299 92 189	97,442,150 83,876,301			APR	391	230	1,359,875	1,357,121	
		MAY	188,046	153,164,092			MAY	91,808	71,758,976			MAY	389	230	1,569,395	1,545,340	
		JUN	188,340 189,403	143,102,482			JUN	91,567	76,517,893			JUN	389 391	228	1,721,676	2,295,826	
		AUG	190,165	176,888,810			JUL	93,676 93,386	74,897,347			AUG		234	3,075,709	3,969,069	
		SEP	190,483	169,063,531			SEP	93,442	75,711,726			SEP	393	234	2,740,782	3,302,973	
		OCT NOV	191,757	162,255,171			OCT	93,917	72,525,254			OCT NOV	395	234	1,824,752	2,504,210	
		DEC	193,359	257,001,933			NOV	94,229 94.855	79,252,382 118.062.335			DEC	394	235	1,018,934	1,530,887	
	ANN	NUAL	190,213 Sustomer Bills	2,284,065,688			ANNUAL	92,960	1,053,611,140			ANNUAL	392 Oustomer Bills	233	20,423,139	26,257,949	
		2006	Residential	Residential				Oustomer Bills	kWh			2006	Commercial	Industrial	Commercial	Industrial	
		JAN	193,229	282,757,893			2006 .M.N	Residential 94.687	Residential 127.392.576			JAN	399	234	1,339,523	1,883,186	
		FEB	193,320 193,414	234,645,377 222,196,384			FEB	94,569	100,076,515			FEB	402 400	237 234	1,214,461	1,543,848	
		APR	193,414	182,748,804			MAR	94,799	98,079,827			APR	401	234	1,146,443	1,553,537	
		MAY	191,346	156,631,213			APR MLY	94,589 94,008	84,338,695 72,008,989			MAY	399	233	1,609,740	1,565,496	
		JUN	192,140 193,403	146,719,706 151,935,422			JUN	93,787	76,789,195			JUN	399 401	231 237	1,765,935	2,326,034 3.163,614	
		AUG	193,403	181,606,085			JUL	96,476	75,593,327			AUG	406	237	3,153,378	4,019,955	
		SEP	194,483	173,476,807			AUG	96,186 96,242	78,453,816 76,420,827			SEP	403	237	2,810,522	3,345,319	
		OCT NOV	195,857 196,720	166,553,008 179.012.228			OCT	96,817	73,269,419			OCT NOV	405 405	237 238	1,870,949 948,907	2,538,315	
		DEC	197,359	263,630,101			NOV	97,229	80,140,055			DEC	404	238	1,044,795	1,550,430	
	ANN	NUAL	194,071	2,341,913,026			ANNUAL	97,855 95.602	119,360,392			ANNUAL	402	236	20,943,810	26,596,399	
	Schedule 1	1997	171.925	2,130,312,545							Schedule 31	1997	169	188	9,568,640	25,726,978	
	WASHINGTON	1998	175,322	2,138,822,255		Schedule 1 IDAHO	1997	72,120	874,810,875 880,832,795		IDAHO	1998	189	192	12,955,525	27,186,518	
		1999 2000		2,168,321,535 2,160,945,957		IDANU	1998	73,910	1.000.889.508			1999	240 297	216	15,123,762 14,593,633	27,611,743 28.079.935	
		2000		2,159,678,050			2000	85,544	1,013,145,552			2000	318	245	14,503,633	28,079,935 28,644,719	
		2002	181,656	2,136,771,135			2001 2002	86,500 87,494	982,180,253 994 626 457			2002	333	229	17,357,731	25,955,353	
		2003		2,179,428,895			2003	88,734	1,004,247,603			2003	359	230	19,538,696 20 346 419	28,741,733 26,407,123	
		2004		2,223,630,215			2004	90,585	1,045,198,512			2004	382	231	20,346,419 20,423,139	26,407,123 26,257,949	
		2006	194,071	2,341,913,026			2005	92,960				2006	402	236	20,943,810	26,596,399	
		2007		2,342,378,542			2007	98,402	1,082,095,075			2007	412	239	21,464,800	26,935,206	
		2008		2,404,007,745			2008	101,302	1,119,555,367			2008	422	242	21,985,790 22,506,780	27,274,014 27,612,821	
		2010		2,534,945,495			2010	107,302	1,197,753,633			2010	442	248	23,027,771	27,951,629	2
		2011		2,601,909,315 2,599,527,552			2011		1,237,397,200			2011	452	251	23,548,761 24.069.751	28,290,437	4
		2012		2,599,527,552			2012 2013	113,252				2012	462	254	24,069,751 24,590,742	28,629,244 28,968,052	
		2014	227,471	2,716,343,087			2014	118,552	1,309,999,343			2014	482	260	25,111,732	29,306,860	
		2015	230,871	2,770,728,851			2015	120,752	1,340,980,885			2015	492	263	25,632,722	29,645,667	

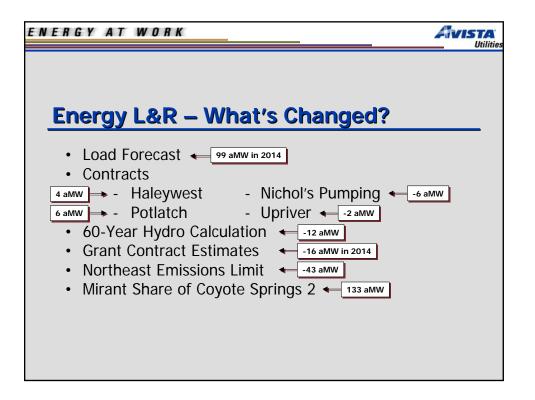
ENE	RGY	AT	WOR	K							2	A VIS	TA
												_	Utiliti
		Α	vist	taι	Jtilit	ties	Na	tive	e Lo	bad			
oad (MW)	F2005	744	672	744	720	744	720	744	740	720	744	720	744
	Annual Avg	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1997	929	1,098	1,035	952	878	832	786	845	918	815	854	1,071	1,0
1998	954	1,065	994	943	902	941	845	966	936	866	886	960	1,1
1999	988	1,076	1,075	1,020	950	917	933	971	991	904	933	982	1,1
2000	1,012	1,153	1,114	1,034	921	889	924	961	985	889	950	1,163	1,1
2001	964	1,147	1,110	975	905	862	868	911	956	864	911	957	1,1
2002	994	1,095	1,072	1,040	929	898	950	1,018	953	891	968	1,034	1,0
2003	1,013	1,087	1,076	991	926	900	968	1,056	997	934	957	1,111	1,1
2004	1,029	1,194	1,108	987	925	900	963	1,020	1,057	956	1,016	1,044	1,1
2005	1,067	1,226	1,180	1,107	985	928	927	1,048	1,087	984	1,045	1,073	1,2
2006	1,099	1,262	1,211	1,139	1,014	955	955	1,081	1,121	1,018	1,079	1,106	1,2
2007	1,122	1,289	1,235	1,162	1,035	975	975	1,102	1,144	1,041	1,101	1,127	1,2
2008	1,152	1,325	1,267	1,193	1,064	1,001	1,002	1,129	1,174	1,070	1,129	1,156	1,3
2009	1,185	1,365	1,302	1,227	1,095	1,030	1,031	1,160	1,208	1,103	1,161	1,187	1,3
2010	1,215	1,401	1,334	1,257	1,123	1,055	1,057	1,188	1,238	1,133	1,189	1,216	1,3
2011	1,246	1,439	1,367	1,289	1,153	1,083	1,085	1,217	1,270	1,164	1,219	1,246	1,4
2012	1,270	1,469	1,393	1,314	1,175	1,104	1,106	1,239	1,294	1,188	1,242	1,269	1,4
2013	1,296	1,500	1,421	1,340	1,200	1,126	1,129	1,263	1,320	1,214	1,267	1,293	1,4
2014	1,323	1,533	1,450	1,368	1,225	1,150	1,153	1,289	1,348	1,241	1,293	1,319	1,5
2015	1,354	1,570	1,482	1,400	1,254	1,177	1,180	1,317	1,379	1,272	1,322	1,349	1,5
2016	1,379	1,600	1,509	1,425	1,278	1,198	1,202	1,340	1,404	1,297	1,346	1,372	1,5
2017	1,395	1,619	1,526	1,441	1,293	1,212	1,216	1,355	1,420	1,312	1,361	1,387	1,6
2018	1,417	1,646	1,550	1,464	1,314	1,231	1,235	1,376	1,443	1,335	1,382	1,409	1,6
2019	1,447	1,682	1,581	1,495	1,342	1,257	1,262	1,403	1,473	1,364	1,410	1,437	1,6
2020	1,472	1,713	1,608	1,521	1,366	1,279	1,284	1,427	1,499	1,389	1,434	1,461	1,6
2021	1,499	1,745	1,636	1,548	1,391	1,302	1,307	1,452	1,526	1,416	1,460	1,486	1,7
2022	1,517	1,767	1,656	1,567	1,408	1,318	1,323	1,469	1,544	1,434	1,477	1,504	1,7
2023	1,549	1,805	1,689	1,599	1,438	1,346	1,351	1,498	1,576	1,465	1,507	1,534	1,7
2024	1,577	1,839	1,719	1,628	1,464	1,370	1,376	1,524	1,604	1,493	1,534	1,561	1,8
2025	1,605	1,873	1,750	1,657	1,491	1,395	1,401	1,551	1,633	1,522	1,561	1,588	1,8
													3

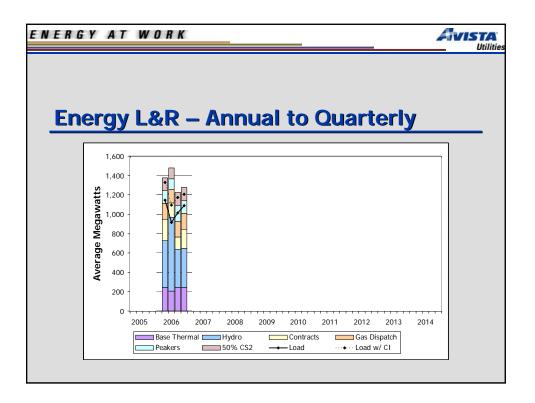
1998 1,665 1,578 1,575 1,255 1,195 1,251 1,249 1,164 1,521 1,422 1,317 1,246 1,296 1999 1,366 1,357 1,379 1,300 1,209 1,213 1,338 1,405 1,402 1,175 1,232 1,308 000 1,570 1,475 1,458 1,474 1,309 1,209 1,243 1,228 1,382 1,370 1,169 1,175 1,338 0001 1,570 1,452 1,388 1,362 1,329 1,209 1,243 1,228 1,382 1,370 1,169 1,175 1,330 0001 1,570 1,452 1,381 1,481 1,341 1,366 1,177 1,121 1,491 1,451 1,401 1,332 1,332 1,332 1,332 1,332 1,432 1,461 1,331 1,425 1,432 1,461 1,514 1,531 1,425 1,434 1,500 1,522 1,332 <t< th=""><th>NE</th><th>RG</th><th>Y AT</th><th>WO</th><th>RK</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>4</th><th>IVIS</th><th>Utili</th></t<>	NE	RG	Y AT	WO	RK								4	IVIS	Utili
Calendar Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 1997 1,512 1,508 1,391 1,286 1,228 1,115 1,019 1,202 1,229 1,122 1,146 1,403 1998 1,656 1,578 1,255 1,255 1,249 1,164 1,521 1,422 1,426 1,422 1,422 1,422 1,435 1,422 1,308 1,454 1,326 1,475 1,432 1,308 1,454 1,335 1,169 1,157 1,332 1,432 1,332 1,434 1,501<		Α	vist	aι	Jtilit	ties	Na	ativ	e F	'ea	k D	em	nan	d	
1997 1,512 1,508 1,391 1,286 1,228 1,115 1,019 1,202 1,299 1,122 1,146 1,403 1998 1,665 1,578 1,575 1,255 1,195 1,251 1,249 1,144 1,317 1,246 1,226 1999 1,436 1,666 1,357 1,379 1,300 1,209 1,213 1,338 1,405 1,402 1,317 1,222 1,338 2000 1,570 1,475 1,458 1,349 1,300 1,220 1,283 1,322 1,338 1,405 1,492 2001 1,519 1,452 1,488 1,349 1,329 1,209 1,223 1,328 1,332 1,323 1,406 1,370 1,606 1,601 1,332 1,322 1,323 1,323 1,323 1,323 1,323 1,323 1,323 1,323 1,323 1,323 1,323 1,323 1,323 1,323 1,323 1,333 1,402 1,451 1,501 1,517 1,335 1,243 1,304 1,517 1,518				1 au	F . 1							C	0.1		
1998 1,665 1,578 1,575 1,255 1,195 1,251 1,249 1,164 1,521 1,422 1,317 1,246 1,296 1999 1,436 1,666 1,357 1,377 1,300 1,209 1,213 1,338 1,405 1,402 1,175 1,232 1,308 2000 1,570 1,475 1,452 1,384 1,322 1,301 1,262 1,417 1,308 1,454 1,324 1,324 1,324 1,324 1,322 1,332 1,342 1,467 1,338 1,425 1,433 1,402 1,549 1,549 1,543 1,342 1,465 1,432 1,461 1,332 1,425 1,425 1,425			rear												De
1999 1,436 1,666 1,357 1,370 1,300 1,200 1,213 1,338 1,405 1,402 1,175 1,232 1,308 2000 1,570 1,475 1,458 1,474 1,301 1,262 1,147 1,308 1,454 1,396 1,183 1,254 1,492 2001 1,570 1,452 1,488 1,492 1,229 1,209 1,214 1,325 1,325 1,169 1,175 1,330 2002 1,457 1,452 1,488 1,482 1,388 1,432 1,328 1,425 1,325 1,323 1,432 1,322 1,323 1,432 1,325 1,323 1,432 1,325 1,323 1,432 1,332 1,322 1,323 1,432 1,432 1,432 1,432 1,432 1,432 1,432 1,434 1,507 1,538 1,415 1,333 1,504 1,514 1,514 1,514 1,514 1,419 1,442 1,425 1,425			1 570												1,:
2000 1,570 1,475 1,488 1,474 1,301 1,262 1,147 1,308 1,454 1,396 1,183 1,254 1,492 2001 1,519 1,566 1,474 1,490 1,299 1,290 1,243 1,282 1,370 1,169 1,169 1,175 1,380 1,380 1,380 1,380 1,380 1,380 1,380 1,380 1,380 1,380 1,380 1,381 1,382 1,330 1,600 1,332 1,323 1,323 1,323 1,323 1,323 1,324 1,431 1,339 1,414 1,430 1,443 1,451 1,350 1,551 1,641 1,511 1,550 1,454															1,0 1,4
2001 1,519 1,566 1,474 1,490 1,329 1,209 1,228 1,382 1,370 1,169 1,175 1,380 2002 1,457 1,452 1,388 1,362 1,398 1,180 1,149 1,374 1,457 1,335 1,197 1,321 1,437 1,332 1,432 1,461 1,561 1,535 1,278 1,549 1,584 1,311 1,425 1,425 1,477 1,351 1,243 1,369 1,561 1,533 1,278 1,549 1,581 1,332 1,425 1,425 1,425 1,425 1,425 1,425 1,425 1,425 1,426 1,454 1,331 1,426 1,531 1,426 1,531 1,426 1,531 1,500 1,610															1,4
2002 1,457 1,452 1,388 1,362 1,398 1,180 1,149 1,376 1,457 1,335 1,197 1,360 1,337 2003 1,510 1,458 1,393 1,408 1,228 1,221 1,179 1,321 1,422 1,322 1,322 1,322 1,322 1,322 1,322 1,322 1,322 1,322 1,322 1,322 1,323 1,322 1,323 1,324 1,530 1,549 1,544 1,334 1,455 1,457 1,335 1,450 1,335 1,451 1,335 1,450 1,549 1,541 1,451 1,530 1,641 1,545 1,570 2009 1,799 1,796 1,717 1,666 1,450 1,472 1,725 1,726 1,769															1,3
2003 1,510 1,458 1,393 1,408 1,228 1,221 1,179 1,321 1,487 1,400 1,332 1,323 1,432 2004 1,779 1,776 1,766 1,434 1,366 1,177 1,121 1,391 1,514 1,501 1,225 1,352 1,389 1,432 2005 1,622 1,612 1,522 1,417 1,315 1,308 1,544 1,581 1,333 1,432 1,442 2006 1,669 1,666 1,602 1,518 1,353 1,278 1,344 1,500 1,524 1,442 2007 1,702 1,709 1,672 1,585 1,415 1,330 1,600 1,610 1,381 1,445 1,443 2008 1,779 1,796 1,717 1,628 1,454 1,371 1,439 1,600 1,691 1,411 1,455 1,443 2010 1,844 1,841 1,757 1,666 1,404 1,432 </td <td></td> <td>1,4</td>															1,4
2004 1,779 1,779 1,769 1,769 1,764 1,344 1,366 1,177 1,121 1,391 1,514 1,501 1,275 1,352 1,389 2005 1,622 1,619 1,562 1,477 1,315 1,243 1,304 1,549 1,538 1,311 1,389 1,425 2006 1,669 1,669 1,669 1,669 1,669 1,343 1,344 1,590 1,381 1,425 2007 1,702 1,702 1,699 1,632 1,546 1,379 1,302 1,461 1,616 1,610 1,381 1,459 1,494 2008 1,748 1,748 1,745 1,626 1,451 1,335 1,402 1,616 1,601 1,381 1,459 1,494 2008 1,748 1,745 1,666 1,471 1,439 1,609 1,601 1,461 1,533 1,507 2010 1,844 1,841 1,757 1,666 1,441 </td <td></td> <td>1,4</td>															1,4
2005 1,622 1,622 1,619 1,562 1,477 1,315 1,243 1,308 1,549 1,538 1,311 1,389 1,425 2006 1,669 1,666 1,666 1,662 1,518 1,333 1,278 1,344 1,590 1,582 1,384 1,435 1,445 2007 1,702 1,702 1,692 1,646 1,379 1,302 1,641 1,641 1,845 1,474 2008 1,748 1,748 1,745 1,672 1,585 1,415 1,335 1,402 1,661 1,649 1,419 1,495 1,530 2010 1,844 1,844 1,747 1,628 1,454 1,331 1,472 1,725 1,729 1,498 1,570 2010 1,844 1,844 1,841 1,757 1,666 1,490 1,472 1,725 1,729 1,498 1,571 1,668 1,673 1,673 1,672 2011 1,981 1,898 </td <td></td> <td>1,5</td>															1,5
2006 1,669 1,669 1,666 1,602 1,518 1,353 1,278 1,344 1,590 1,582 1,354 1,422 1,467 2007 1,702 1,702 1,699 1,632 1,546 1,379 1,302 1,364 1,616 1,616 1,381 1,459 1,442 2008 1,748 1,748 1,748 1,748 1,745 1,646 1,371 1,432 1,646 1,610 1,381 1,459 1,432 2008 1,749 1,799 1,790 1,790 1,771 1,628 1,451 1,333 1,402 1,690 1,691 1,411 1,455 1,415 2010 1,844 1,841 1,757 1,666 1,400 1,404 1,422 1,606 1,606 1,606 1,607 1,626 1,668 1,607 1,606 1,604 1,633 1,700 1,626 1,820 1,833 1,600 1,668 1,631 1,703 1,626 1,820 <													1		1.0
2007 1,702 1,702 1,699 1,632 1,546 1,379 1,302 1,369 1,616 1,610 1,381 1,459 1,494 2009 1,748 1,748 1,745 1,622 1,585 1,415 1,335 1,402 1,611 1,649 1,419 1,495 1,530 2009 1,799 1,799 1,799 1,799 1,799 1,795 1,661 1,439 1,649 1,419 1,451 1,535 1,570 2010 1,844 1,841 1,877 1,666 1,490 1,404 1,472 1,725 1,729 1,498 1,571 1,666 2011 1,891 1,891 1,891 1,897 1,707 1,527 1,438 1,507 1,666 1,633 1,762 1,724 1,783 1,656 1,633 1,606 1,633 1,606 1,633 1,606 1,633 1,606 1,633 1,606 1,633 1,633 1,606 1,633 1,633 <															1,0
2008 1,749 1,799 1,799 1,790 1,771 1,628 1,454 1,311 1,439 1,690 1,691 1,461 1,535 1,570 2010 1,844 1,844 1,841 1,757 1,666 1,490 1,472 1,725 1,726 1,757 1,666 1,490 1,442 1,725 1,726 1,727 1,728 1,727 1,728 1,728 1,721 1,728 1,720 1,722 1,726 1,729 1,581 1,618 1,612 1,612 1,720 1,803 1,608 1,633 1,601 1,626 1,830 1,833 1,600 1,668 1,633 1,613 1,736 1,736 1,736 1,736 1,736 1,736 1,736 1,736 1,736 1,736 1,736															1,0
2009 1,799 1,799 1,799 1,799 1,799 1,799 1,799 1,799 1,799 1,799 1,790 1,717 1,628 1,454 1,371 1,439 1,690 1,691 1,461 1,535 1,570 2010 1,844 1,844 1,841 1,757 1,666 1,490 1,404 1,472 1,725 1,729 1,488 1,637 1,666 2011 1,981 1,989 1,796 1,707 1,527 1,438 1,700 1,507 1,523 1,606 1,641 1,533 1,600 1,648 1,631 1,606 2012 1,928 1,928 1,926 1,831 1,738 1,557 1,433 1,700 1,523 1,800 1,658 1,617 2014 2,010 2,007 1,903 1,807 1,655 1,556 1,626 1,888 1,606 1,673 1,738 1,703 2014 2,044 2,091 1,977 1,878 1,															1,3
2010 1,844 1,844 1,844 1,844 1,844 1,844 1,757 1,666 1,490 1,404 1,472 1,725 1,729 1,498 1,571 1,606 2011 1,891 1,891 1,899 1,758 1,707 1,527 1,438 1,501 1,762 1,769 1,537 1,608 1,643 2012 1,928 1,926 1,926 1,831 1,738 1,556 1,464 1,533 1,700 1,800 1,668 1,637 1,672 2013 1,968 1,965 1,866 1,771 1,587 1,403 1,562 1,820 1,833 1,600 1,668 1,703 2014 2,010 2,007 1,903 1,807 1,619 1,523 1,552 1,852 1,868 1,635 1,731 1,738 1,733 1,733 1,733 1,733 1,733 1,735 1,731 1,738 1,735 1,731 1,738 1,735 1,833 1,644 <															1,
2011 1,891 1,891 1,891 1,892 1,792 1,707 1,527 1,438 1,507 1,762 1,769 1,537 1,608 1,643 2012 1,928 1,928 1,926 1,831 1,738 1,556 1,444 1,533 1,700 1,568 1,707 1,587 1,643 1,633 1,608 1,668 1,663 1,672 2013 1,968 1,965 1,866 1,7071 1,587 1,443 1,522 1,828 1,863 1,661 1,703 2014 2,006 2,007 1,903 1,807 1,619 1,523 1,556 1,854 1,854 1,655 1,626 1,888 1,603 1,738 1,738 2016 2,094 2,091 1,977 1,878 1,665 1,556 1,657 1,936 1,794 1,768 1,823 2017 2,118 2,118 2,115 1,998 1,794 1,657 1,697 1,966 1,975 1															1.8
2012 1,928 1,925 1,866 1,711 1,587 1,493 1,523 1,820 1,833 1,600 1,668 1,703 2014 2,010 2,010 2,007 1,903 1,807 1,619 1,523 1,828 1,833 1,600 1,638 1,701 1,738 2015 2,056 2,056 2,053 1,943 1,846 1,655 1,556 1,626 1,888 1,704 1,738 1,773 1,738 1,773 2016 2,094 2,091 1,977 1,878 1,685 1,553 1,656 1,976 1,988 1,704 1,602 1,987 1,764 1,803 2017 2,113 2,150 2,028 1,988 1,704 1,625 1,677 1,962 <															1,8
2013 1,968 1,968 1,968 1,966 1,771 1,587 1,493 1,562 1,820 1,833 1,600 1,668 1,703 2014 2,010 2,007 1,903 1,607 1,619 1,523 1,523 1,852 1,868 1,635 1,733 1,735 1,833 1,646 1,657 1,693 1,936 1,744 1,849 1,832 1,936 1,724 1,787 1,822 2018 2,153 2,150 2,028 1,730 1,657 1,697 1,966 1,987 1,781 1,844 1,842 2018 2,157 2,194	-														1,9
2014 2,010 2,010 2,007 1,903 1,807 1,619 1,523 1,593 1,852 1,868 1,635 1,701 1,736 2015 2,056 2,056 2,053 1,943 1,846 1,655 1,556 1,564 1,888 1,906 1,673 1,738 1,773 2016 2,094 2,094 2,091 1,977 1,878 1,685 1,556 1,626 1,917 1,938 1,704 1,704 1,788 1,802 2017 2,118 2,118 1,150 2,028 1,928 1,704 1,607 1,936 1,958 1,724 1,787 1,822 2018 2,153 2,150 2,026 1,928 1,704 1,657 1,926 1,987 1,752 1,814 1,849 2019 2,197 2,216 2,026 1,926 1,757 1,206 2,057 1,880 1,915 2020 2,236 2,230 2,102 1,965 1,757 </td <td></td> <td>1.9</td>															1.9
2015 2,056 2,056 2,056 2,056 2,053 1,943 1,846 1,655 1,556 1,626 1,888 1,906 1,673 1,738 1,773 2016 2,094 2,094 2,091 1,977 1,878 1,685 1,583 1,626 1,888 1,906 1,673 1,738 1,773 2017 2,118 2,118 2,115 1,998 1,998 1,704 1,617 1,978 1,704 1,803 2017 2,113 2,115 2,150 2,028 1,928 1,704 1,607 1,962 1,987 1,724 1,737 1,822 2018 2,153 2,150 2,028 1,928 1,705 1,657 1,767 1,962 1,987 1,724 1,787 1,824 2020 2,236 2,233 2,102 1,965 1,765 1,757 1,962 2,057 1,884 1,912 1,884 2020 2,235 2,305 2,302 2,162 </td <td></td> <td>1,9</td>															1,9
2016 2,094 2,094 2,091 1,977 1,878 1,685 1,583 1,654 1,917 1,938 1,704 1,768 1,803 2017 2,118 2,118 2,115 1,998 1,998 1,704 1,601 1,672 1,936 1,724 1,768 1,803 2018 2,153 2,153 2,150 2,028 1,292 1,730 1,627 1,966 1,977 1,863 1,617 1,936 1,724 1,781 1,822 2018 2,153 2,153 2,150 2,028 1,728 1,730 1,627 1,966 1,987 1,752 1,814 1,849 2019 2,197 2,197 2,194 2,067 1,965 1,657 1,697 1,966 2,024 1,789 1,849 1,849 2021 2,277 2,277 2,274 2,137 2,033 1,827 1,715 1,787 2,057 2,091 1,854 1,921 1,947 2022 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>2.0</td>							1.1	1						1	2.0
2017 2,118 2,118 2,118 2,115 1,998 1,898 1,704 1,601 1,672 1,936 1,958 1,724 1,787 1,822 2018 2,153 2,153 2,150 2,028 1,928 1,730 1,625 1,697 1,962 1,987 1,752 1,814 1,849 2019 2,197 2,197 2,194 2,067 1,965 1,657 1,729 1,996 2,024 1,789 1,849 1,849 2020 2,236 2,233 2,102 1,998 1,776 1,655 1,757 2,026 2,057 1,811 1,808 1,915 2020 2,236 2,236 2,232 2,102 1,998 1,776 1,655 1,757 2,026 2,057 1,811 1,808 1,915 2021 2,277 2,277 2,274 2,137 2,033 1,827 1,715 1,787 2,057 2,091 1,854 1,912 1,947 2022 </td <td></td> <td>2.0</td>															2.0
2018 2,153 2,154 1,262 1,750 1,657 1,765 1,657 1,757 1,962 2,047 1,789 1,784 1,849 2010 2,236 2,233 2,102 1,998 1,796 1,657 1,757 1,906 2,057 1,881 1,818 1,818 2020 2,237 2,277 2,277 2,277 2,172 2,137 2,033 1,827 1,715 1,787 2,057 2,091 1,854 1,912 1,947 2022 2,305 2,302 2,162 2,056 1,849 1,735 1,807 2,079 2,184 1,949 1,947 2023 2,305 2,302 2,164 2,164 2,157 1,947 1,944 1,969 2024 2,															2,0
2019 2,197 2,197 2,194 2,067 1,965 1,765 1,657 1,729 1,996 2,024 1,789 1,849 1,849 2020 2,236 2,236 2,233 2,102 1,998 1,796 1,685 1,757 2,026 2,025 1,821 1,849 1,849 2021 2,277 2,277 2,277 2,273 2,137 2,033 1,827 1,715 1,787 2,026 2,057 1,821 1,981 1,915 2021 2,777 2,777 2,774 2,137 2,033 1,827 1,715 1,787 2,057 2,091 1,851 1,915 2022 2,305 2,302 2,162 2,056 1,849 1,875 1,807 2,079 2,115 1,877 1,941 1,969 2023 2,352 2,352 2,349 2,044 2,056 1,864 1,769 1,872 2,164 2,196 1,971 2,006 2024 2,395 </td <td></td> <td>2,1</td>															2,1
2021 2,277 2,377 1,987 1,978 2,097 2,101 1,877 1,934 1,969 2023 2,352 2,352 2,354 2,204 2,077 1,886 1,769 1,842 2,116 2,154 1,916 1,971 2,006 2024 2,395 2,395 2,392 2,242 2,133 1,920 1,807 1,873 2,168 2,190 1,952 2,005 2,040	2019														2,1
2022 2,305 2,305 2,302 2,162 2,056 1,849 1,735 1,807 2,079 2,115 1,877 1,934 1,969 2023 2,352 2,352 2,352 2,349 2,044 2,097 1,886 1,769 1,842 2,116 2,154 1,916 1,971 2,006 2024 2,395 2,395 2,392 2,242 2,133 1,920 1,800 1,873 2,148 2,190 1,952 2,005 2,040	2020	2,236	2,236	2,233	2,102	1,998	1,796	1,685	1,757	2,026	2,057	1,821	1,880	1,915	2,2
2023 2,352 2,352 2,349 2,204 2,097 1,886 1,769 1,842 2,116 2,154 1,916 1,971 2,006 2024 2,395 2,395 2,395 2,392 2,242 2,133 1,920 1,800 1,873 2,148 2,190 1,952 2,005 2,040	2021	2,277	2,277	2,274	2,137	2,033	1,827	1,715	1,787	2,057	2,091	1,854	1,912	1,947	2,2
2024 2,395 2,395 2,392 2,242 2,133 1,920 1,800 1,873 2,148 2,190 1,952 2,005 2,040	2022	2,305	2,305	2,302	2,162	2,056	1,849	1,735	1,807	2,079	2,115	1,877	1,934	1,969	2,2
	2023	2,352	2,352	2,349			1,886	1,769				1,916			2,3
2025 2,439 2,439 2,436 2,280 2,170 1,954 1,831 1,905 2,182 2,227 1,988 2,039 2,074	2024	2,395	2,395	2,392	2,242	2,133	1,920	1,800	1,873	2,148	2,190	1,952	2,005	2,040	2,3
	2025	2,439	2,439	2,436	2,280	2,170	1,954	1,831	1,905	2,182	2,227	1,988	2,039	2,074	2,4

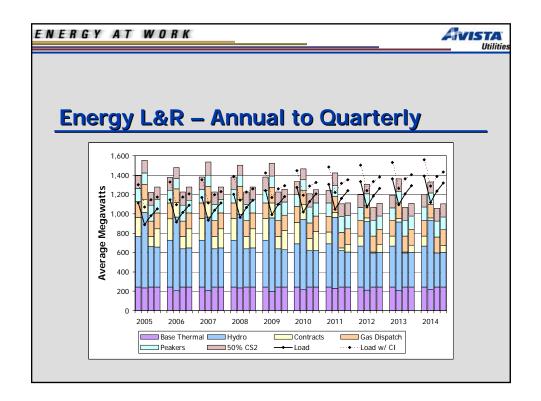




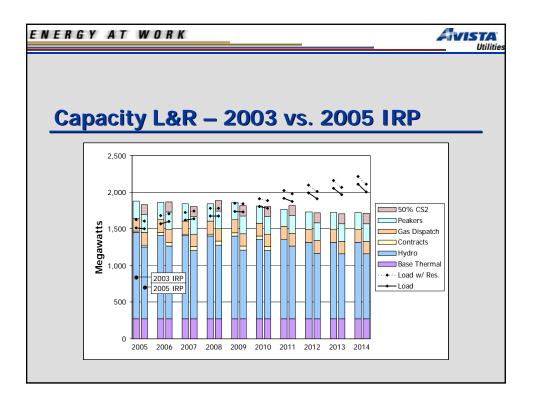

• The need for new resources is determined by the balance (imbalance) of expected loads and resources.

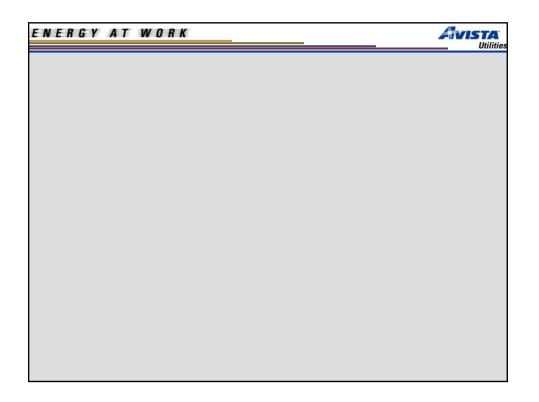

- Energy and capacity values for expected loads and resources are tabulated for twenty years and included in Planning L&R's.
- · Expected deficit years are as follows...
 - Energy 2010
 - Capacity 2009 (?)

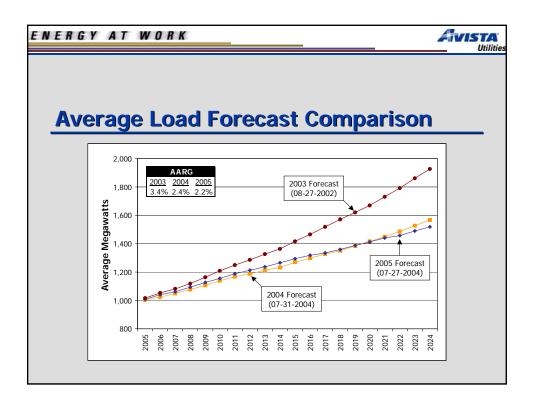


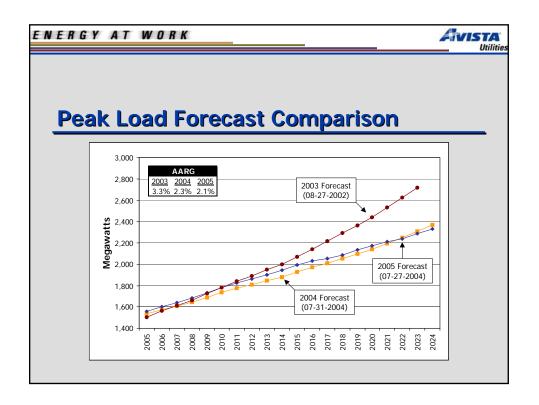


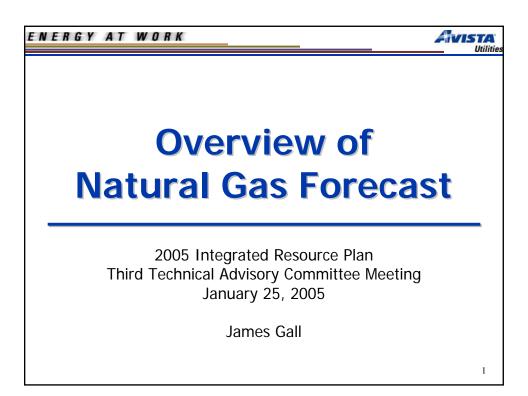
											-
Energy L	02	ds	2	Res	OU	ICE	S (;	эMМ	N ()		
<u> </u>			~	100					/		
	L	ong-Ter	m Energ				ulation ((aMW)			
				CONFI	DENTIA	_					
Last Updated July 30, 2004	Notes	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
REQUIREMENTS											
System Load	1	(1,008)	(1,041)	(1,063)	(1,093)	(1,126)	(1,156)	(1,187)	(1,212)	(1,237)	(1,265
Contracts Out	2	(13)	(11)	(11)	(11)	(11)	(9)	(9)	(8)	(8)	(8
WNP-3 Obligation	3	(31)	(31)	(31)	(31)	(31)	(31)	(31)	(31)	(31)	(31
Confidence Interval	4	(163)	(160)	(160)	(160)	(159)	(155)	(155)	(151)	(151)	(151
Total Requirements		(1,215)	(1,243)	(1,265)	(1,296)	(1,327)	(1,351)	(1,382)	(1,402)	(1,428)	(1,455)
RESOURCES											
Hydro	5	532	511	511	511	505	481	477	461	460	459
Contracts In	6	167	184	186	186	186	185	79	64	64	58
Base Load Thermals	7	241	234	234	242	232	236	240	235	234	238
Gas Dispatch Units	8	295	284	294	279	294	284	294	279	294	284
Peaking Units	9	139	135	138	138	137	134	138	138	137	138
Total Resources Surplus (Deficit)		1,374 159	1,349 106	1,364 99	1,356 61	1,355 28	1,220	1,229	1,177	1,189	1,178
Surplus (Deficit)		159	106	99	61	28	(31)	(153)	(225)	(238)	(276)
ABSENT MIRANT SHARE OF	CS2										
Generation Reduction	10	(133)		(133)	(125)	(133)	(128)	(133)	(125)	(133)	(128
		27	(22)	(34)	(64)	(105)	(159)	(285)	(350)	(371)	(404)
Net Position					(01)	()	()	(200)	(000)	(0,1)	(104)

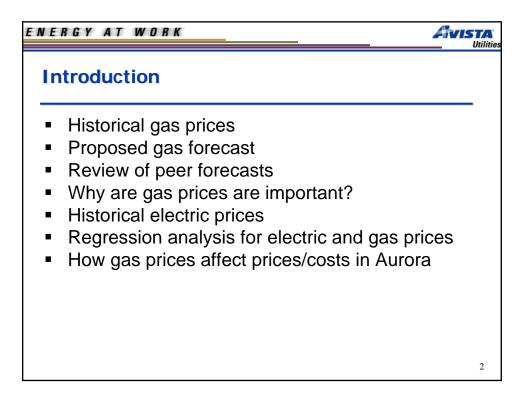


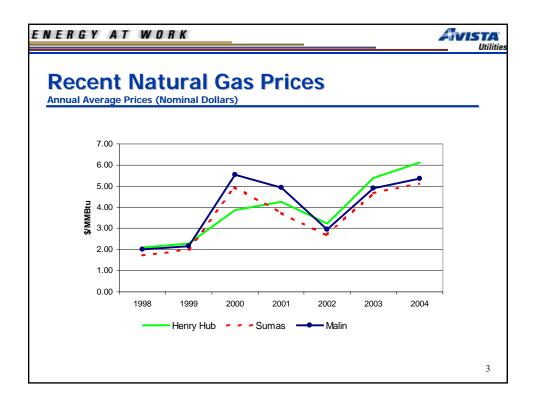


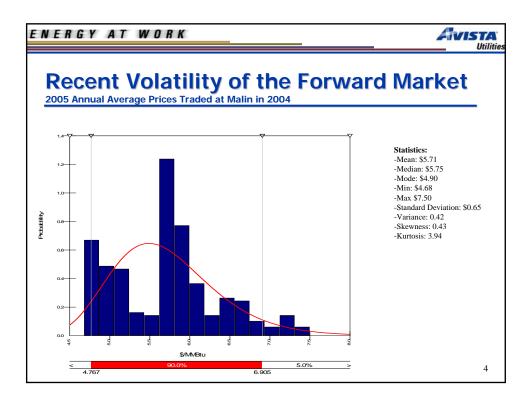


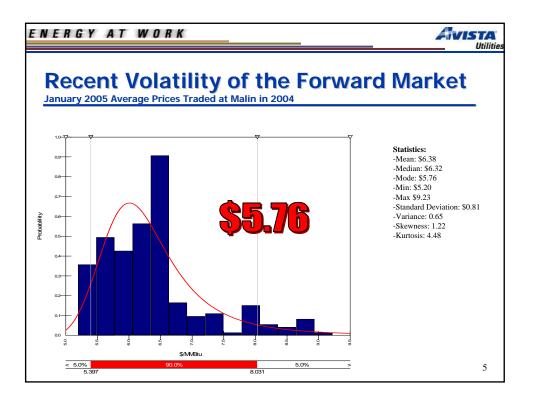

<u>RGYATWORK</u>														
Sanaoit y		a					000	· / \ /\	1/1					
apacity		Jau	12 C	(K	22 0	JUI	ces) (IVI)	VV)					
								•	,					
		Long To	erm Peak			ree Teh	Jation (
		Long- re	im Peak				ulation ((1111)						
				CONFI	DENTIAL	-								
Last Updated July 30, 2004	Notes	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014			
REQUIREMENTS	Notes	2003	2000	2007	2008	2009	2010	2011	2012	2013	2014			
System Load	1	(1,500)	(1,598)	(1,637)	(1,674)	(1,734)	(1,779)	(1,813)	(1,849)	(1,903)	(1,945)			
Contracts Out	2	(170)	(1,576)	(1,037)	(1,074)	(1,7,54)	(161)	(1,013)	(1,047)	(1,703)	(159)			
Hydro Reserves (5%)	3	(61)	(59)	(58)	(59)	(58)	(55)	(53)	(53)	(53)	(53)			
Thermal Reserves (7%)	4	(48)	(48)	(48)	(48)	(48)	(48)	(48)	(48)	(48)	(48)			
Total Requirements	4	(1.779)	(1.871)	(1,910)	(1,947)	(2,007)	(2,044)	(2.074)	(2,110)	(2,164)	(2.205)			
iotal Requirements		(1,11)	(1,071)	(1,710)	(1,747)	(2,007)	(2,044)	(2,074)	(2,110)	(2,104)	(2,203)			
RESOURCES														
Hydro	5	975	991	930	1.003	935	925	993	893	884	883			
Contracts In	6	199	217	220	219	220	218	97	97	98	98			
Base Load Thermals	7	275	275	275	275	275	275	275	275	275	275			
Gas Dispatch Units	8	308	310	305	310	309	305	310	310	305	309			
Peaking Units	9	243	243	243	243	243	243	243	243	243	243			
Total Resources		2,000	2,035	1,973	2,049	1,923	1,967	1,917	1,817	1,805	1,808			
Surplus (Deficit)		220	165	63	102	(25)	(77)	(157)	(293)	(359)	(398)			
ABSENT MIRANT SHARE OF	CS2													
ABSENT MIRANT SHARE OF Generation Reduction	CS2 10	(138)	(139)		(139)	(139)	(139)	(139)	(139)	(139)	(139)			
		(138) 82	(139) 26	(76)	(139) (37)	(139) (164)	(139) (216)	(139) (296)	(139) (432)	(139) (498)	(139) (536)			

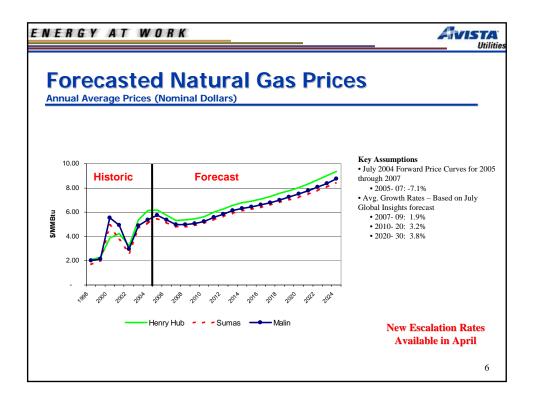

RGY AT N	/ O R	K				_				-	4v
											-
								<i>/•</i> ••	• •		
Capacity		DEC	Sŏ	2 R	esc	JUr	ces	(M)	N)		
								`	,		
		Long-Te	erm Peak				ulation (MW)			
				CONFI	DENTIA	-					
Last Updated July 30, 2004	Notes	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
REQUIREMENTS											
System Load	1	(1,500)	(1,598)	(1,637)	(1,674)	(1,734)	(1,779)	(1,813)	(1,849)	(1,903)	(1,945)
Contracts Out	2	(170)	(166)	(166)	(166)	(166)	(161)	(159)	(159)	(159)	(159)
Hydro Reserves (5%)	3	(61)	(59)	(58)	(59)	(58)	(55)	(53)	(53)	(53)	(53)
Thermal Reserves (7%)	4	(48)	(48)	(48)	(48)	(48)	(48)	(48)	(48)	(48)	(48)
Total Requirements		(1,779)	(1,871)	(1,910)	(1,947)	(2,007)	(2,044)	(2,074)	(2,110)	(2,164)	(2,205)
RESOURCES											
Hvdro	5	975	991	930	1.003	935	925	993	893	884	883
Contracts In	6	199	217	220	219	220	218	97	97	98	98
Base Load Thermals	7	275	275	275	275	275	275	275	275	275	275
Gas Dispatch Units	8	308	310	305	310	309	305	310	310	305	309
Peaking Units	9	243	243	243	243	243	243	243	243	243	243
Total Resources		2,000	2,035	1,973	2,049	1,982	1,967	1,917	1,817	1,805	1,808
Surplus (Deficit)		220	165	63	102	(25)	(77)	(157)	(293)	(359)	(398)
ABSENT MIRANT SHARE OF	C\$2										
Generation Reduction	10	(138)	(139)	(139)	(139)	(139)	(139)	(139)	(139)	(139)	(139)
Net Surplus (Deficit)		82	26	(76)	(37)	(164)	(216)	(296)	(432)	(498)	(536)
						4%	-2%	-3%	-10%	-12%	-14%
Planning Reserve Margin		20%	15%	9%	11%	4%	-2%	-370	-10%	-1270	- 1470

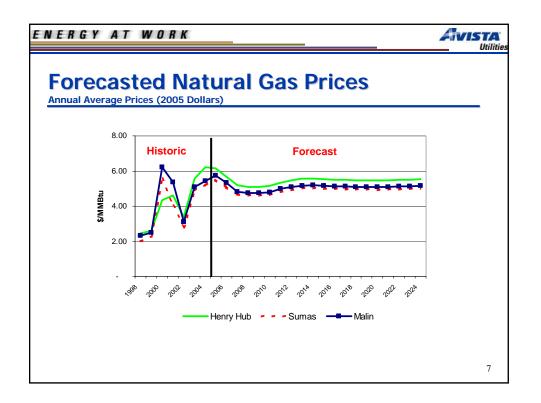


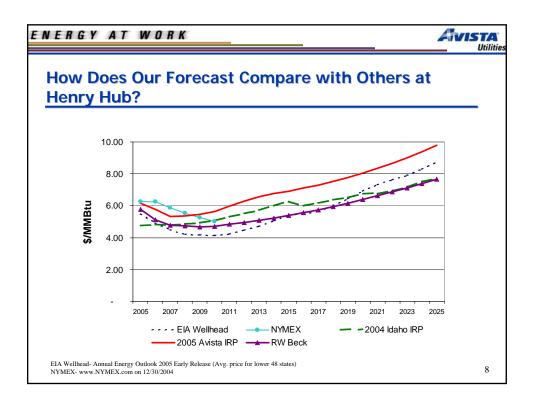


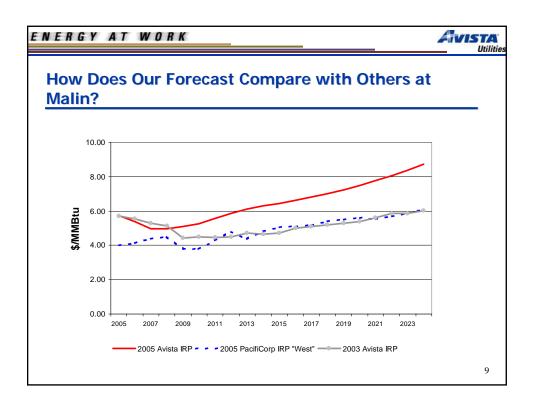


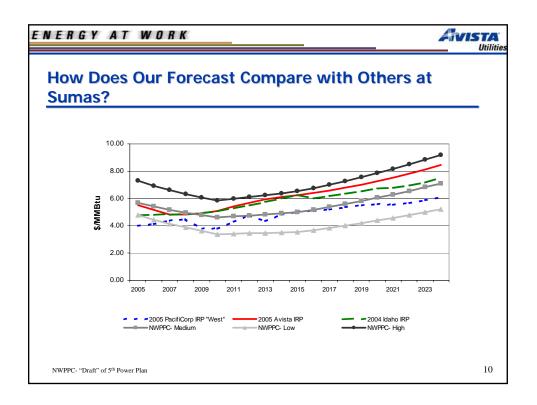


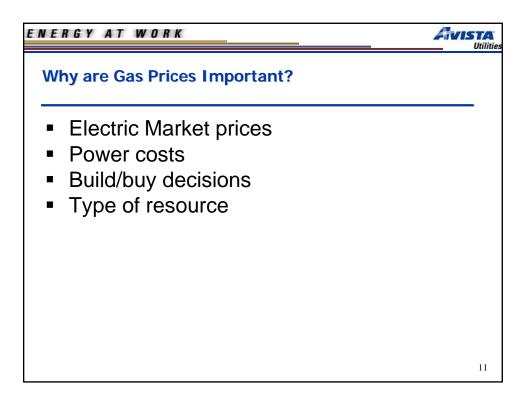


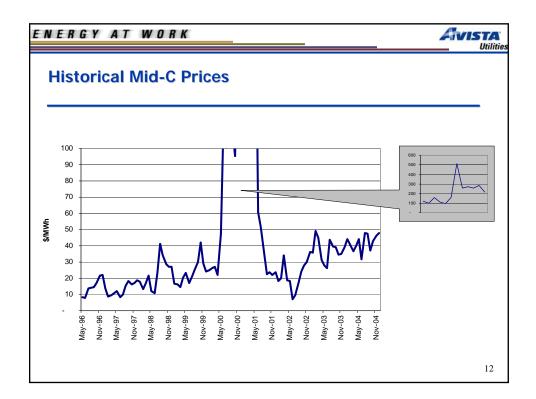


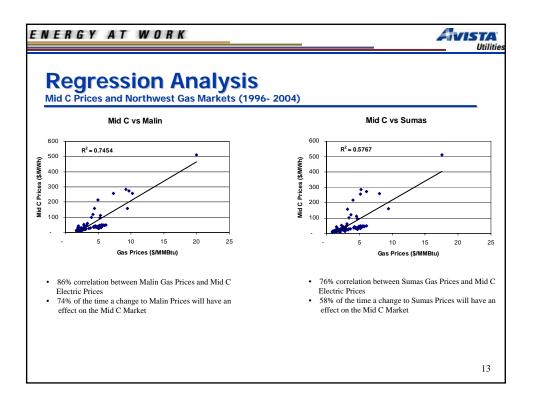


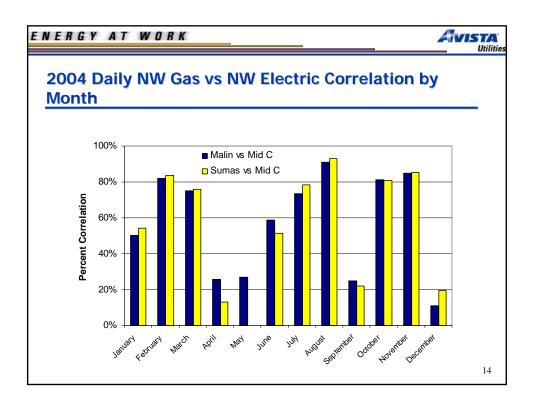


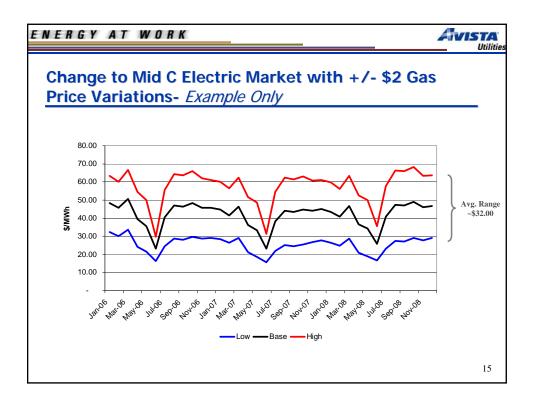


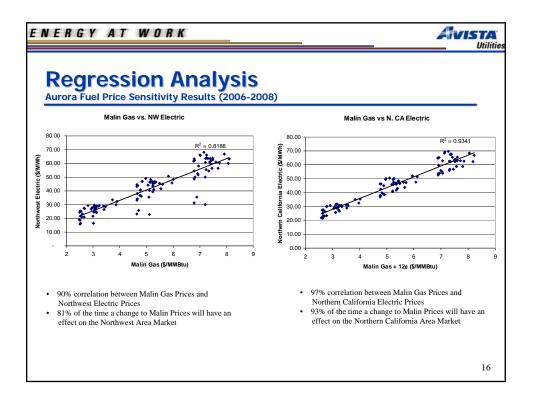


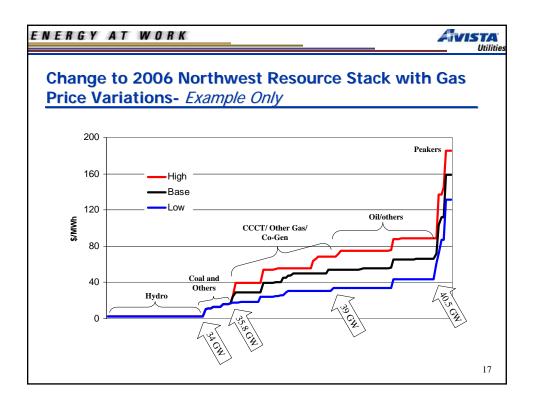


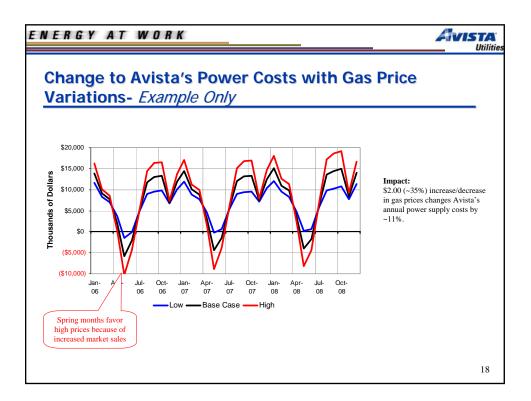


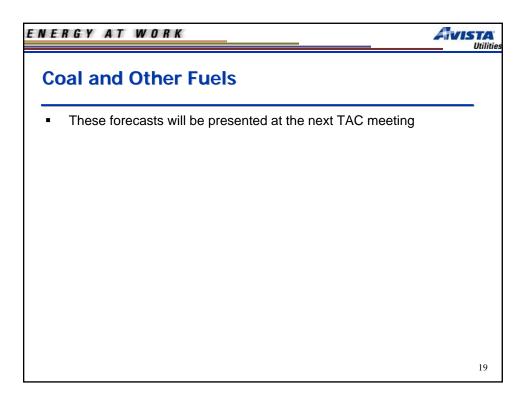


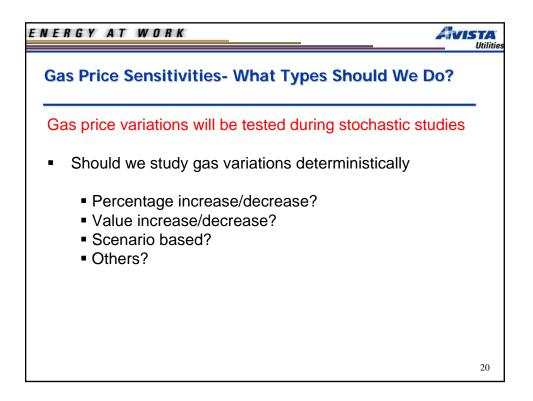


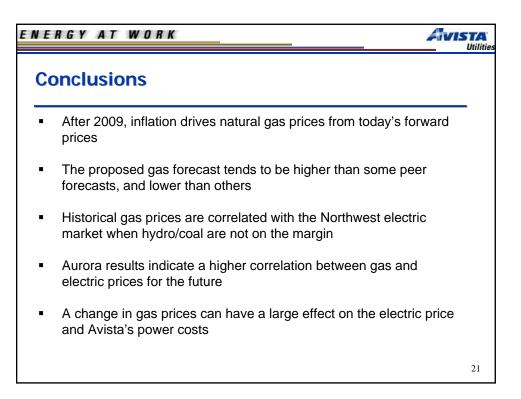


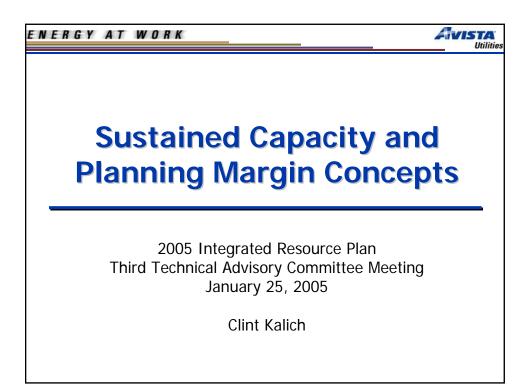


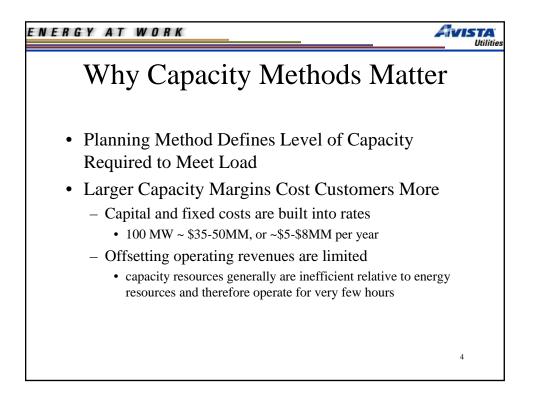


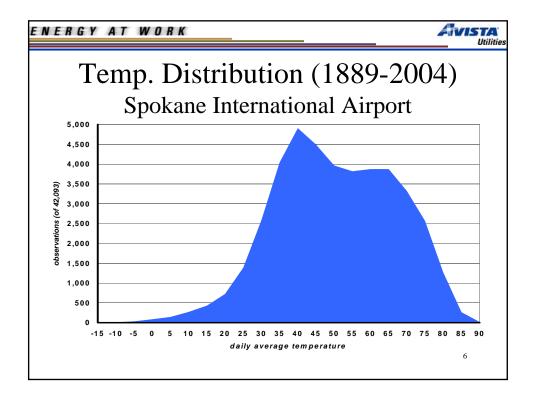


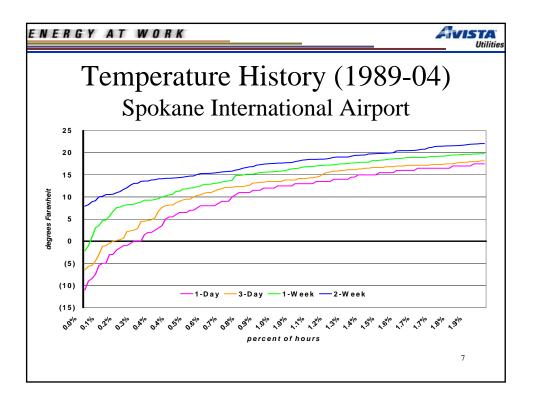


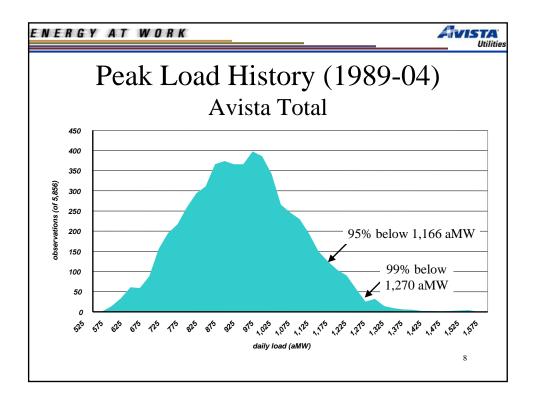


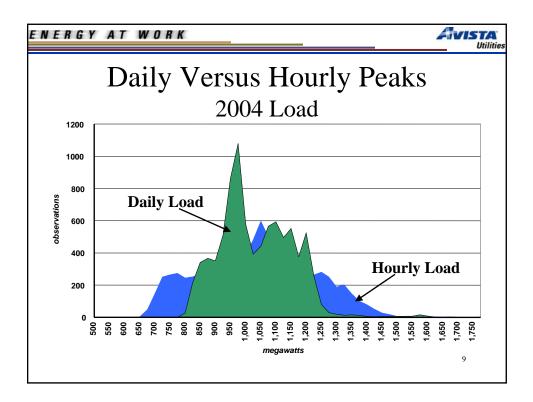


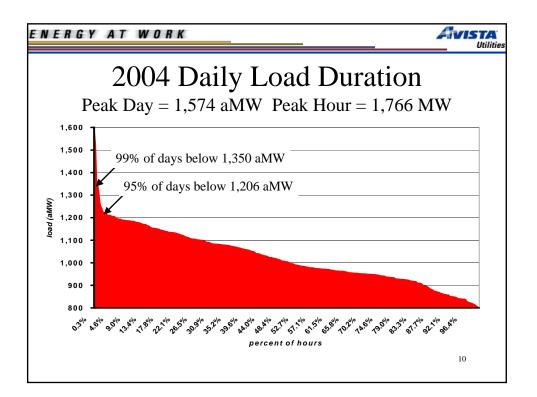


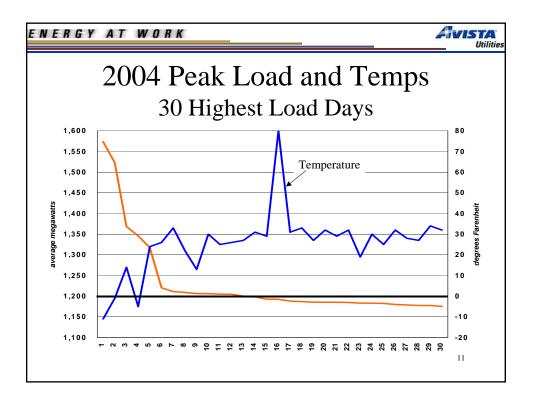


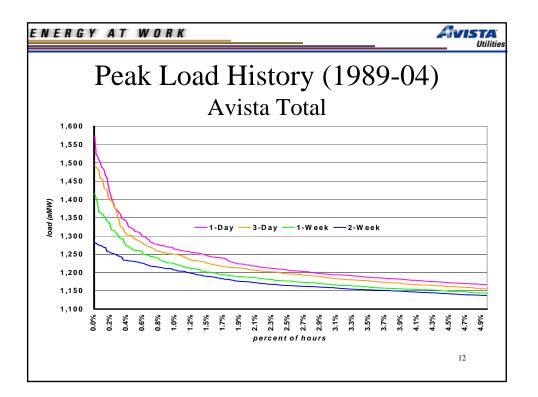

ENERGY AT WORK	
Presentation Overview	
	Slide #
What Is Sustained Capacity	3
Why Capacity Methods Matter	4
 Comparison to Peak Forecasting 	5
 Various Views of Historical Temperatures 	6-7
 Various Views of Historical Loads 	8-14
Sustained Peak Calculations & Positions 2005/07/10	15-18
Avista vs. FERC SMD	19-20
 Key Capacity Planning Questions 	21
 Planning Margin Methods Summary 	22
Capacity Plan for 2005 IRP	23
	2

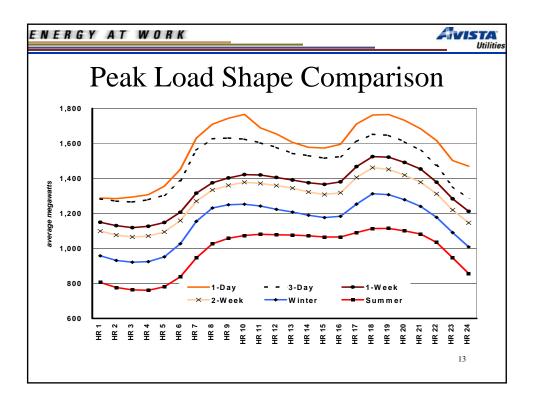

A Tabulation of Loads and Resources Over a Period(s) Exceeding the Traditional 1-Hour Definition of Peak
A Measure of Reliability
An Essential Concept of Utility Planning
A Recognition that Peak Loads Do Not Stress the System For Just One Hour
Especially important in energy-limited NW hydro system
The "Grey Area" Between Energy and Capacity Planning
An Event Which Occurs Infrequently
A Concept Parallel to "Planning Margins"

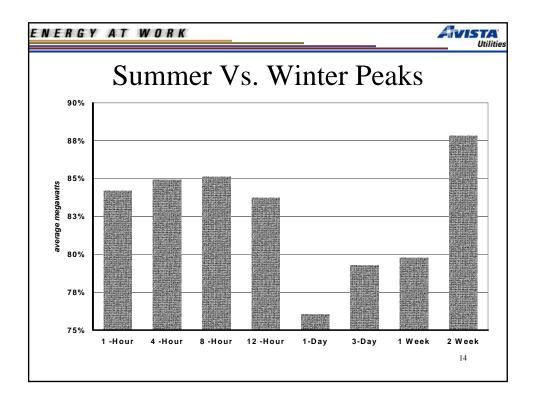


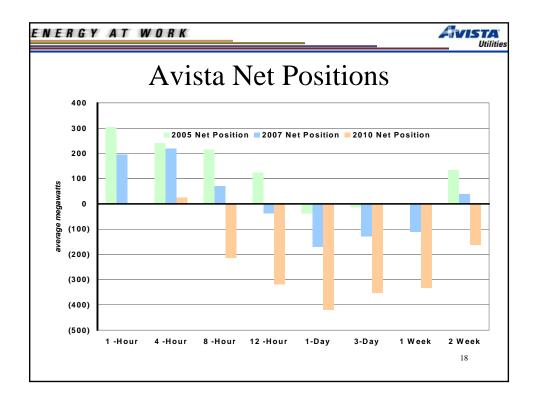

omparison to Peak Forecasting								
Item	Capacity L&R	Sustained Capacity						
Period	One Hour	One Hour to Three Days, or More						
Peak Load	Average Coldest Day Temp	Lowest Load on Record ~ 120-160 MW in 2005						
Thermals	Average Temps	Lowest Temps & Colstrip Reduced for Freeze (~ 30 MW)						
Hydro	Maximum Capability	Maximum Capability Reduced for Freeze (~ 60 MW)						
Contracts	Actual Forecast	Actual Forecast						

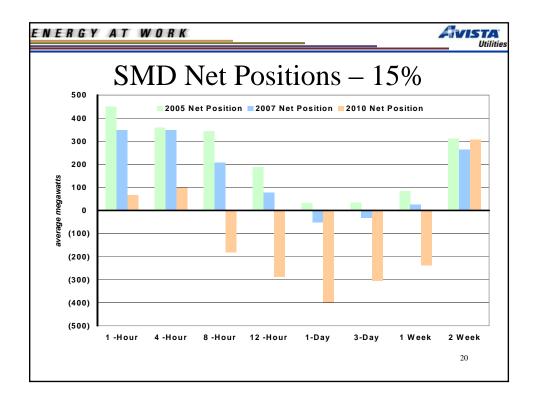






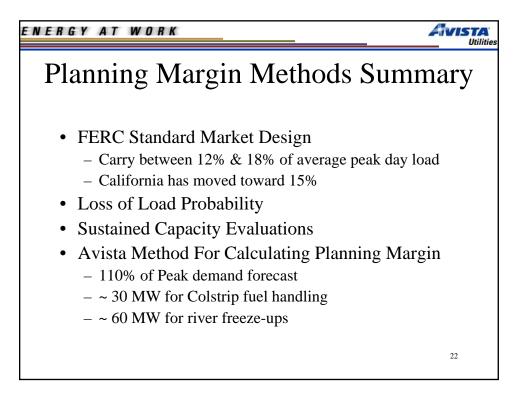




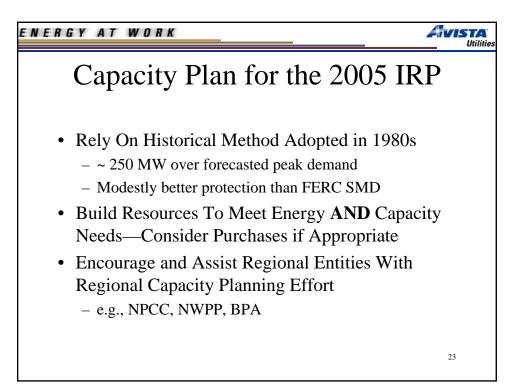

						-			
Sustained Peak Estimate—2005 Sustained Peak Period L&R Calculation Comparison 2005									
Peak Period Considered	<u>1 -Hour</u>	4 -Hour	8 -Hour	<u>12 -Hour</u>	24 -Hour	72 -Hour	168 -Hour	336 -Hou	
Load Peak Load 10% Contingency Load Subtotal	(1,619) <u>(162)</u> (1,781)	(1,598) <u>(160)</u> (1,758)	(1,579) (<u>158)</u> (1,736)	(1,542) (<u>154)</u> (1,696)	(1,450) (<u>145)</u> (1,595)	(1,377) <u>(138)</u> (1,515)	(1,369) <u>(137)</u> (1,506)	(1,175) (<u>117)</u> (1,292)	
Hydro Capability Hydro © 90% CI Hydro Storage River Freeze Up Hydro Subtotal	208 959 <u>(60)</u> 1,107	208 871 <u>(60)</u> 1,019	208 825 <u>(60)</u> 973	326 550 <u>(60)</u> 816	326 275 <u>(60)</u> 541	326 211 <u>(60)</u> 477	326 154 <u>(60)</u> 419	326 77 <u>(60)</u> 342	
Thermal Capability Coyote Springs II Colstrip Rathdrum Northeast Kettle Falls Boulder Park Fuel Delivery System Freeze Up Thermal Subtotal	308 222 184 69 62 25 (<u>30)</u> 839	308 222 184 69 62 25 (30) 839	308 222 184 69 62 25 (30) 839	308 222 184 69 62 25 (<u>30)</u> 839	308 222 184 69 62 25 (<u>30)</u> 839	308 222 184 69 62 25 (<u>30)</u> 839	308 222 184 69 62 25 (30) 839	308 222 184 69 62 25 (30) 839	
Contracts Net Contracts PGE Adjustment PPM Wind @ 25% of Capacity 000 MW Spot Purchases Contracts Subtotal	139 0 0 <u>0</u> 139	139 0 <u>0</u> 139	139 0 0 139	139 25 0 <u>0</u> 164	139 38 0 <u>0</u> 177	139 46 0 <u>0</u> 185	139 105 0 <u>0</u> 245	139 105 0 245	
Net Position	304	240	215	123	(38)	(14)	(3)	134	

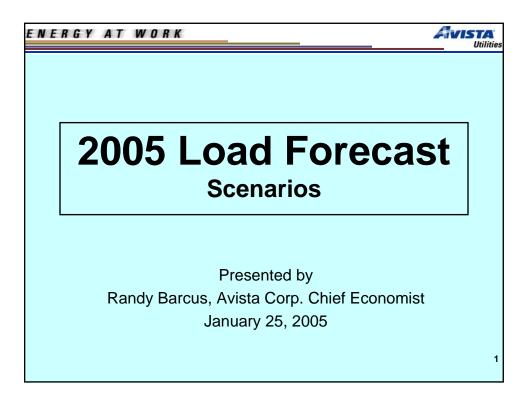
Sustained Peak Estimate—2007										
	Sustained	Peak Peric	d L&R Ca 2007	culation C	omparison					
Peak Period Considered	<u>1 -Hour</u>	4 -Hour	8 -Hour	<u>12 -Hour</u>	24 -Hour	<u>72 -Hour</u>	168 -Hour	<u>336 -Ho</u>		
Load										
Peak Load	(1,699)	(1,677)	(1,656)	(1,618)	(1,521)	(1,445)	(1,436)	(1,23		
10% Contingency	(170)	(168)	(166)	(162)	(152)	(145)	(144)	(12		
Load Subtotal	(1,869)	(1,844)	(1,822)	(1,780)	(1,673)	(1,590)	(1,580)	(1,35		
Hydro Capability										
Hydro @ 90% CI	195	195	195	274	274	274	274	27		
Hydro Storage	929	929	757	505	252	204	150	7		
River Freeze Up	<u>(60)</u>	<u>(60)</u>	<u>(60)</u>	(60)	<u>(60)</u>	(60)	<u>(60)</u>	<u>(6</u>		
Hydro Subtotal	1,064	1,064	892	718	466	417	364	28		
Thermal Capability										
Coyote Springs II	308	308	308	308	308	308	308	30		
Colstrip	222	222	222	222	222	222	222	22		
Rathdrum	184	184	184	184	184	184	184	18		
Northeast	69	69	69	69	69	69	69	6		
Kettle Falls Boulder Park	62 25	62 25	62 25	62 25	62 25	62 25	62 25	6		
Fuel Delivery System Freeze Up Thermal Subtotal	(<u>30)</u> 839	(<u>30)</u> 839	<u>(30)</u> 839	(<u>30)</u> 839	(<u>30)</u> 839	<u>(30)</u> 839	<u>(30)</u> 839	<u>(3</u> 83		
	039	039	039	839	039	039	039	03		
Contracts Net Contracts	160	160	160	160	160	160	160	16		
PGE Adjustment	0	0	0	25	38	46	105	10		
PPM Wind @ 25% of Capacity	0	0	0	25	0	40	0			
000 MW Spot Purchases	0	0	0	0	0	0	0			
Contracts Subtotal	160	160	160	185	198	206	266	26		
Net Position	195	220	70	(37)	(170)	(127)	(111)	3		
			. 2	(=.)	((.=/)				

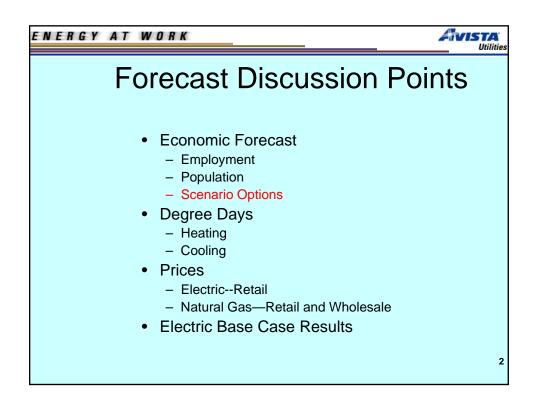
ERGYAT WOI	R K						4	VIS	
Sustained Peak Estimate—2010 Sustained Peak Period L&R Calculation Comparison 2010									
Peak Period Considered	<u>1 -Hour</u>	4 -Hour	8 -Hour	12 -Hour	24 -Hour	<u>72 -Hour</u>	168 -Hour	336 -Hour	
Load									
Peak Load	(1,841)	(1,817)	(1,795)	(1,753)	(1,648)	(1,566)	(1,556)	(1,336)	
10% Contingency	(184)	(182)	(179)	(175)	(165)	(157)	(156)	(134)	
Load Subtotal	(2,026)	(1,999)	(1,974)	(1,928)	(1,813)	(1,723)	(1,712)	(1,469)	
Hydro Capability									
Hydro @ 90% CI	131	131	131	184	184	184	184	184	
Hydro Storage	948	948	685	456	228	196	147	73	
River Freeze Up	(60)	(60)	(60)	(60)	(60)	(60)	(60)	(60)	
Hydro Subtotal	1,019	1,019	756	580	352	319	270	197	
Thermal Capability									
Coyote Springs II	308	308	308	308	308	308	308	308	
Colstrip	222	222	222	222	222	222	222	222	
Rathdrum	184	184	184	184	184	184	184	184	
Northeast	69	69	69	69	69	69	69	69	
Kettle Falls	62	62	62	62	62	62	62	62	
Boulder Park	25	25	25	25	25	25	25	25	
Fuel Delivery System Freeze Up	(30)	<u>(30)</u>	(30)	<u>(30)</u>	(30)	<u>(30)</u>	(30)	(30)	
Thermal Subtotal	839	839	839	839	839	839	839	839	
Contracts									
Net Contracts	165	165	165	165	165	165	165	165	
PGE Adjustment	0	0	0	25	38	46	105	105	
PPM Wind @ 25% of Capacity	0	0	0	0	0	0	0	0	
000 MW Spot Purchases	<u>0</u>	<u>0</u>	0	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	0	
Contracts Subtotal	165	165	165	190	203	211	271	271	
Net Position	(2)	25	(214)	(319)	(419)	(353)	(332)	(162)	
								17	
								.,	



ENERGY AT	WOR	K						
	Avi	sta	VS.	FE	RC	SM	ID	
2005	<u>1 -Hour</u>	<u>4 -Hour</u>	<u>8 -Hour</u>	<u> 12 -Hour</u>	<u>24 -Hour</u>	<u>72 -Hour</u>	<u> 168 -Hour</u>	<u>336 -Hour</u>
Avista Criteria	345	281	256	129	(32)	(9)	3	138
SMD - 12%	538	448	433	275	115	113	165	385
SMD - 15%	490	401	385	229	72	72	124	350
SMD - 18%	442	353	338	183	28	31	83	315
2007								
Avista Criteria	212	237	87	(19)	(153)	(110)	(94)	55
SMD - 12%	417	416	275	142	11	29	85	319
SMD - 15%	366	366	225	93	(35)	(15)	42	282
SMD - 18%	315	315	175	45	(81)	(58)	(1)	245
2010								
Avista Criteria	16	43	(197)	(301)	(402)	(336)	(314)	(145)
SMD - 12%	138	170	(88)	(192)	(307)	(215)	(142)	416
SMD - 15%	82	116	(142)	(245)	(357)	(262)	(189)	376
SMD - 18%	27	61	(196)	(297)	(406)	(309)	(235)	335
								19

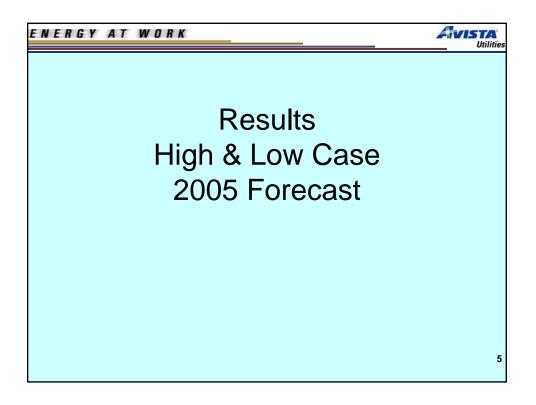

ENERGY AT WORK AVISTA **Key Capacity Planning Questions** • Which Sustained Period is Adequate How Much Can/Should Avista Rely On The Market During Extreme Load Conditions What Capacity Should Be Given to Wind • With Move To Gas-Fired Turbines, Will Gas Be Available To Meet Coincident Demands How Will Federal Projects Act During a Cold Snap

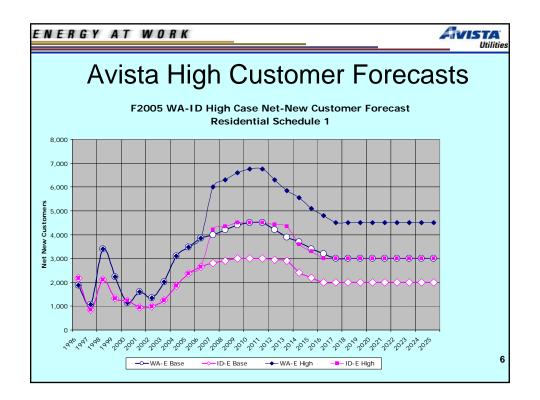

- What is the Significance of Transmission
- Is LOLP a Better Method & How Would We Do LOLP

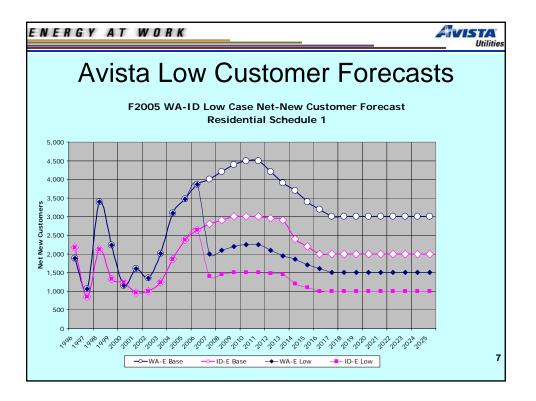


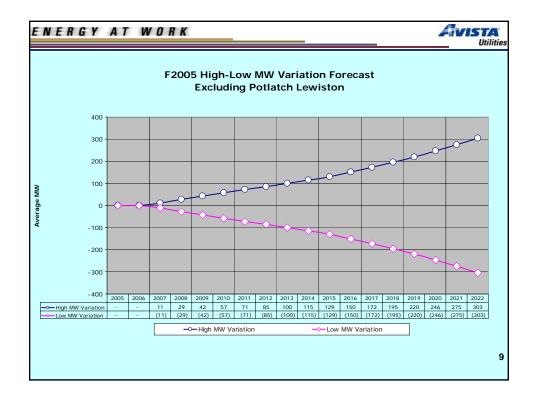
Iltilitie

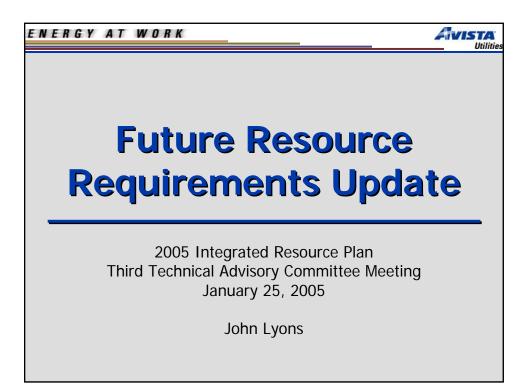
21

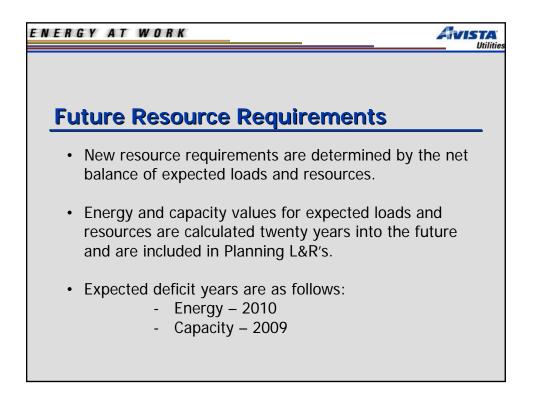


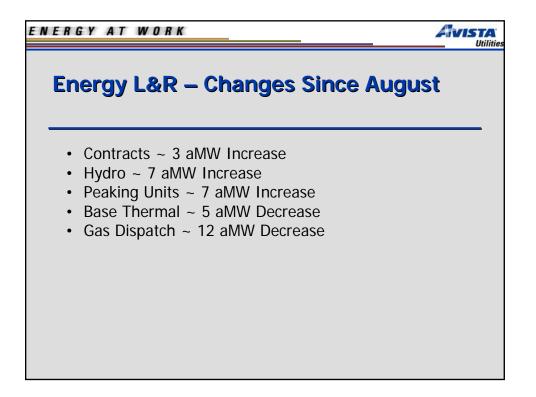


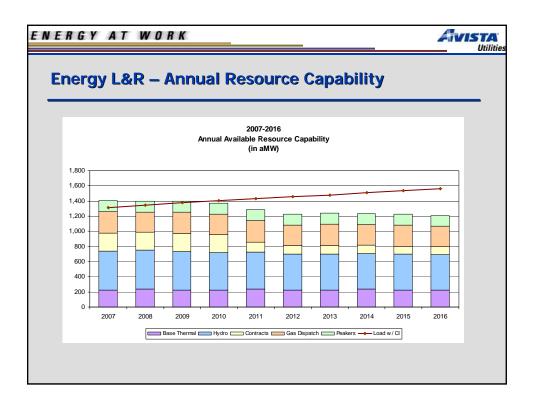


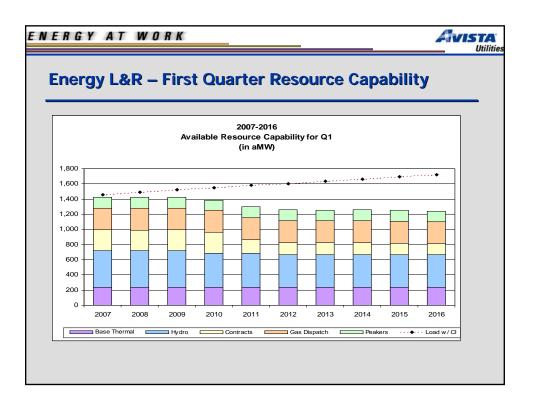


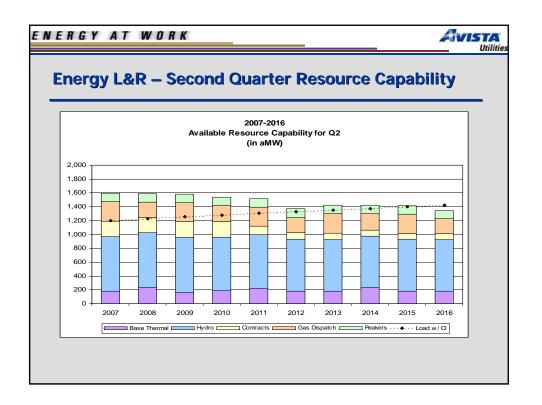


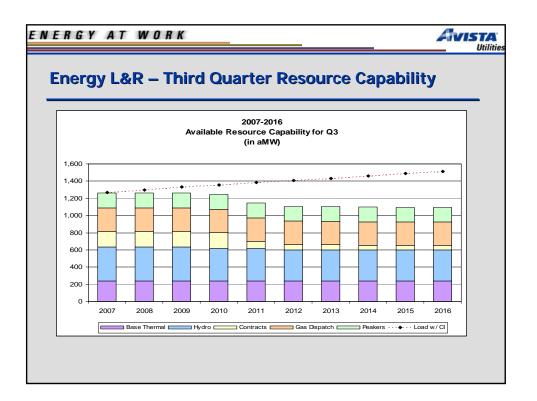


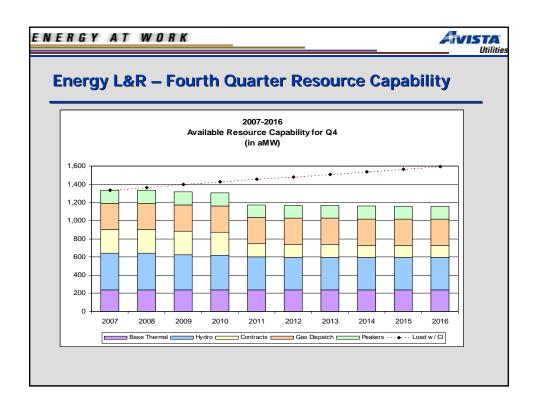


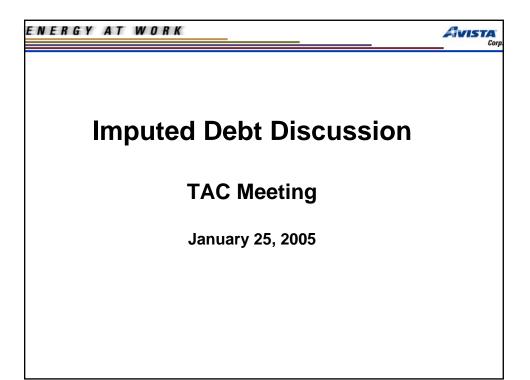


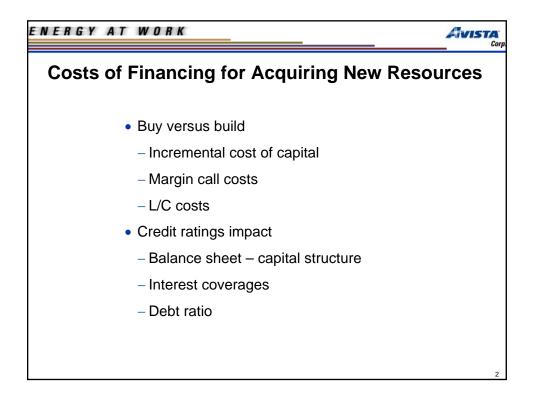




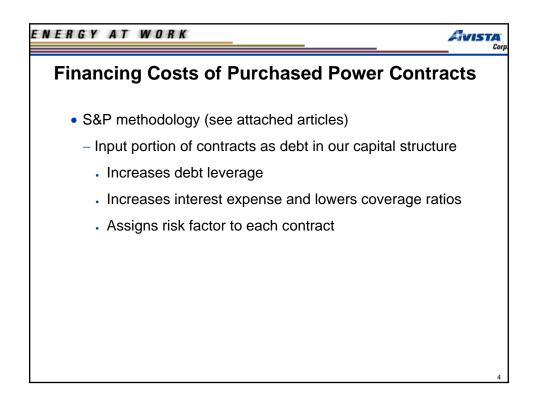

Eneray Loa	da										
Energy Loa	de										
Energy Loa	de										
Energy Loa	do										
Energy Loa	de										
Fuelda ros		•									
	US .	Č I	<u>ves</u>	SOL	Irc	es	(aM	W)			
							\	/			
LON	-TERM	LOAD A	ND RE	SOURC	ES TABU	ULATIC	N-EN	ERGY (aMW)		
		CONFL									
Last Updated January 13, 2005 2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
REQUIREMENTS											
SystemLoad (1,0		(1,120)	(1,151)	(1,183)	(1,213)	(1,245)	(1,269)	(1,295)	(1,322)	(1,353)	(1,378)
Contract Obligations (6	2) (60)	(60)	(60)	(60)	(59)	(58)	(57)	(57)	(57)	(57)	(57)
Total Requirements (1,12	7) (1,158)	(1,181)	(1,211)	(1,244)	(1,272)	(1,303)	(1,327)	(1,352)	(1,379)	(1,410)	(1,435)
RESOURCES											
Contract Rights 28	3 292	295	294	295	294	189	171	172	164	162	162
Hydro 5:	9 517	517	517	512	494	490	473	472	472	471	471
Base Load Thermals 2	6 224	224	237	221	226	235	225	224	237	225	224
Gas Dispatch Units 20	2 272	282	268	282	272	282	268	282	273	282	268
Total Resources 1,32	0 1,306	1,318	1,316	1,310	1,286	1,196	1,137	1,150	1,145	1,140	1,124
POSITION 19	3 147	137	105	67	14	(107)	(190)	(202)	(234)	(270)	(311)
CONTINGENCY PLANNING											
CONTINGENCI FLANNING											
Confidence Interval (16	3) (160)	(160)	(160)	(159)	(155)	(155)	(151)	(151)	(151)	(151)	(151)
	3) (33)	(33)	(33)	(33)	(33)	(33)	(33)	(33)	(33)	(33)	(33)
Peaking Resources 14		145	145	145	141	145	145	144	146	146	142
CONTINGENCY NET POSITION 14	-	89	57	19	(33)	(150)	(229)	(243)	(273)	(308)	(353)

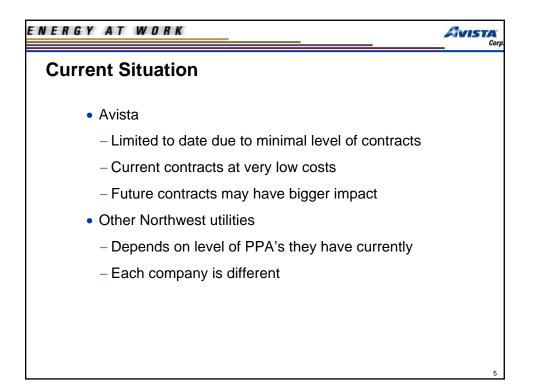


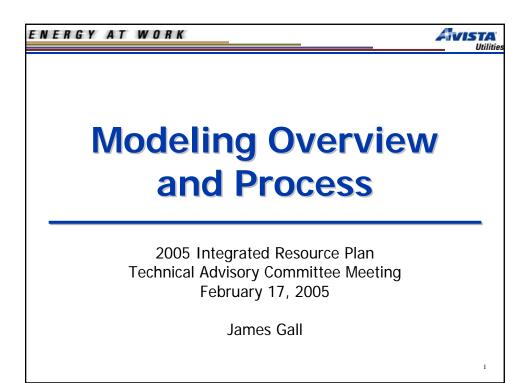


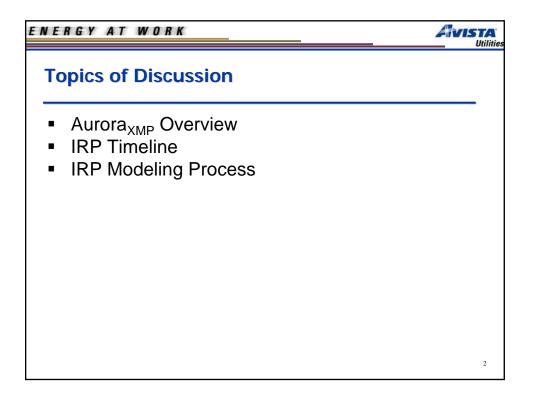


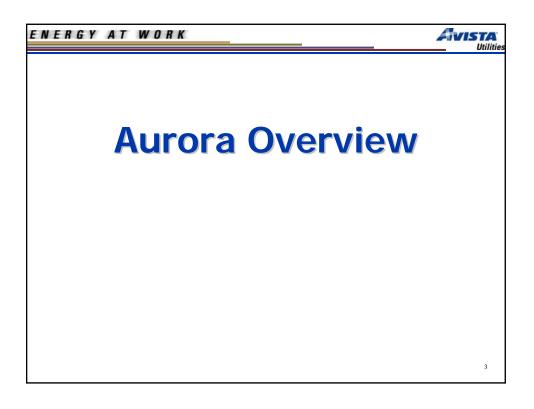
Capacity		ds	2	Re	024	ur	Ces	(N/	1\//)			
Sapaony	200		~						,			
	LONG-TER	M L&R	TABUI	ATION	-CAPA	ACITY (1	MW)					
				ENTIA	-							
ast Updated January 13, 2005	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
REQUIREMENTS Native Load			(1.000)				(1.075)	(1.02.0	(1.0.10)		(2.0.52)	(2.00
Native Load Contracts Obligations	(1,619) (173)	(1,666) (169)	(1,699) (169)	(1,745) (169)	(1,785) (164)	(1,841) (164)	(1,875) (162)	(1,926) (162)	(1,949) (162)	(2,007) (162)	(2,053) (162)	(2,09
0		(1.835)	(1.868)	(1.914)	(1.949)	(2.005)	(2.037)		(2.111)			
fotal Requirements	(1,792)	(1,835)	(1,868)	(1,914)	(1,949)	(2,005)	(2,037)	(2,087)	(2,111)	(2,169)	(2,215)	(2,25
RESOURCES												
Contracts Rights	312	326	329	329	330	329	211	212	211	212	212	21
Hydro Resources	1,156	1,098	1,090	1,090	1,056	1,049	1,018	996	988	980	979	97
Base Load Thermals	272	272	272	272	272	272	272	272	272	272	272	27
Gas Dispatch Units	179	303	303	308	303	303	307	303	307	308	308	30
Peaking Units	243	243	243	243	243	243	243	243	243	243	243	24
fotal Resources	2,161	2,243	2,238	2,242	2,204	2,196	2,051	2,026	2,021	2,014	2,013	2,00
PEAK POSITION	369	408	370	328	255	191	14	(61)	(90)	(155)	(202)	(24
RESERVE PLANNING								(202)	(205)	(291)	(295)	(29
RESERVE PLANNING Planning Reserve Margin	(252)	(257)	(260)	(265)	(269)	(274)	(278)	(283)	(285)			
RESERVE PLANNING Planning Reserve Margin RESERVE PEAK POSITION	(252)	(257)	(260)	(265)	(269)	(274) (83)	(278)	(283)	(285)	(445)	(497)	(54

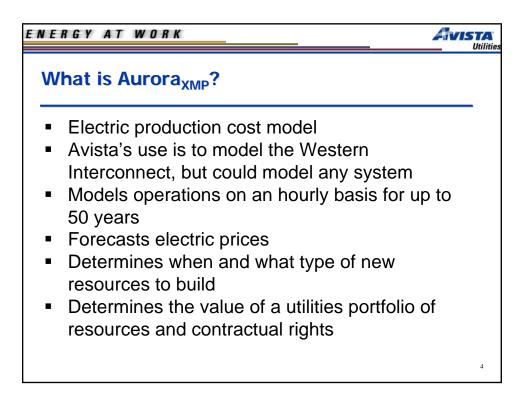


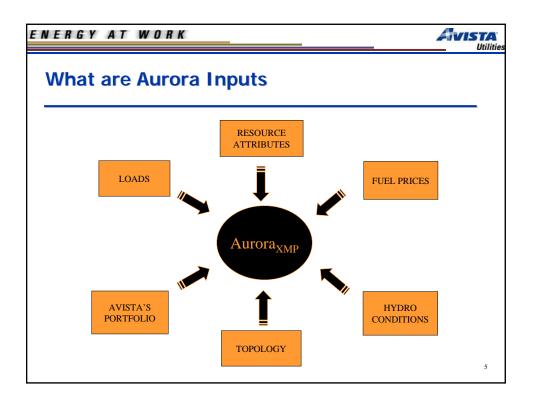


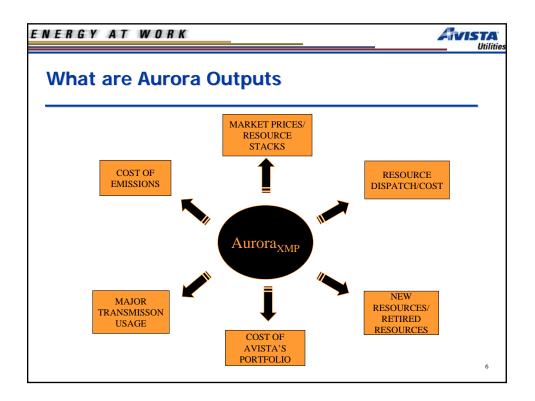


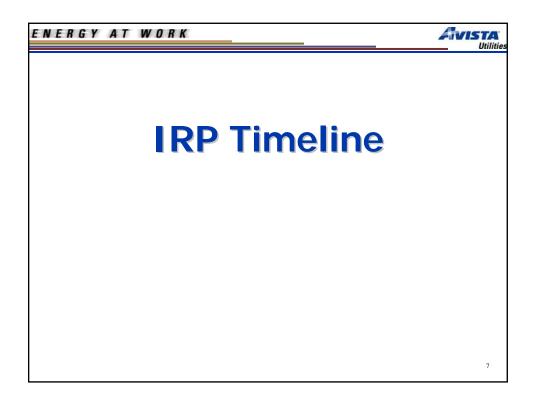


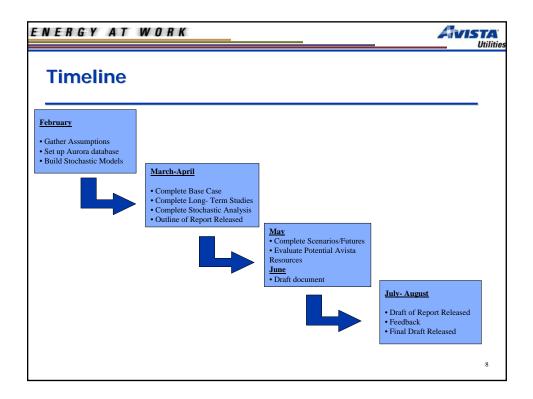

Financial Ratio Bend	chmark	(S				
INTEREST COVERAGE BUSINESS PROFILE	4	4	BB	в	В	в
1	2.5	1.5	1.5	1.0		
2	3.0	2.0	2.0	1.0		
3	3.5	2.5	2.5	1.5	1.5	1.0
4	4.2	3.5	3.5	2.5	2.5	1.5
5	4.5	3.8	3.8	2.8	2.8	1.8
6	5.2	4.2	4.2	3.0	3.0	2.0
7	6.5	4.5	4.5	3.2	3.2	2.2
8	7.5	5.5	5.5	3.5	3.5	2.5
9	10.0	7.0	7.0	4.0	4.0	2.8
10	11.0	8.0	8.0	5.0	5.0	3.0
TOTAL DEBT/TOTAL CAPITAL BUSINESS PROFILE	A	4	BB	в	В	в
1	55	60	60	70		
2	52	58	58	68		
3	50	55	55	65	65	70
4	45	52	52	62	62	68
5	42	50	50	60	60	65
6	40	48	48	58	58	62
7	38	45	45	55	55	60
8	35	42	42	52	52	58
9	32	40	40	50	50	55
10	25	35	35	48	48	52

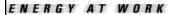


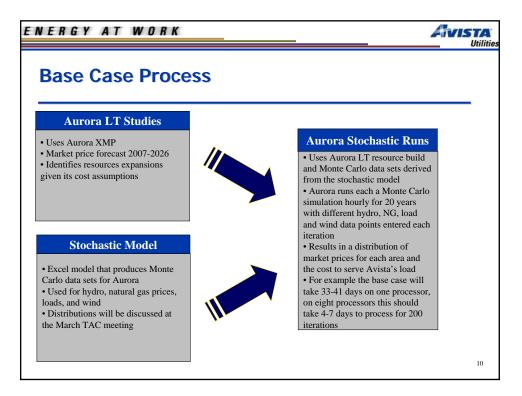


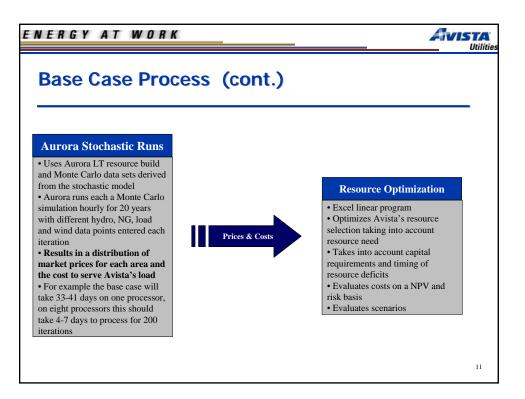


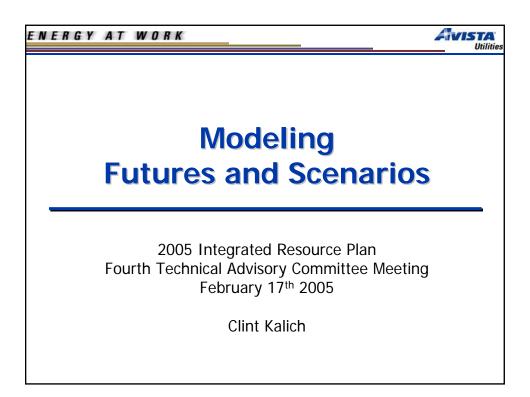




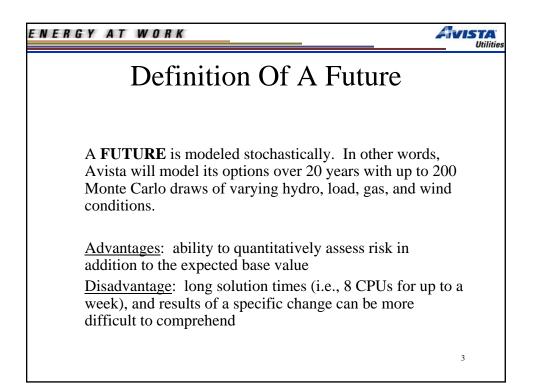


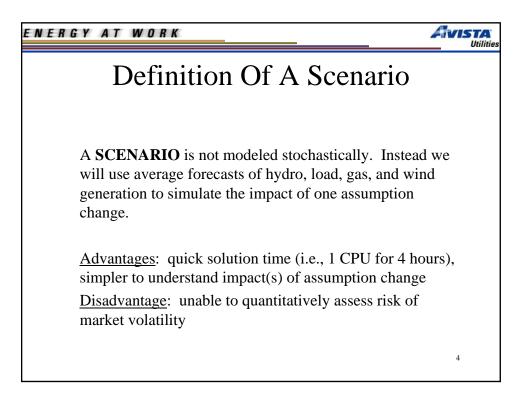


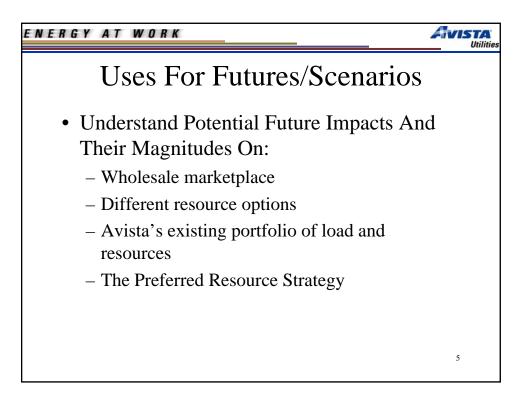


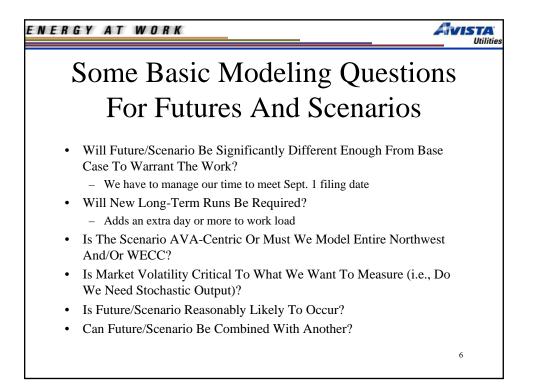

9

IRP Modeling Process "Base Case Example"

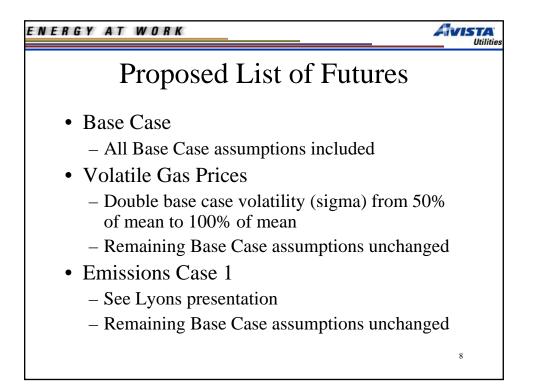


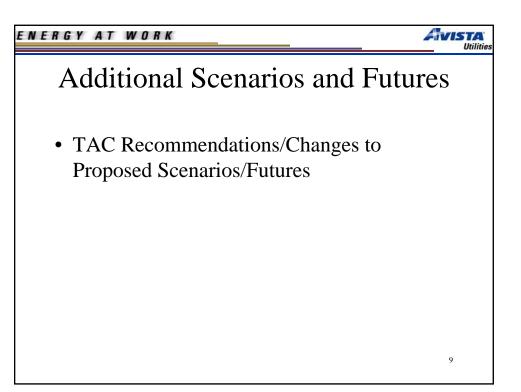

Appendix C 105

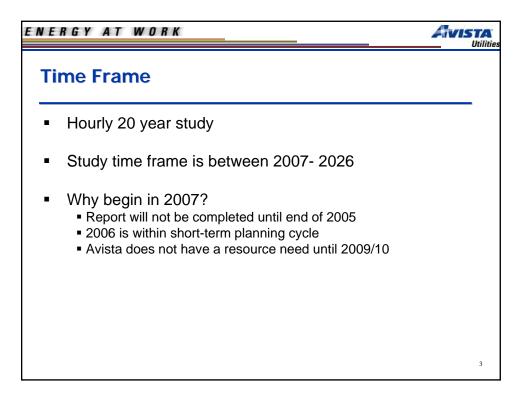


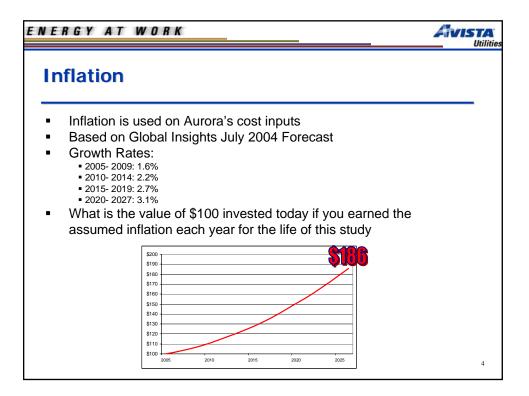


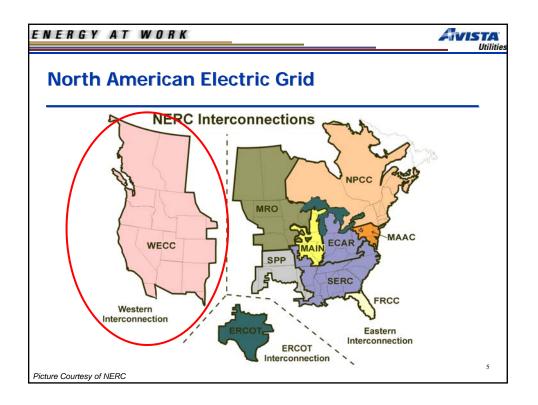

ENERGY AT WORK				
Presentation Overview				
	Slide #			
• IRP Definition Of A Future	3			
IRP Definition Of A Scenario	4			
Uses For Futures/Scenarios	5			
Some Basic Modeling Questions For Futures/Scenar	ios 6			
Proposed List of Scenarios	7			
Proposed List of Futures	8			
Additional Scenarios & Futures	9			
	2			

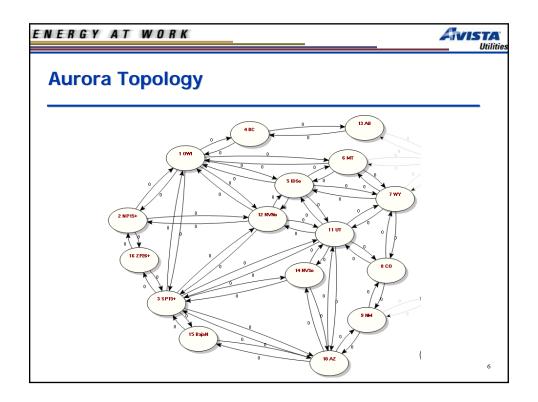


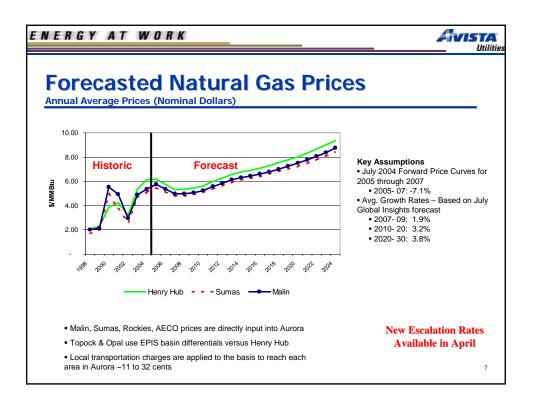


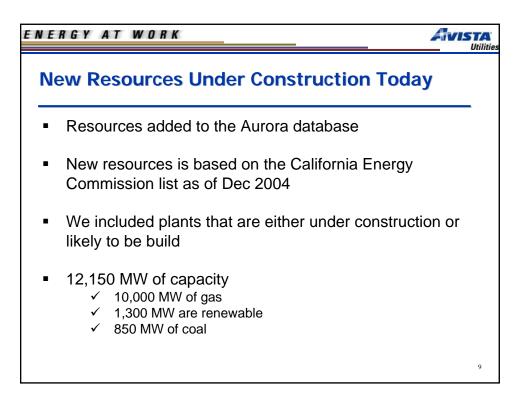

1

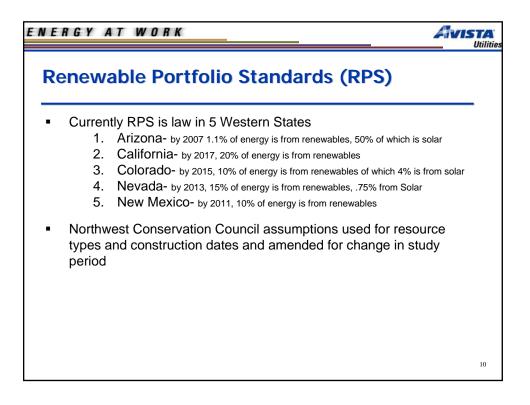

Modeling Assumptions

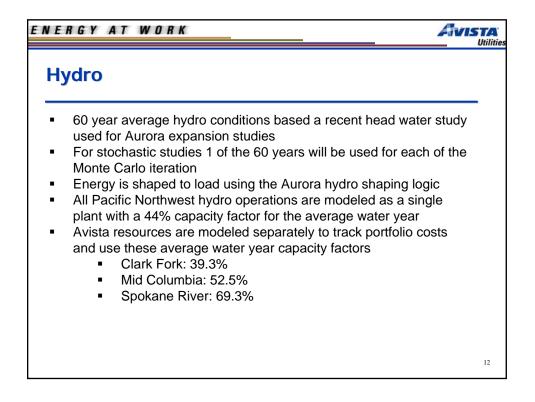

2005 Integrated Resource Plan Technical Advisory Committee Meeting February 17, 2005

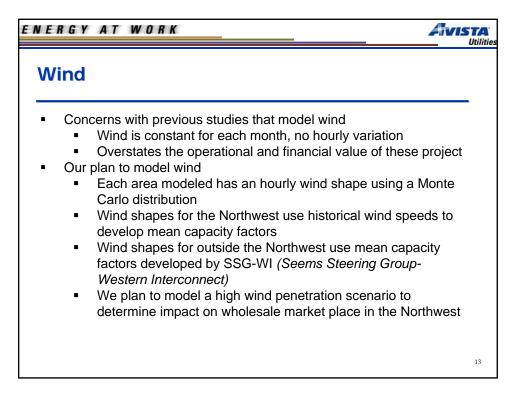

James Gall


ENERGY AT WORK	
Discussion Items	
Time frameInflation	
 What we are modeling 	
 Fuel forecasts 	
 Gas revisited Coal 	
• Other	
 New Resources 	
 Resources under construction 	
 Renewable Resources Portfolio (RPS) Hydro 	
 Wind 	
 Thermal resource commitment logic & variable O&M 	
 Thermal forced outage and maintenance 	
 Loads 	
	2

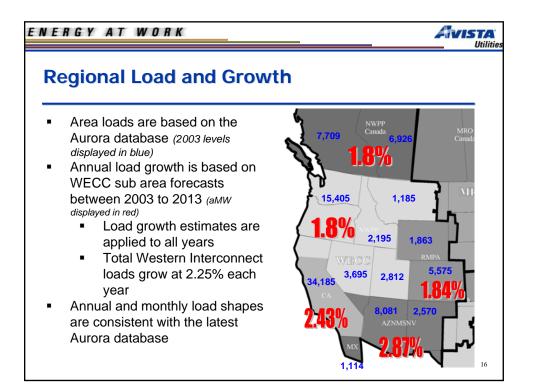


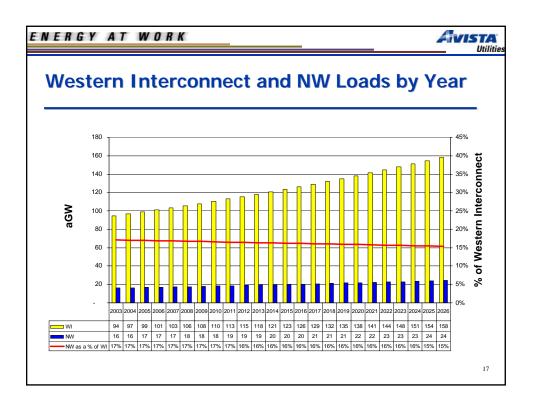


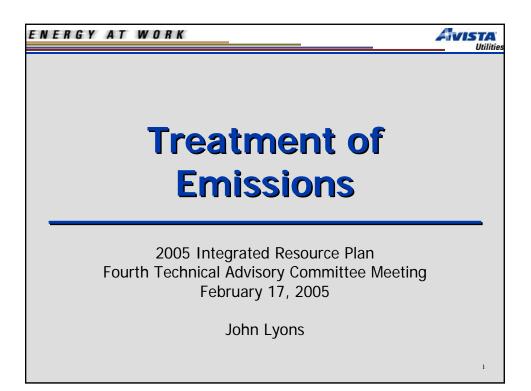



al Forecast	
Western Interconnect coal prices	EIA's Annual Energy Outlook
are based on Aurora database	2005 was used to as growth rates
prices which are derived from	for all coal prices (real escalation)
FERC Form 423 and Electric	
Power Monthly	Year Escalation
\$2005 per MMBtu	2005 0.50% 2006 0.20%
– Arizona: \$1.32	2006 0.20%
	2008 -0.20%
– Canada: \$1.22	2009 -0.80% 2010 -1.20%
 California: \$2.02 	2011 -0.60%
 Colorado: \$1.01 	2012 -0.40% 2013 -0.30%
 Montana: \$0.65 	2013 -0.30% 2014 0.00%
 Nevada: \$1.41 	2015 0.00%
 New Mexico: \$1.62 	2016 -0.20% 2017 0.20%
- Utah: \$1.08	2017 0.20% 2018 0.30%
	2019 0.30%
 Washington/Oregon: \$1.22 	2020 0.30% 2021 0.70%
 Wyoming: \$0.88 	2021 0.70%
Colstrip prices are mine mouth estimates and are	2023 2.40%
ower then the estimate for Montana	2024 0.70% 2025 0.20%
	2025 0.20%

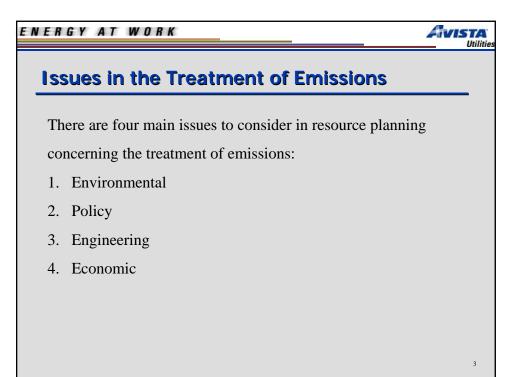
RPS Resources Added per Year						
Area	Wind	Geothermal	Biofuels	Solar		
California- North	Pre 2010: 53.25 MW Post 2010: 59.25 MW	Pre 2010: 2.25 MW Post 2010: 9 MW	Pre 2010: 11.25 MW Post 2010: 27 MW			
California- South	Pre 2010: 90.75 MW Post 2010: 101.25 MW	Pre 2010: 18.75 MW Post 2010: 69 MW	Pre 2010: 12.75 MW Post 2010: 28.5 MW			
Arizona	Pre 2012: 20.4 MW Post 2012: 3 MW			Pre 2012: 38.7 MW Post 2012: 5.25 MW		
New Mexico	Pre 2012: 87 MW Post 2012: 115MW					
Nevada- South	Avg 14.3 MW	Avg 4.6 MW		Avg 2.2 MW		
Nevada- North	Avg 44 MW	Avg 13.6 MW		Avg 6.7 MW		
Colorado	Pre 2014: 25 MW + 200 MW 2011 + 250 MW 2014 Post 2015: 50 MW			Avg 2.2 MW		

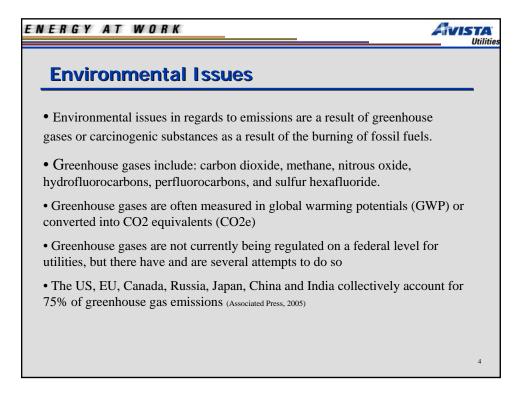


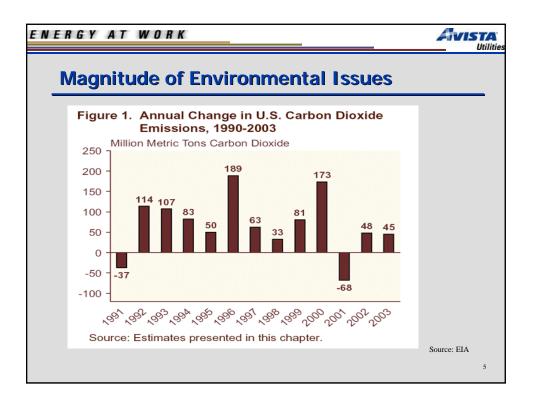

Thermal Resource Commitment Logic and VOM		
•	Startup Fuel Amounts and Costs CCCT: \$25/MW per start & 3.6/mmBTU per MW SCCT Aero: \$75/MW per start & 0/mmBTU per MW SCCT Frame: \$25/MW per start 3.45/mmBTU per MW	
	 Steam: TBD Coal: Not Modeled 	
1	 Min/Up times CCCT: 16 hours up & 8 hours down SCCT Aero: 13 hours up & 6 hours down SCCT Frame: 16 hours up & 8 hours down Steam: 19 hours up & 10 hours down Coal: 96 hours up & 24 hours down 	
I	 Variable O&M Based on Aurora database except for Avista's generators 	

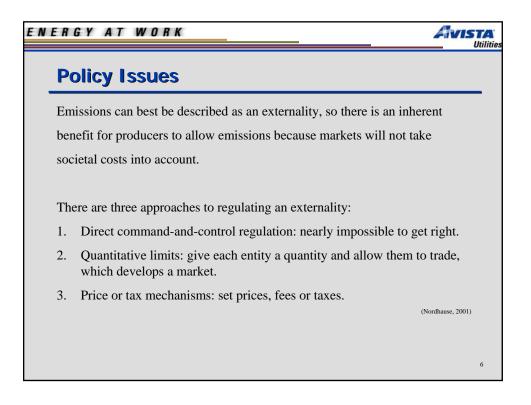

ENERGY	AT	WORK	
--------	----	------	--

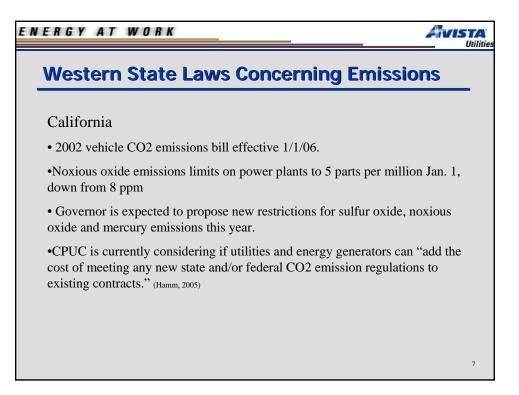
Thermal Resource Forced Outages and Maintenance - Modeled as derates

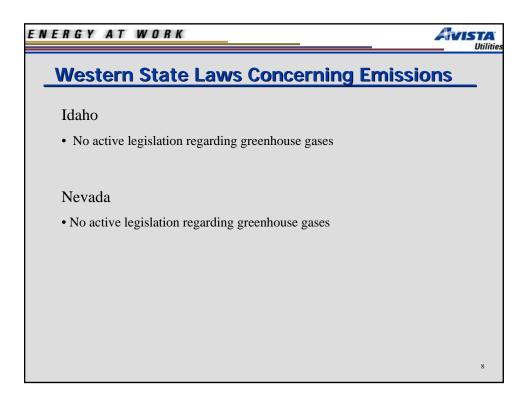

Plant Type	Forced Outage Rate	Maintenance Rate
CCCT	5%	5%
SCCT- Aero	7.5%	7.5%
SCCT- Frame	10%	10%
Gas- Steam	10%	10%
Coal	10%	17.6% in shoulder months
Nuclear	10%	10-12% in shoulder months & 0-5% in others
Solar	Assumed in hourly distribution	10%
Geothermal	5%	5%
Wind	Assumed in hourly distribution	Assumed in hourly distribution
Other	5%	5%

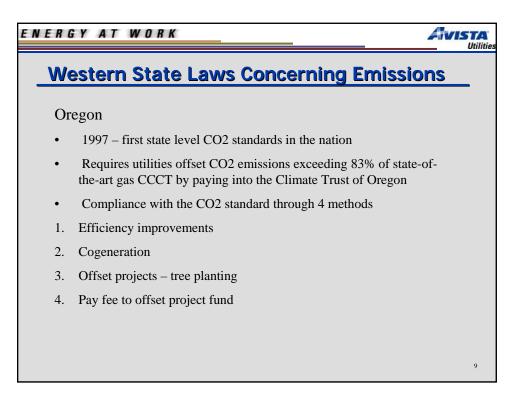


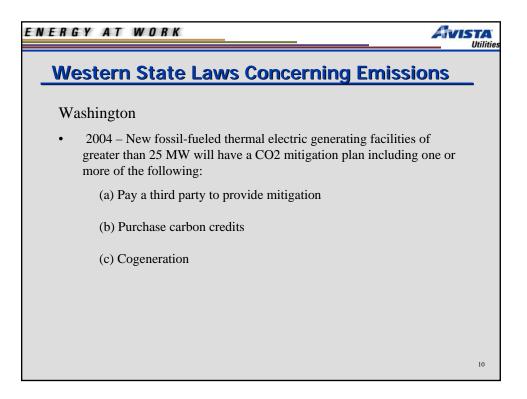


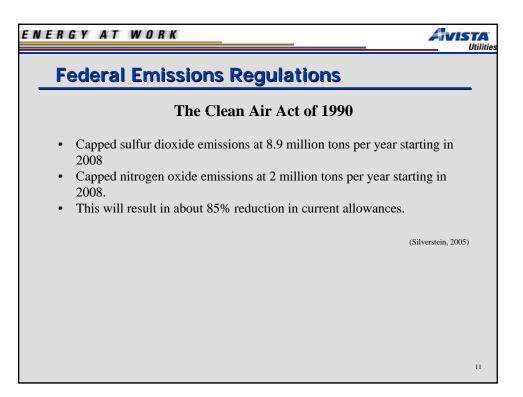


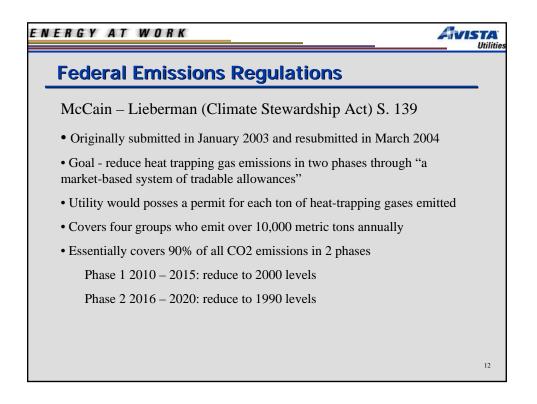

ENERGY AT WORK	
Presentation Overview	
	<u>Slide #'s</u>
• Issues in the Treatment of Emissions	3
• Environmental Issues	4 - 5
Policy Issues	6 - 15
Engineering Issues	16
Economic Issues	17 - 19
Planning Recommendations	20 - 21
	2

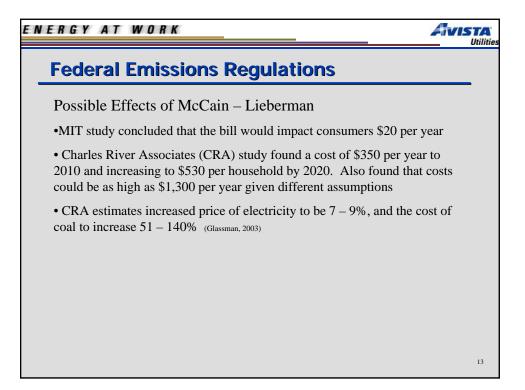


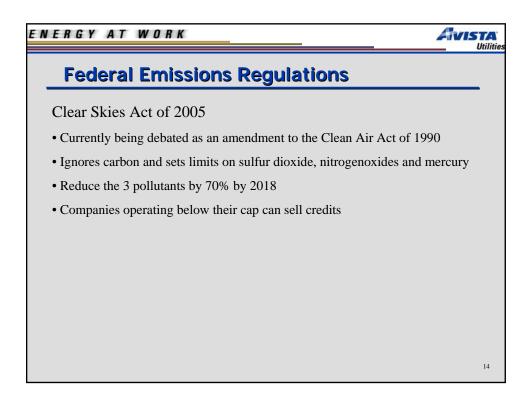


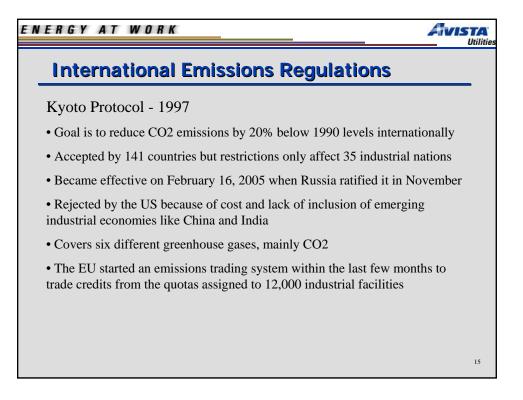


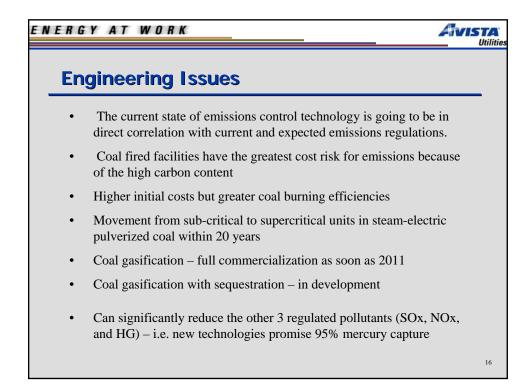


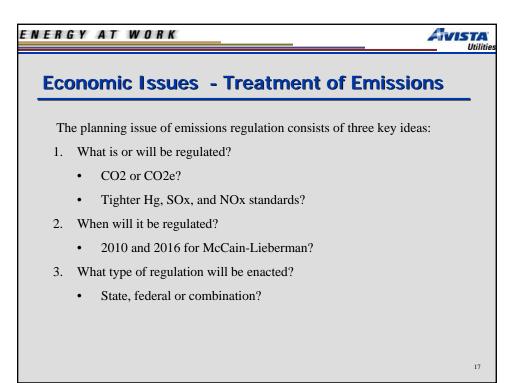


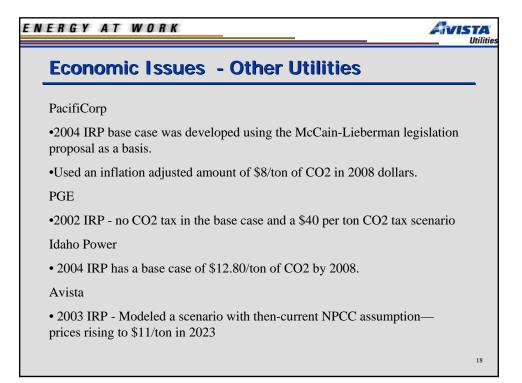


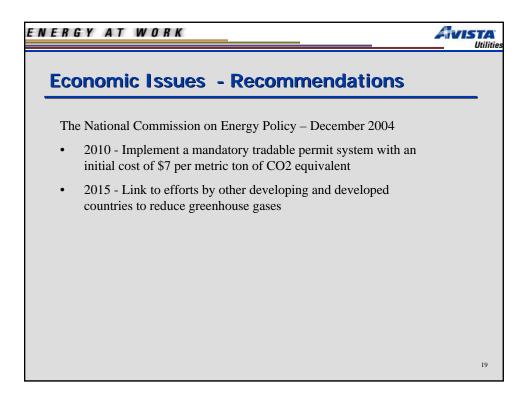


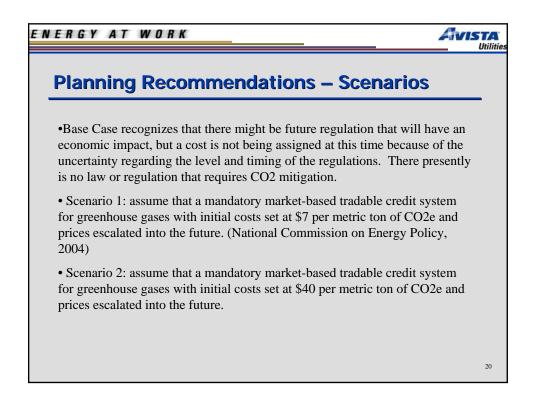




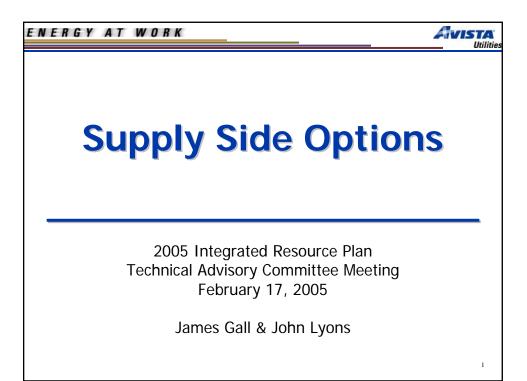




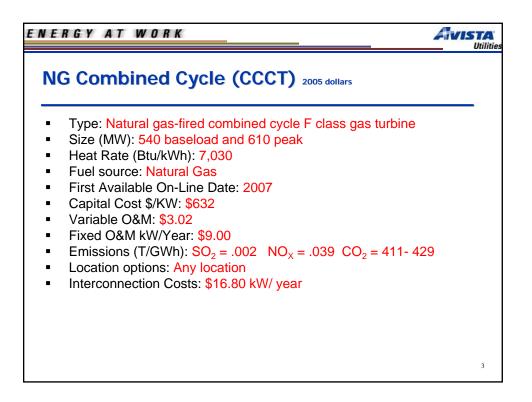




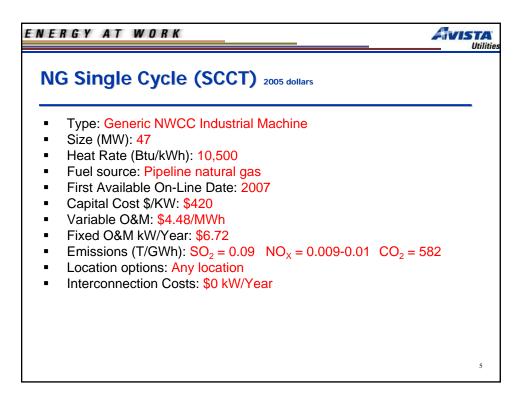
Planning Recommendations from TAC

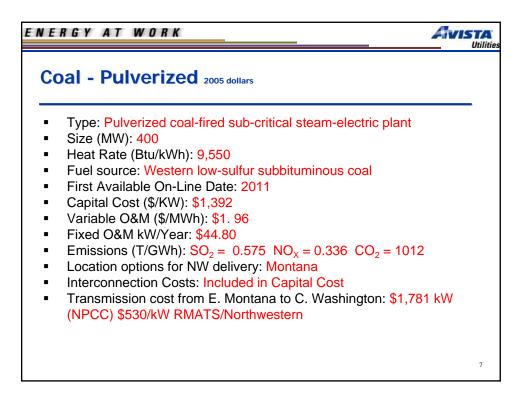

Do you believe that the range of prices assumed in the 3

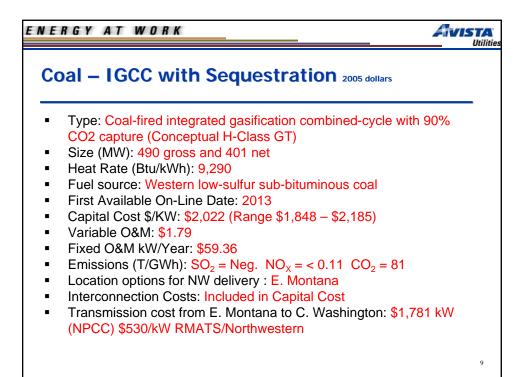
cases adequately reflects potential CO2 obligations?


- Base case with no assumed CO2e costs
- Scenario 1 with \$7 per metric ton costs
- Scenario 2 with \$40 per metric ton costs

Other recommendations?

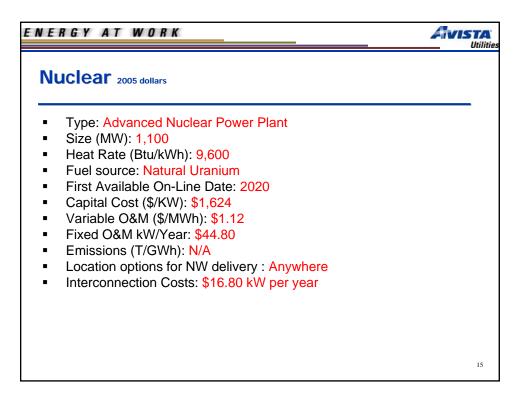

21

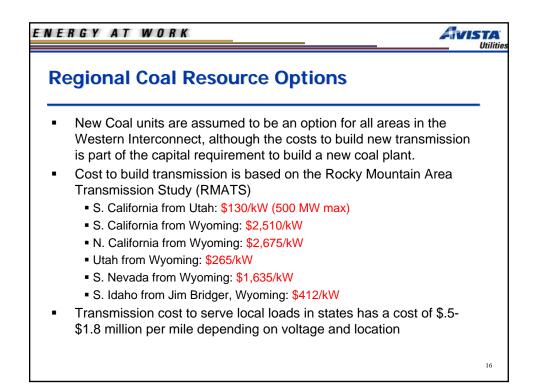

Modeled Supply Side Options	
 NG Combined Cycle (CCCT) NG Single Cycle (SCCT) Wind Turbine Coal (Pulverized, IGCC, IGCC with seq.) Solar Geothermal Biomass Alberta's Tar Sands Nuclear Co-Gen DSM – Will be covered in March 	2


ENE	RGY AT WORK	VISTA Utilitie
N	G Single Cycle (SCCT) 2005 dollars	
	Type: Aero, such as the General Electric LM6000 Size (MW): 47 Heat Rate (Btu/kWh): 9,900 Fuel source: Pipeline natural gas First Available On-Line Date: 2007 Capital Cost $KW: $ 672 Variable O&M: 8.96 /MWh Fixed O&M kW/Year: 9.00 Emissions (T/GWh): SO ₂ = 0.09 NO _X = 0.009-0.01 CO ₂ = 582 Location options: Any location Interconnection Costs: 0 kW/Year	4

Wind Turbine 2005 dollars	
 Type: Central station wind power project Size (MW): 100 Heat Rate (Btu/kWh): N/A Fuel source: Wind First Available On-Line Date: 2008 Capital Cost (\$/KW): \$1,131 Variable O&M (\$/MWh): \$1.12 (no PTC) + \$4 shaping for first 10 MW and \$8 for remaining wind Fixed O&M kW/Year: \$19.60 Emissions: N/A How many per study: 1,000 MW without new transmission Location options for NW Delivery: East of Cascades or Eastern Montana Interconnection Costs : \$16.80 kW/Year Transmission cost from E. Montana to C. Washington: \$1,781 k (NPCC) \$530/kW RMATS/Northwestern 	

ENE	RGY AT WORK	Utilitie
С	Dal - IGCC 2005 dollars	
	Type: Coal-fired integrated gasification combined-cycle with H- Class Turbine Size (MW): 474 gross and 425 net Heat Rate (Btu/kWh): 7,915 Fuel source: Western low-sulfur sub-bituminous coal First Available On-Line Date: 2011 Capital Cost (\$/KW): \$1,568 (Range is 1,456 – 1,792) Variable O&M (\$/MWh): \$1.68 Fixed O&M kW/Year: \$50.51 Emissions (T/GWh): $SO_2 = Neg$. $NO_X = < 0.11 \ CO_2 = 791$ Location options for NW delivery: Montana or Eastern Wash/Ore Interconnection Costs: Included in Capital Cost Transmission cost from E. Montana to C. Washington: \$1,781 kW (NPCC) \$530/kW RMATS/Northwestern Transmission cost 200 miles of 500kV: \$352 kW	8

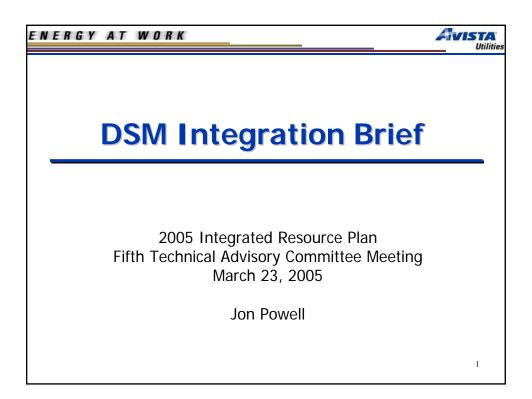

 Solar 2005 dollars Type: Generic NPCC Unit Size (MW): 2 Heat Rate (Btu/kWh): 0 Fuel source: Sun First Available On-Line Date: 2007 Capital Cost (\$/KW): \$7,804 Variable O&M (\$/MWh): N/A Fixed O&M kW/Year: \$36.00 Emissions (T/GWh): N/A Location options for NW delivery : Desert Southwest (not viable for NW at this time) Interconnection Costs: \$16.80 kW per year 	ENERGYAT WORK	STA Utilities
 Size (MW): 2 Heat Rate (Btu/kWh): 0 Fuel source: Sun First Available On-Line Date: 2007 Capital Cost (\$/KW): \$7,804 Variable O&M (\$/MWh): N/A Fixed O&M kW/Year: \$36.00 Emissions (T/GWh): N/A Location options for NW delivery : Desert Southwest (not viable for NW at this time) 	Solar 2005 dollars	
10	 Size (MW): 2 Heat Rate (Btu/kWh): 0 Fuel source: Sun First Available On-Line Date: 2007 Capital Cost (\$/KW): \$7,804 Variable O&M (\$/MWh): N/A Fixed O&M kW/Year: \$36.00 Emissions (T/GWh): N/A Location options for NW delivery : Desert Southwest (not viable for NW at this time) 	-

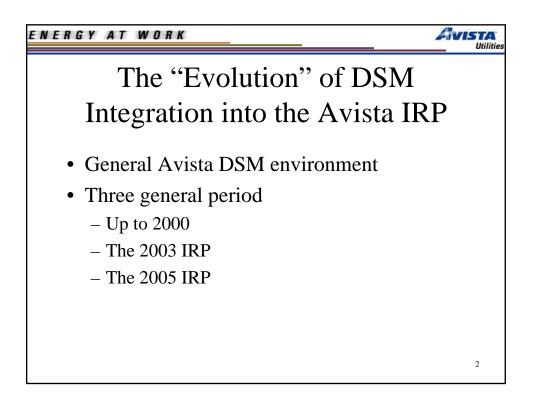


ENERGYAT WORK	Utilitie
Biomass 2005 dollars	
 Type: Wood Residue, Landfill, Manure Size (MW): .5 - 25 Heat Rate (Btu/kWh): 11,100 - 14,500 Fuel source: Wood, Refuse, Manure When available: 2007 Capital Cost (\$/KW): \$1,523 - \$3,472 Variable O&M (\$/MWh): \$0 - \$10.38 Fixed O&M kW/Year: \$75 - \$140 Emissions (T/GWh): SO₂ = N/A NO_X = N/A CO₂ = 720 - 1,116 Location options for NW delivery : Any Location Interconnection Costs: \$16.80 kW per year 	
	12

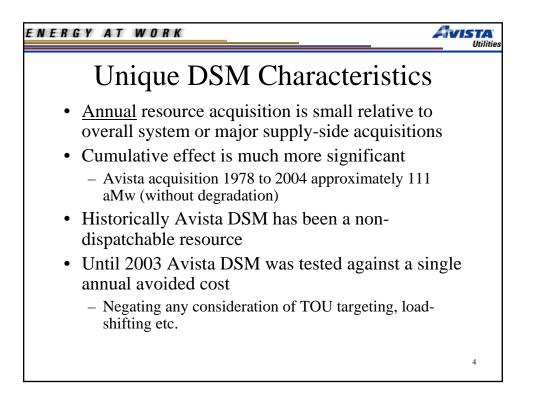
ENERGY AT WORK	
Co-Gen 2005 dollars	
 Type: Generic Unit Size (MW): 25 Heat Rate (Btu/kWh): 5,500 Fuel source: TBD First Available On-Line Date: 2007 Capital Cost (\$/KW): \$1,120 Variable O&M (\$/MWh): \$2.24 Fixed O&M kW/Year: \$29 Emissions (T/GWh): TBD Location options for NW delivery : Any Location Interconnection Costs: \$16.80 kW per year 	
	13

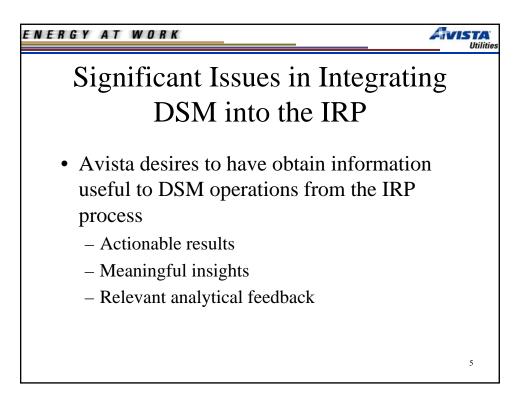
ENERGY AT WORK	VISTA Utiliti
Alberta's Tar Sands 2005 dollars	
 Type: Natural gas-fired 7F-class simple-cycle gas turbine plant in heat recovery steam generator Size (MW): 180 per unit Heat Rate (Btu/kWh): 5,800 (fuel charged to power) Fuel source: Pipeline natural gas First Available On-Line Date : 2011 Capital Cost \$/KW: \$566 Variable O&M (\$/MWh): \$3.11 Fixed O&M kW/Year: Included in Variable Costs Emissions (T/GWh): SO₂ = Not Avail NO_x = Not Avail CO₂ = 30 How many per study: (3,000 MW total NW) Location options for NW delivery : Alberta Interconnection Costs: \$10.43 kW per year Transmission cost from Fort McMurray to Celilio: \$1,166/ kW (1 miles of DC at \$2 million per mile and \$1.32 billion for inverter stations) 	65

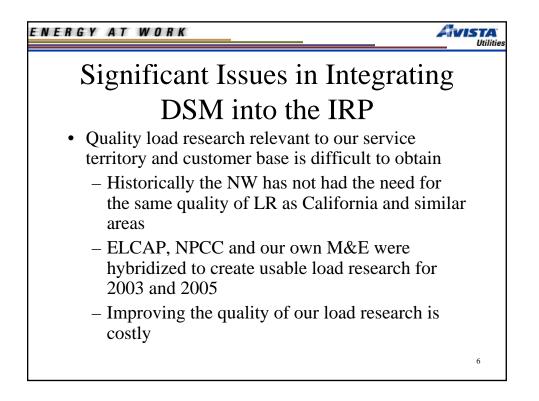


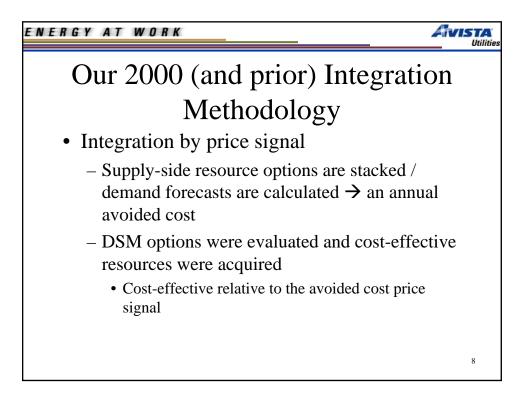

17

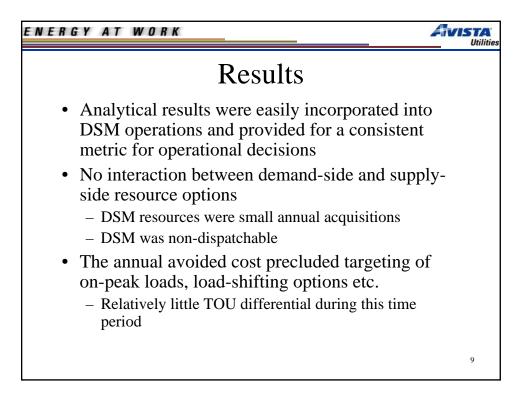
Regional Tar Sands Transmission Options

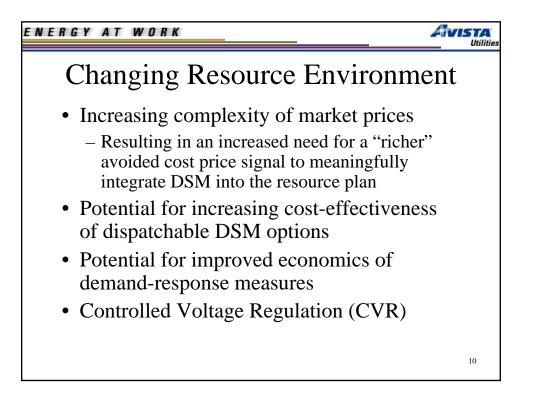

- Based on BPA and PG&E Estimates provided at recent NTAC meeting
- The study included 3,000 MW of capacity from Northern Alberta on one 500kV DC line, and does not include any AC support
- Study assumed \$2,000,000 per mile to build transmission and requires 4 inverter stations at \$440 million each and \$30 million of communication equipment
- Inverter stations locations are:
 - Fort McMurray (NE Alberta)
 - Bell (Spokane area)
 - Celilo (East of The Dalles, OR)
 - Tesla (SE of San Francisco)
- 1,729 miles
- \$5.248 billion to build (\$1,749 /kW)

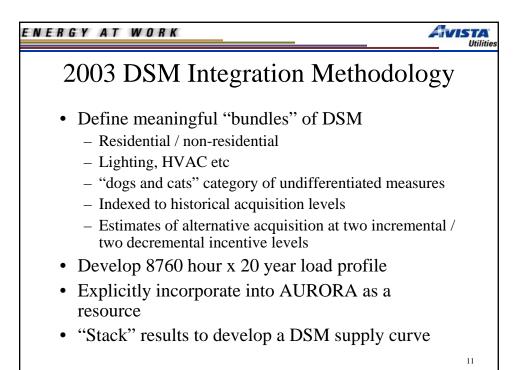

ENERG	NERGY AT WORK												
New Resource Summary													
Resource Type	Fuel Source	Size (MW)	Heat Rate	Year Available	Capital Cost \$/kW	Variable O&M \$/MWh	Fixed O&M StkW	Location	Transmission Costs	SO2 Tons/GWh	NO _X Tons/GWh	CO2 Tons/GWh	
СССТ	Gas	610	7,030	2007	632	3.02	9.00	OR/WA	\$16.80 kW/year	.002	.039	411-429	
SCCT- Aero	Gas	47	9,900	2007	672	8.96	9.00	OR/WA	\$16.80 kW/year	.09	.00901	582	
SCCT- Industrial	Gas	47	10,500	2007	420	4.48	6.72	OR/WA	\$0/kW/year	.09	.00901	582	
Coal- Pulverized	Coal	400	9,550	2011	1,392	1.96	44.80	MT	\$530 - \$1,781/kW Capital	.575	.336	1,012	
Coal- IGCC- Montana	Coal	474	7,915	2011	1,568	1.68	50.51	MT	\$530 - \$1,781/kW Capital	Neg.	<.11	791	
Coal- IGCC- Eastern WA/OR	Coal	474	7,915	2011	1,568	1.68	50.51	OR/WA	\$352/kW Capital	Neg.	<.11	791	
Coal- IGCC w/ Seq.	Coal	401	9,290	2013	2,022	1.79	59.36	MT	\$530 - \$1,781/kW Capital	Neg.	<.11	81	
Wind	Wind	100	N/A	2008	1,131	6.12 - 9.12	19.60	OR/WA	\$16.80 kW/year	N/A	N/A	N/A	
Wind	Wind	100	N/A	2011	1,131	6.12 - 9.12	19.60	MT	\$530 - \$1,781/kW Capital	N/A	N/A	N/A	
Geo-thermal- not NW	Geological Steam	50	9,300	2007	2,050	Included in FC	108.00	CA/NV	\$16.80 kW/year	N/A	N/A	N/A	
Solar-not NW	Sun	2	N/A	2007	7,804	0	36.00	DSW	\$16.80 kW/year	N/A	N/A	N/A	
Biomass	Refuse/Other	.5 - 25	11,000- 14,500	2007	1,523 - 3,472	0-10.38	75 - 140	OR/WA	\$16.80 kW/year	N/A	N/A	720 – 1,116	
Nuclear	Uranium	1,100	9,600	2020	1,624	1.12	44.80	OR/WA	\$16.80 kW/year	N/A	N/A	N/A	
Tar Sands	Oil Sands/ Co-Gen	180	5,800	2011	566	3.11	Included in VC	AB	1,166/ kW Capital	N/A	N/A	365	
Co-Gen	TBA	25	5,500	2007	1.120	2.24	29.00	OR/WA	\$16.80 kW/year	TBD	TBD	TBD 8	

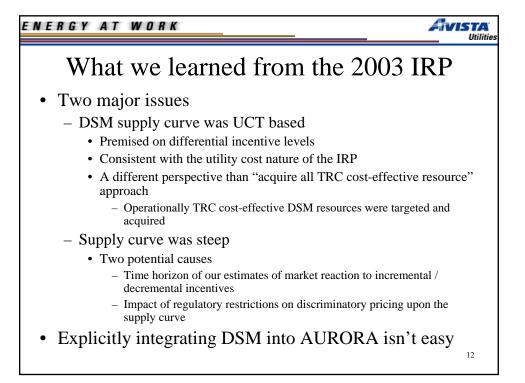


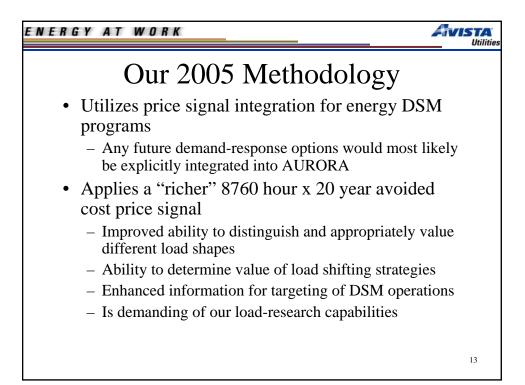


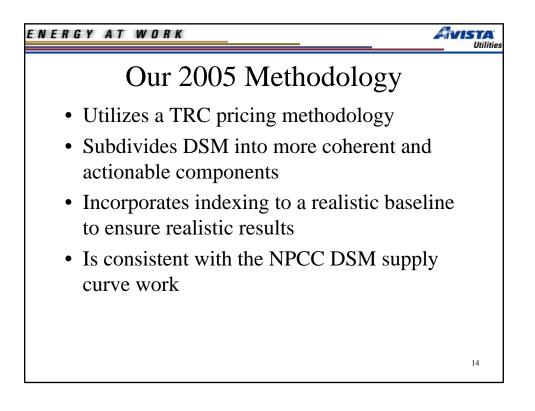


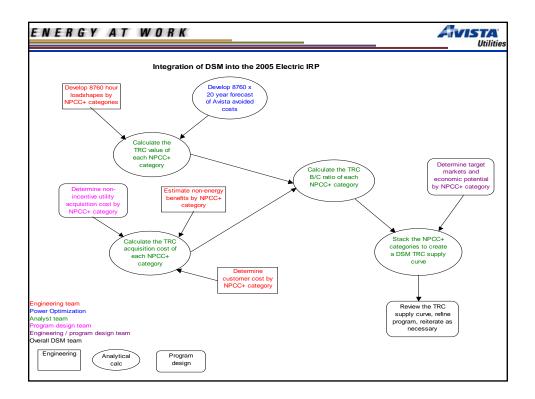


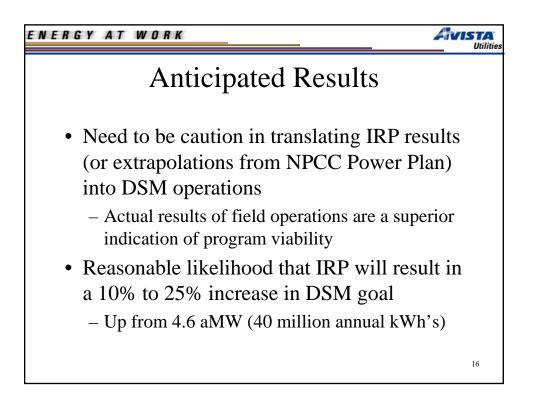



ENERGY AT WORK AVISTA Iltilitie Significant Issues in Integrating DSM into the IRP Avista DSM is generally an "all-comers" DSM tariff (per Schedule 90 and 190) - All non-residential energy-efficiency measures qualify for our programs - Residential programs are prescriptive only • An IRP that accepts or rejects specific non-residential measures is unrealistic from a regulatory obligation and operational standpoint The results of the IRP does provide us with feedback that is valuable in targeting measures and long-term planning of DSM strategy 7

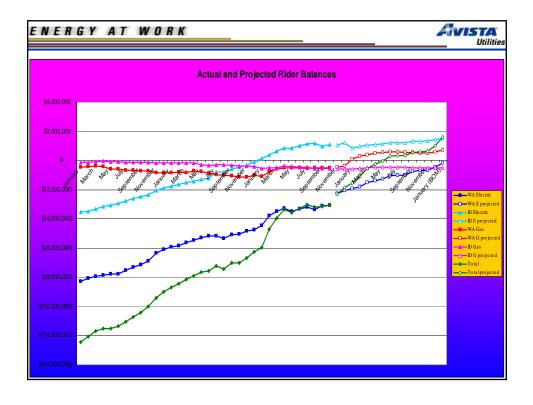


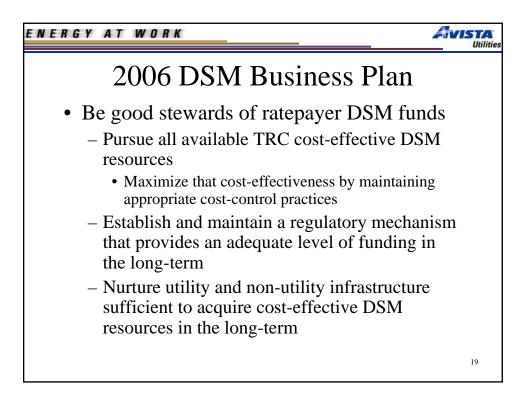


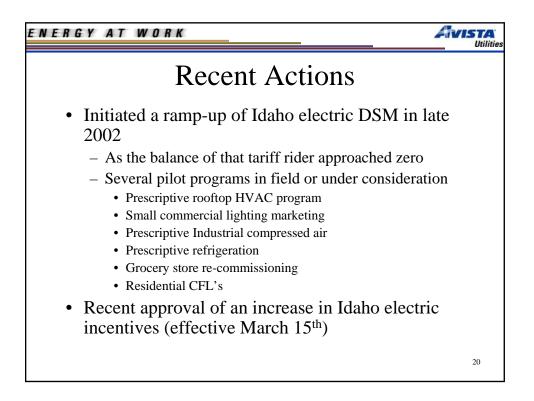


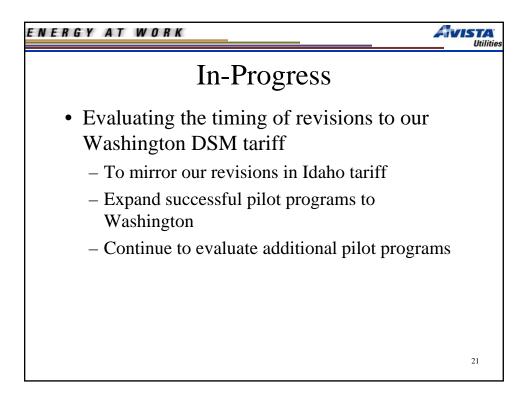


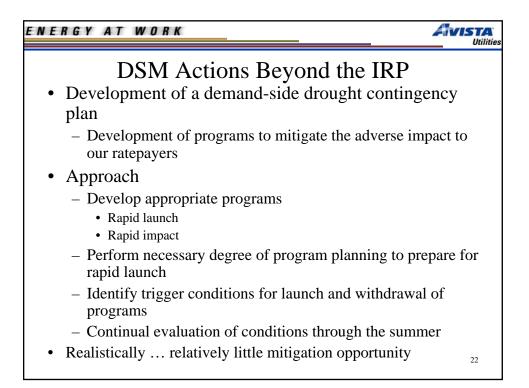


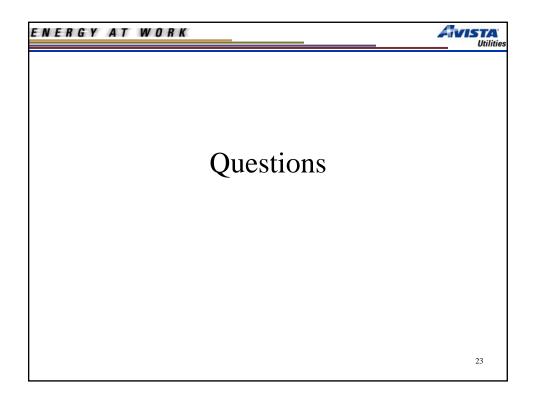


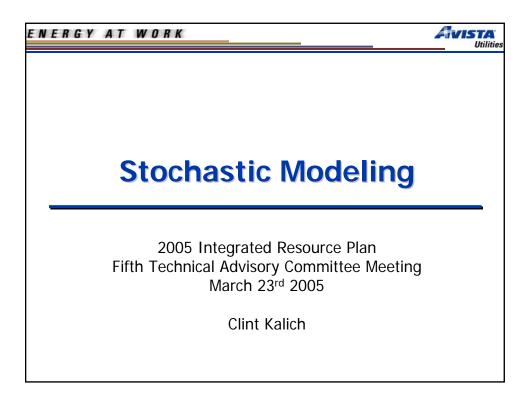


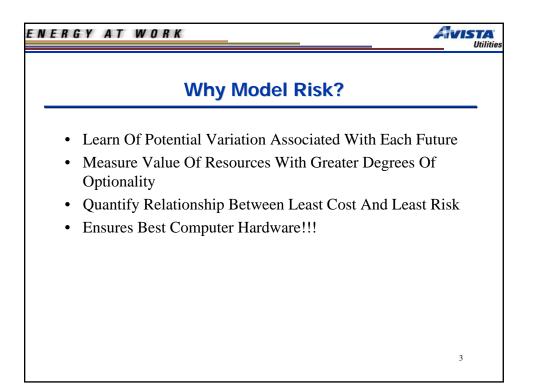


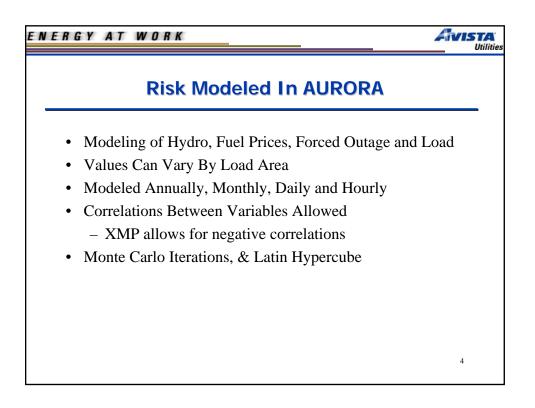


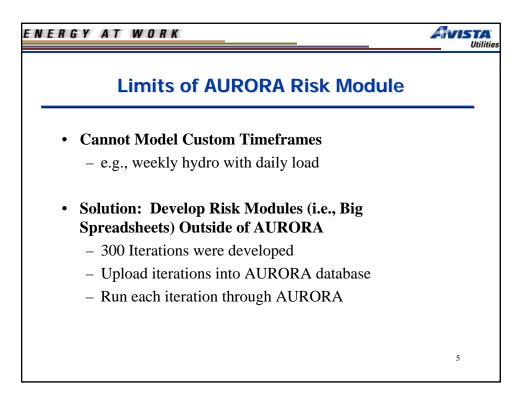


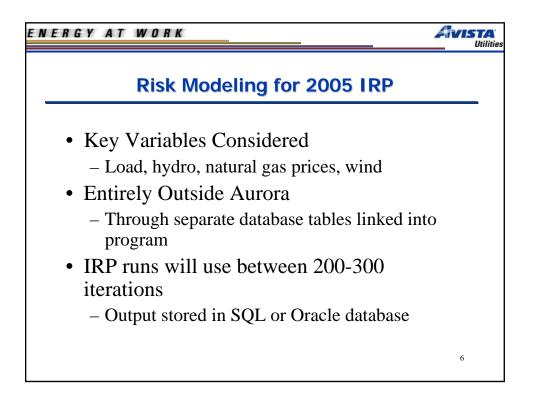


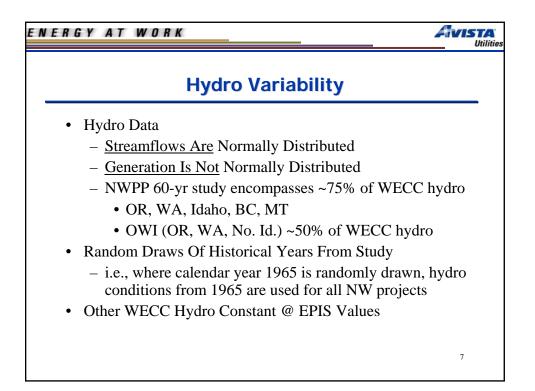


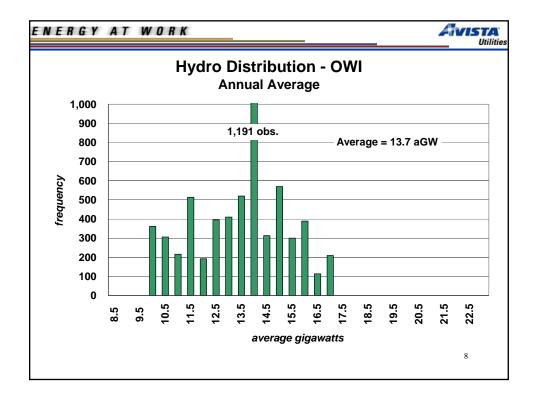


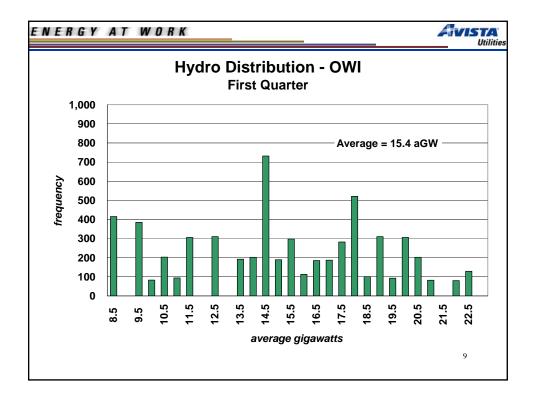


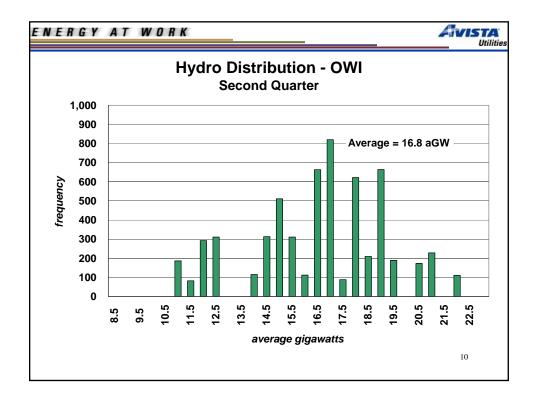


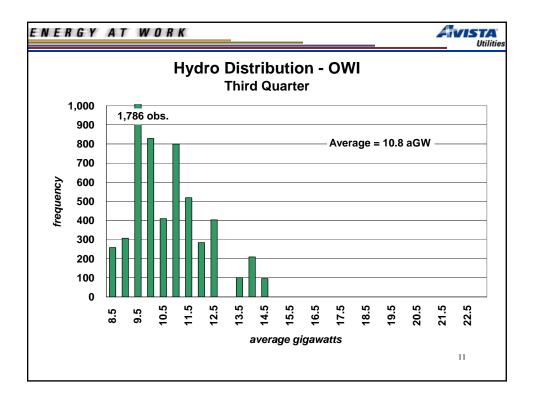


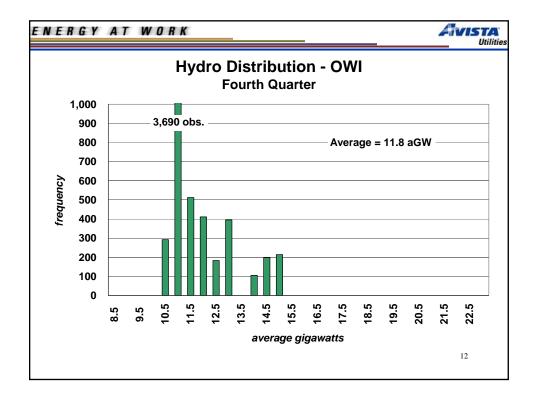

 Presentation Overview Why Model Risk? Risk Modeled In AURORA 	<u>Slide #</u> 3
-	
-	3
Risk Modeled In AURORA	5
	4
• Limits of AURORA Risk Module	5
Risk Modeling For 2005 IRP	6
Hydro Variability	7-12
Natural Gas Variability	13-18
Load Variability	19-22
Wind Variability	23-27

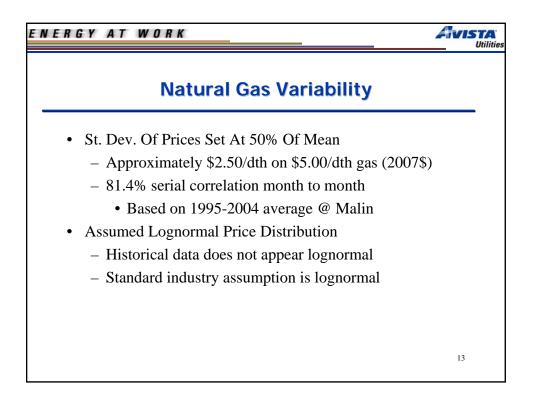


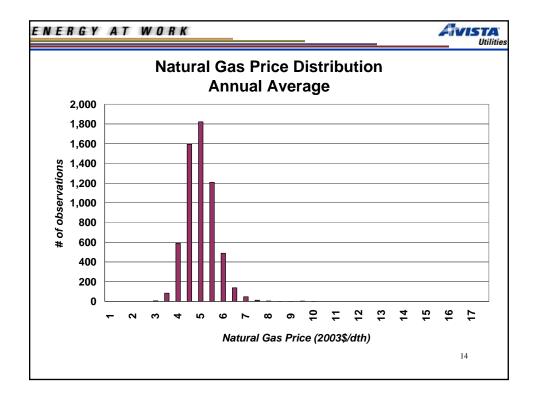


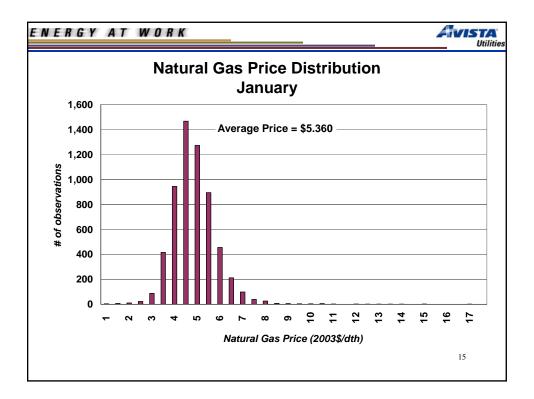


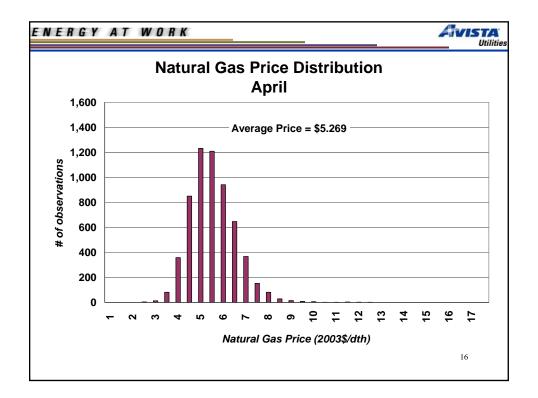


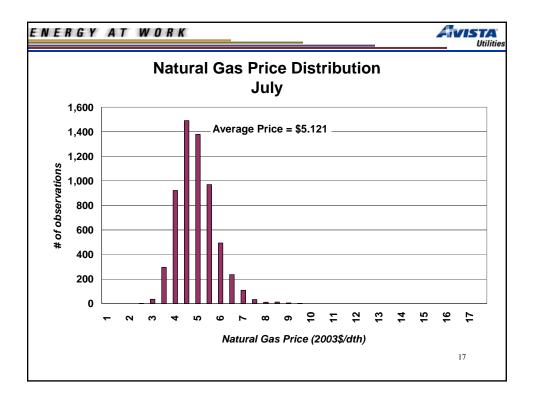


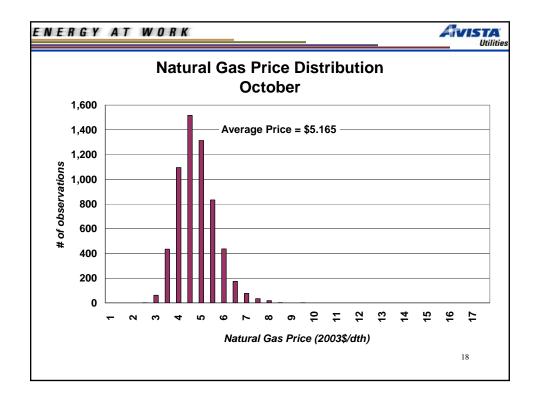


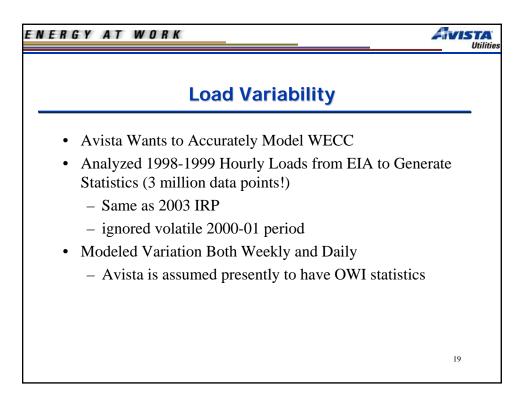


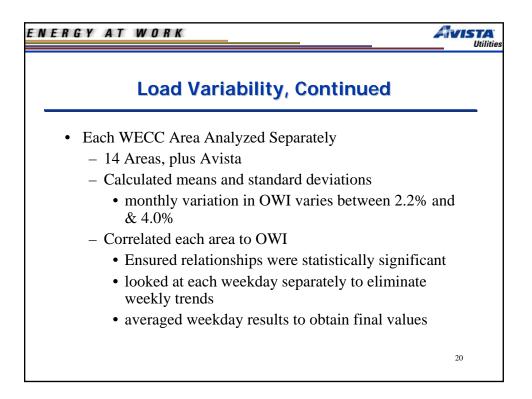


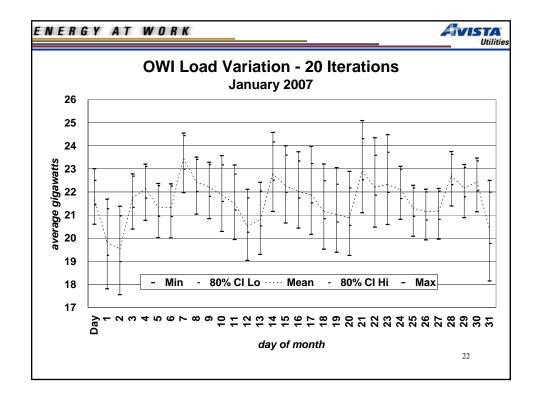


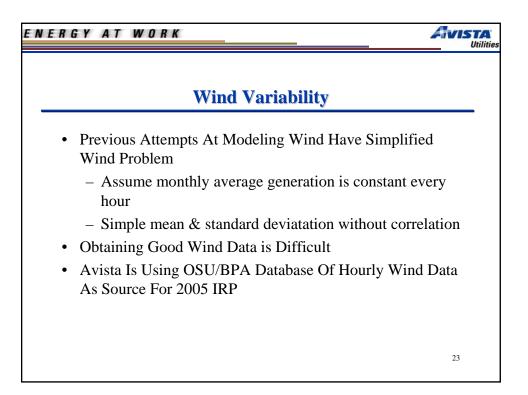


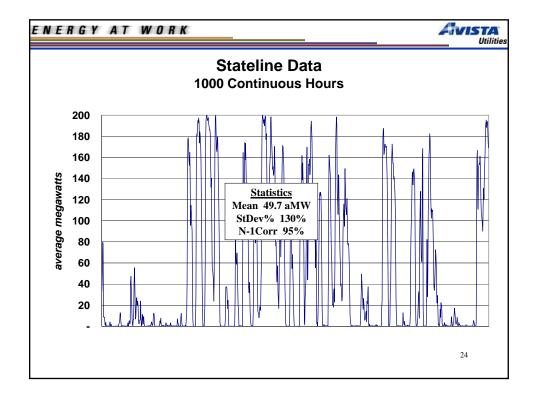


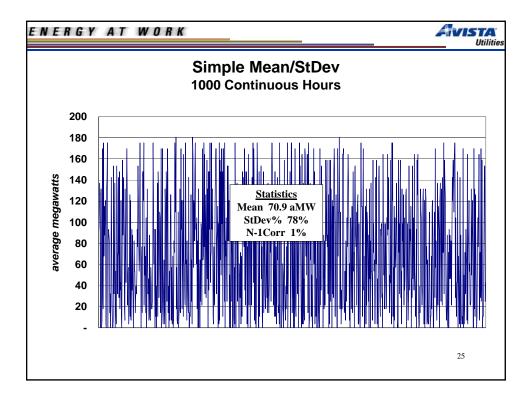


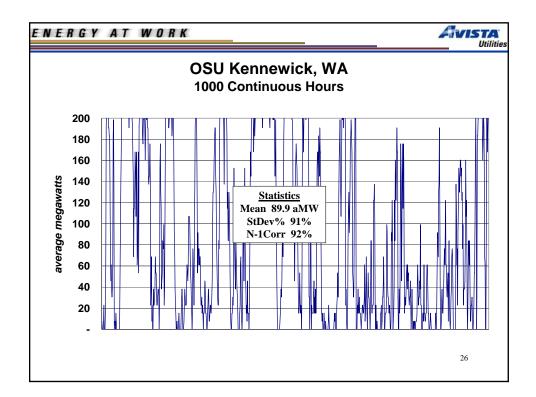


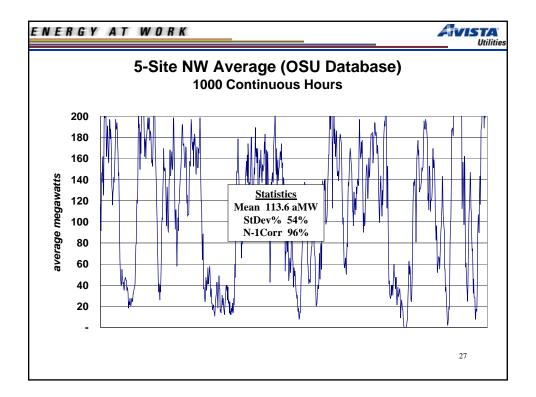


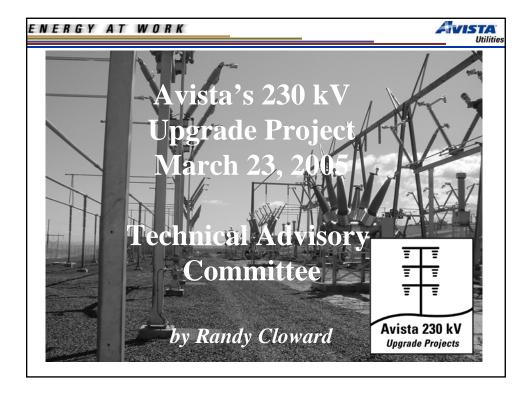


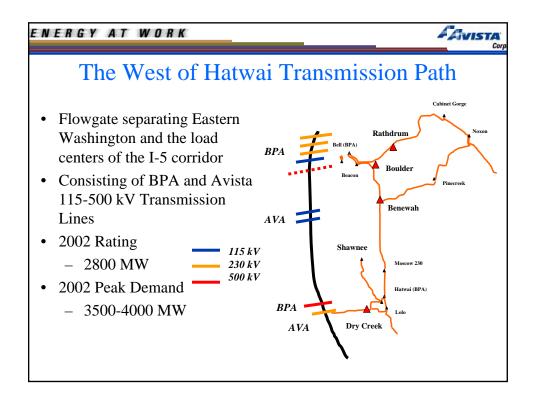


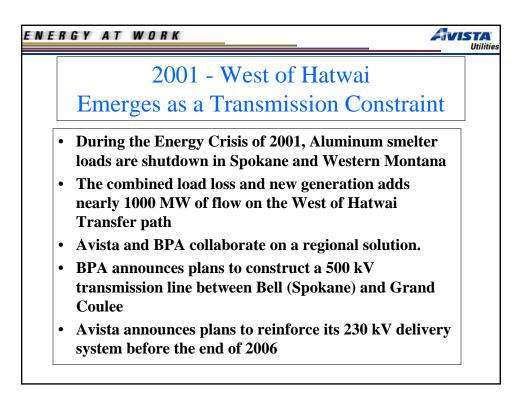


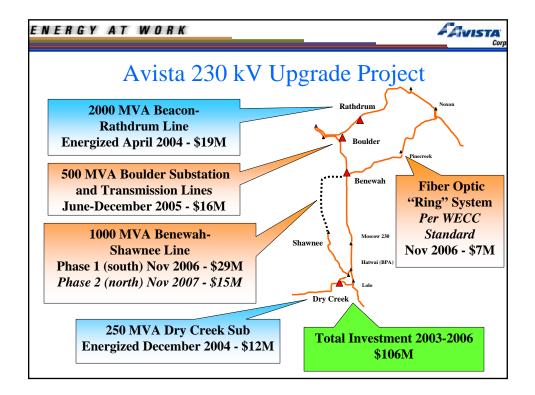

		Loa	d Cori	relatio	n Value	es to O	NI (Avei	ade o	f Weekda	ivs)		
	January	February	March	April	May	June	July	August	September	October	November	Decembe
Alberta	0.659	Not Sig	0.481	Not Sig	Mix	0.635	0.668	Mix	Mix	0.479	Not Sig	Not Sig
Arizona	0.440	0.664	Not Sig	Mix	(0.289)	0.666	Not Sig	Not Sig	Not Sig	Not Sig	Mix	Not Sig
British Col	0.918	0.838	0.825	0.733	0.617	Not Sig	0.560	Not Sig	0.638	0.809	0.525	0.89
CA North	Not Sig	0.734	Not Sig	Not Sig	Not Sig	0.771	Mix	0.757	0.789	Not Sig	Mix	Not Sig
CA South	Not Sig	Mix	Not Sig	Not Sig	Mix	0.680	Mix	0.500	0.778	Not Sig	Not Sig	Not Sig
Colorado	0.623	Not Sig	0.567	Mix	Mix	Not Sig	Not Sig	Not Sig	Not Sig	0.655	0.629	0.57
ID South	0.673	0.747	0.882	Not Sig	Not Sig	0.758	Mix	0.789	0.733	0.561	0.587	0.81
Montana	0.894	0.773	0.755	0.651	0.405	0.599	0.786	0.648	0.752	Not Sig	0.856	0.89
NV North	Mix	Not Sig	Not Sig	Not Sig	Not Sig	Not Sig	Not Sig	Not Sig	Not Sig	Mix	0.476	Not Sig
NV South	Not Sig	0.641	0.513	Mix	Not Sig	0.729	Mix	Not Sig	Mix	Not Sig	0.461	Mix
New Mexico	0.384	Mix	Mix	Not Sig	Not Sig	Mix	Not Sig	Mix	Not Sig	Not Sig	Mix	Mix
Utah	0.816	Not Sig	0.669	0.697	0.610	0.698	0.703	0.604	0.611	Not Sig	0.561	0.83
Wyoming	0.765	Mix	0.641	Not Sig	Mix	Mix	Not Sig	Not Sig	0.483	Not Sig	0.522	0.63



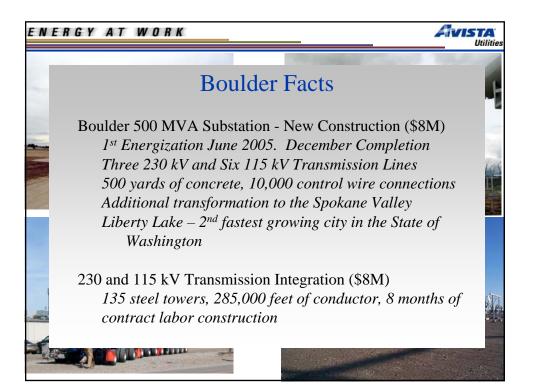




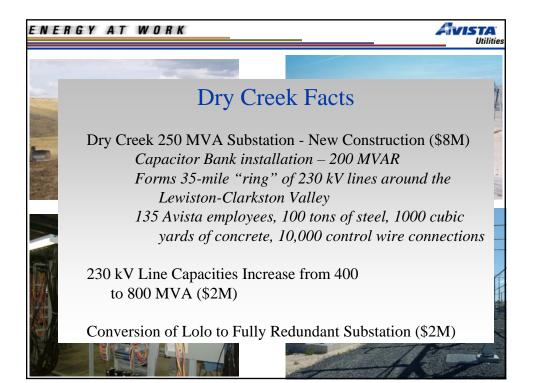


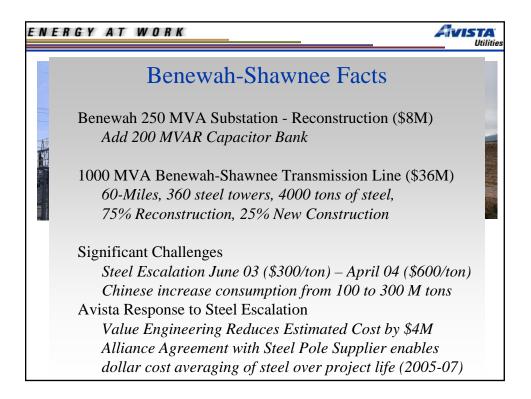


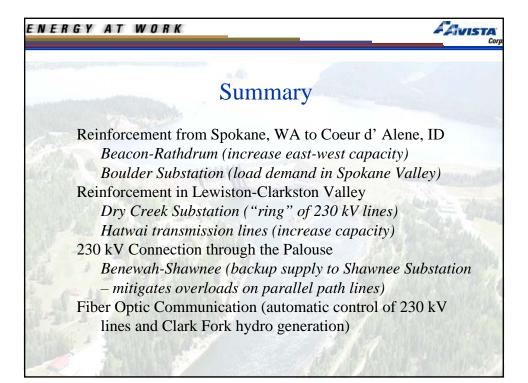


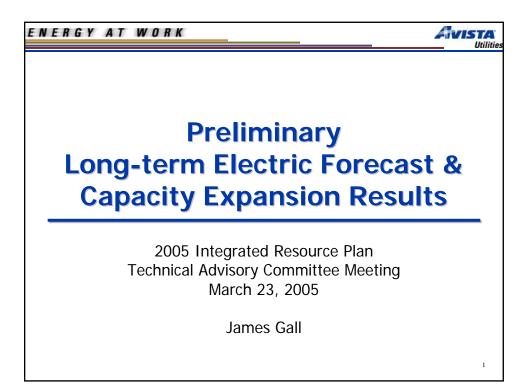


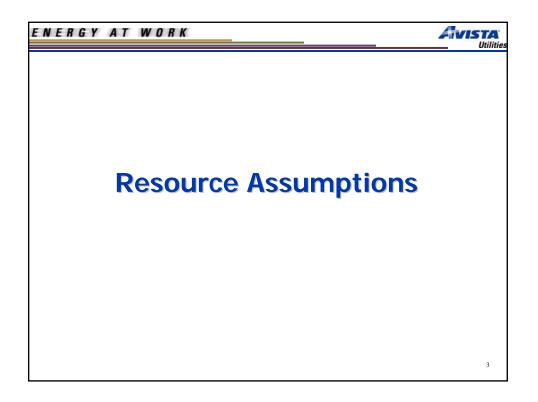




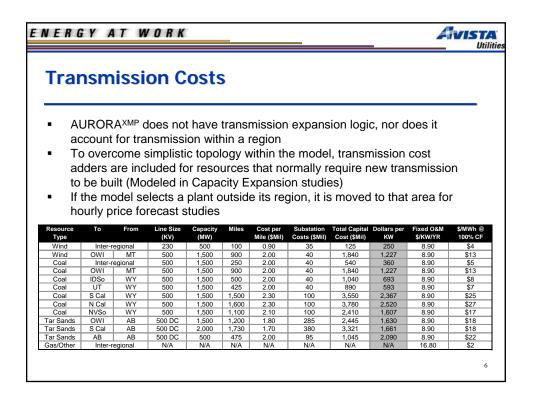


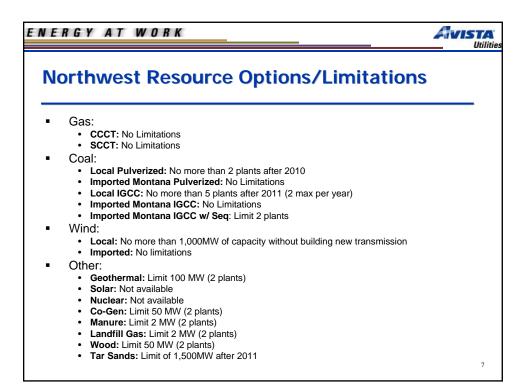






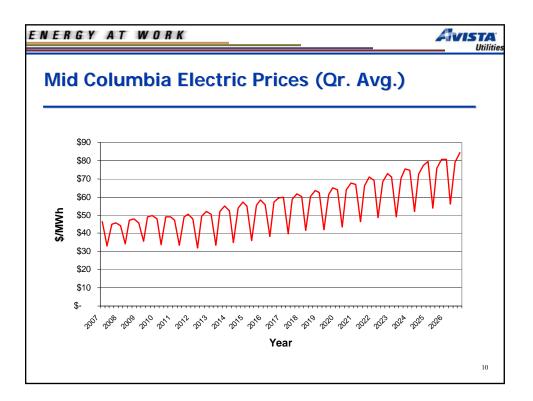
NE	RGY AT WORK	
Di	scussion Items	
1)	Resource Assumptions A. Generation Assumptions B. Discount Rates C. Transmission Assumptions D. Resource Restrictions	
2)	 D. Resource Restrictions Electric Market Forecasts A. Mid Columbia Prices B. Marginal Heat Rate for the Northwest C. Hourly Price Curve D. Other Hub's Electric Price Forecasts 	
3)	 Capacity Expansion Results A. What is a Capacity Expansion B. Northwest L&R C. Northwest New Resources D. Western Interconnect New Resources 	
		2

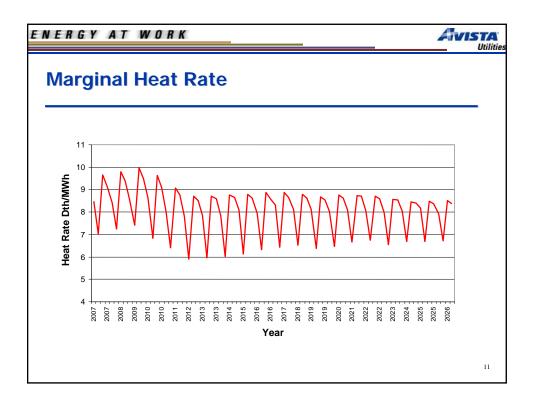


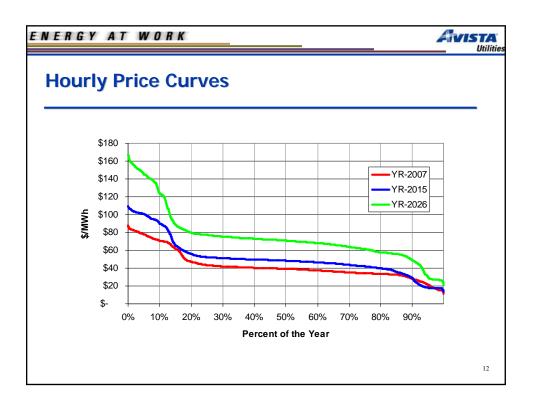

	SOURCE S						
Resource Type	Fuel Source	Size (MW)	Heat Rate	Year Available	Capital Cost \$/kW	Variable O&M \$/MWh	Fixed O&M \$/kW
СССТ	Gas	610	7,030	2007	588	3.02	19.00
SCCT- Aero	Gas	47	9,900	2007	672	8.96	15.00
SCCT- Industrial	Gas	47	10,500	2007	420	4.48	11.25
Coal- Pulverized	Coal	400	9,550	2010	1,392	1.96	62.00
Coal- IGCC	Coal	425	7,915	2011	1,568	1.68	67.00
Coal- IGCC w/ Seq.	Coal	401	9,290	2013	2,022	1.79	76.00
Wind	Wind	100	N/A	2011	1,131	6.12 - 9.12	38.00
Geothermal	Geological Steam	50	9,300	2007	2,050	Inc. in FC	178.00
Solar	Sun	2	N/A	2007	7,804	0	36.00
Biomass	Refuse/Other	1 – 25	11,000- 14,500	2007	1,523 – 3,472	0 – 10.38	125 – 250
Nuclear	Uranium	1,100	9,600	2020	1,624	1.12	75.00
Tar Sands	Oil Sands/ Co-Gen	180	5,800	2011	566	3.11	Inc. in VC
Co-Gen	ТВА	25	5,500	2007	1,120	2.24	29.00

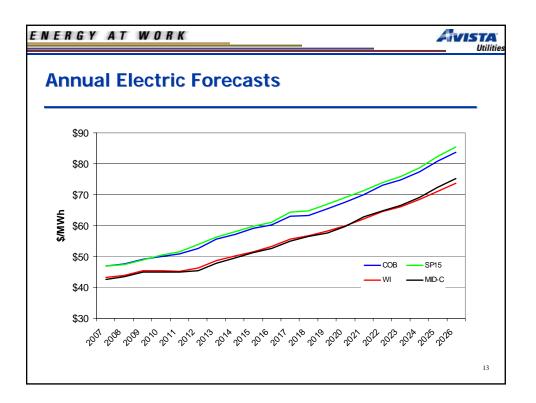
Discount Rates Used for Capacity Expansion

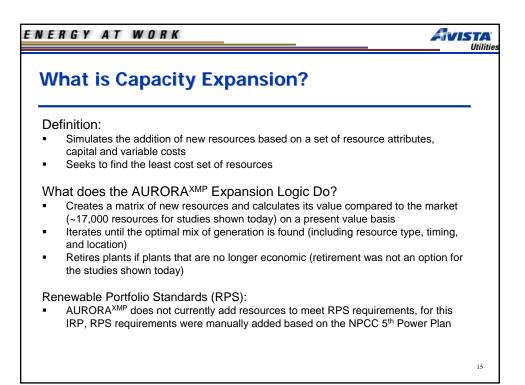
- Discount rates are required to calculate the fixed costs associated with each new resource (Model requires \$/MW/Week for each resource) and to calculate the present value of each resource)
- Discount Rates are based on NPCC 5th Power Plan

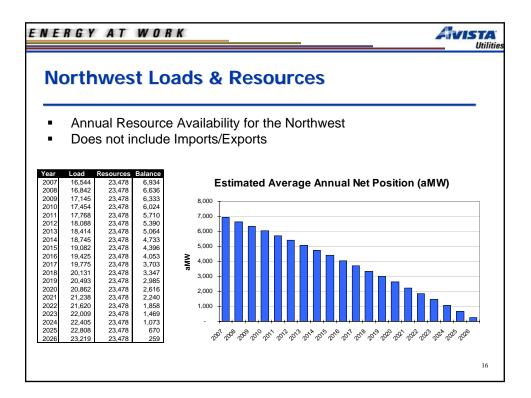

	PUD	IOU	IPP	Weighted Discount Rates
Discount Rate	4.9%	9.15%	10.68%	9.2%
·				
Percent Ownership				
Coal/Tar Sands	25%	25%	50%	8.9%
СССТ	20%	20%	60%	9.2%
SCCT	40%	40%	20%	7.8%
Renewables	15%	15%	70%	9.6%

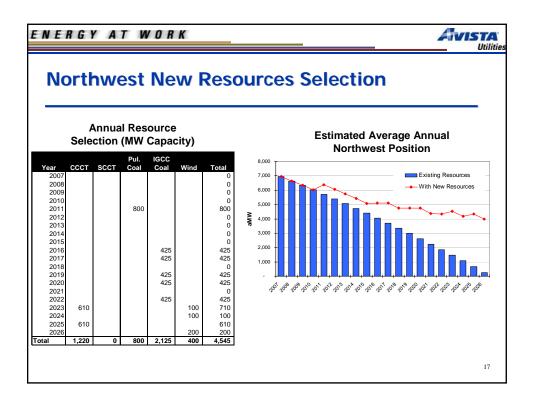


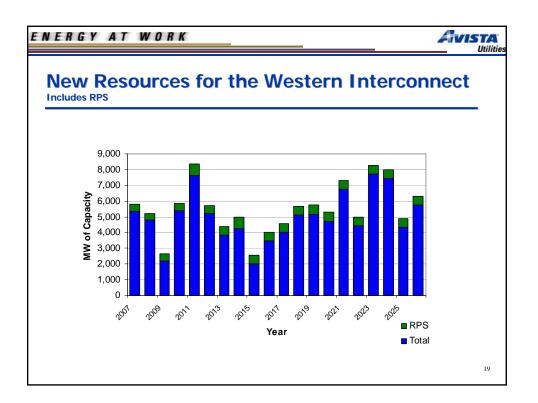


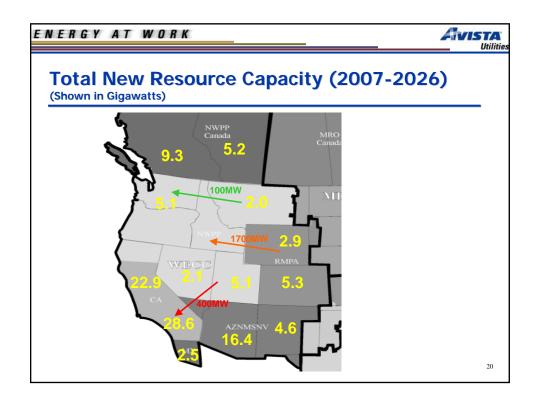

	estern Interconnect Options/Limitations	
_		
•	Gas:	
	CCCT: No Limitations	
_	SCCT: No Limitations	
•	 Coal: Local Pulverized: No Limitations (Not allowed in California) 	
	 Imported Wyoming Pulverized: No Limitations with new transmission build (S. Cal allowed to build 1 plant in Utah by upgrading the IPP DC Interconnect) 	
	Local IGCC: No Limitations (Not allowed in California)	
	 Imported Wyoming IGCC: No Limitations with new transmission build 	
	Local IGCC w/ Seq: No Limitations (Not allowed in California)	
-	 Imported Wyoming IGCC w/ Seq: No Limitations with new transmission build Wind: 	
-	Local: Requires transmission to be built	
	Other:	
	Geothermal: 100 MW per area (2 plants)	
	• Solar: 10 MW per area (5 plants)	
	Nuclear: 1,100 MW in Arizona	
	Co-Gen: Not available	
	Manure: Not available Not available for modeling simplicity and speed Landfill Gas: Not available	
	Wood: Not available	
	 Tar Sands: California & S. Nevada with a limit of 2,500 MW after 2011 	

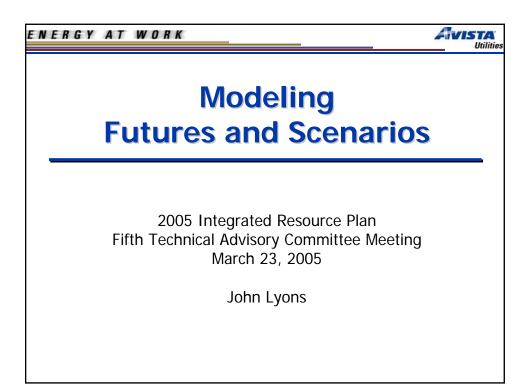


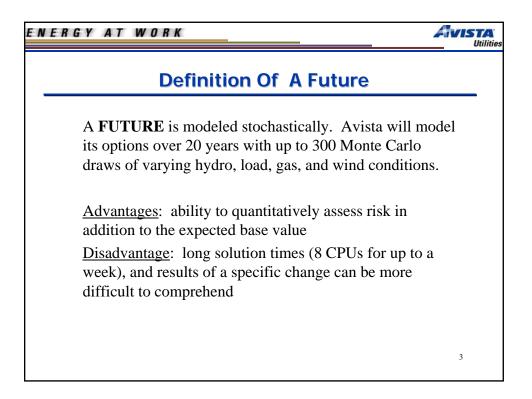


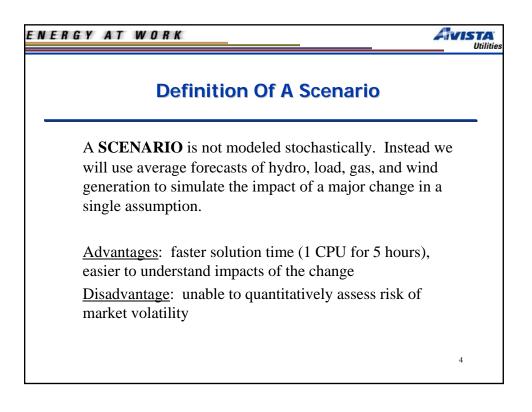


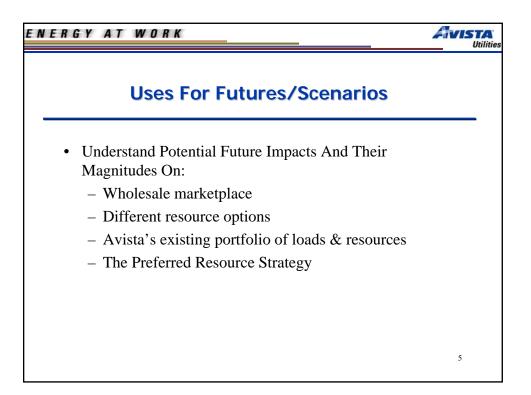


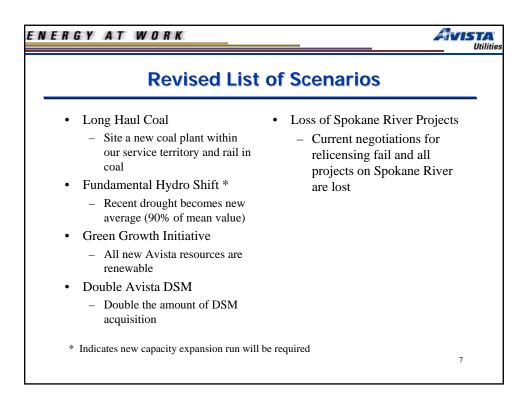


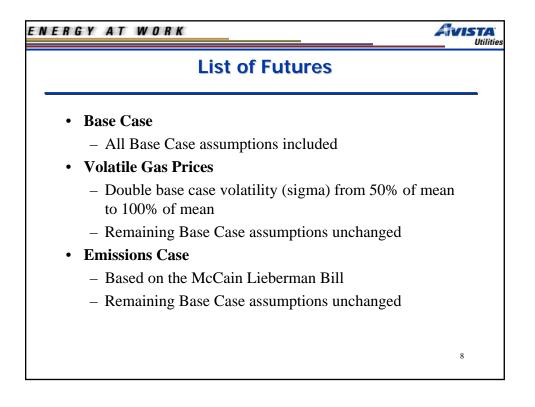


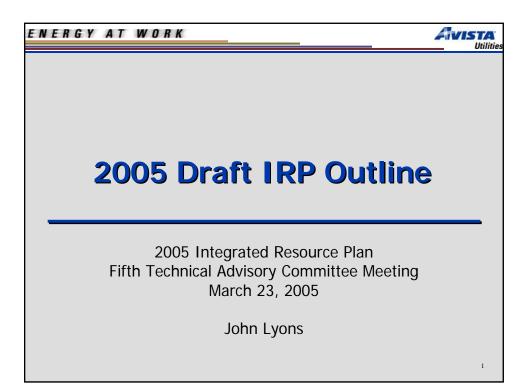

					220u	II CE	Sele	ction	
F	Resource Begin				ulverized-				
		CCCT- Gas So		GCC- Coal	Coal	Wind	Nuclear	Total	
Γ	2007	3,660	1,692	0	0	0	0	5,352	
	2008	2,440	2,350	0	0	0	0	4,790	
	2009	1,830	376	0	0	0	0	2,206	
	2010	610	0	0	4,800	0	0	5,410	
	2011	3,660	376	0	3,600	0	0	7,636	
	2012	1,830	188	0	3,200	0	0	5,218	
	2013	1,830	0	425	1,600	0	0	3,855	
	2014	3,050	0	0	1,200	0	0	4,250	
	2015	1,220	0	0	800	0	0	2,020	
	2016	3,050	0	425	0	0	0	3,475	
	2017	3,050	0	850	0	100	0	4,000	
	2018	4,270	0	850	0	0	0	5,120	
	2019 2020	3,050 1,830	0	2,125	0	0	0	5,175	
	2020	1,830	94 0	1,700 1,275	0	0	1,100	4,724 6.765	
	2021		-				-		
	2022	3,050 6,100	94 564	1,275 850	0	0 200	0	4,419 7,714	
	2023	6,100	282	850	0	200	0	7,714	
	2024	3,050	202	1,275	0	200	0	4,325	
	2025	4,270	0	1,275	0	200	0	5,745	
5	Total Capacity	63,440	6,016	13,175	15,200	700	1,100	99,631	
	6 of Energy	69%	1%	13%	15,200	0%	1%	100%	
Ľ	a or Energy	0370	170	1070	1070	070	1 70	100 /8	

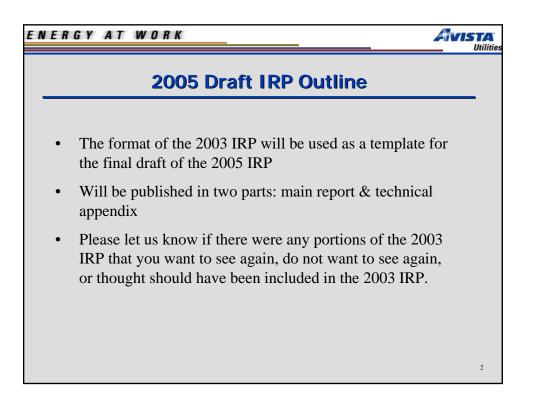





ENERGY AT WORK	Aivista Utilities
Presentation Overvi	ew
	<u>Slide #</u>
• Definition Of A Future	3
• Definition Of A Scenario	4
• Uses For Futures/Scenarios	5
Revised List of Scenarios	6 - 7
• List of Futures	8
	2
	_

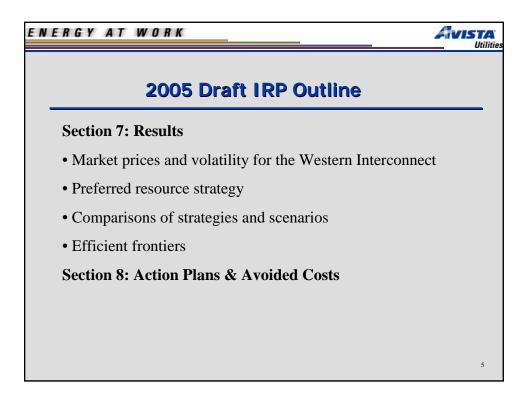


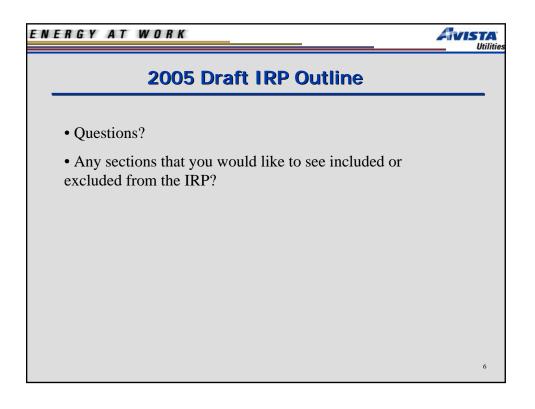


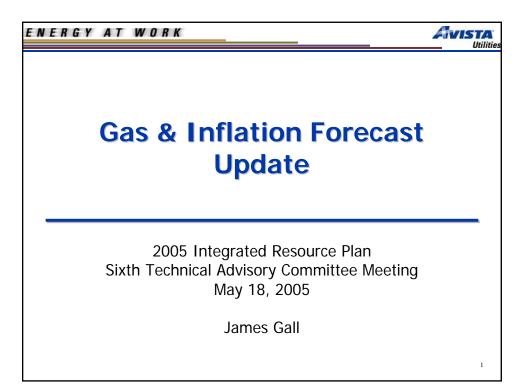


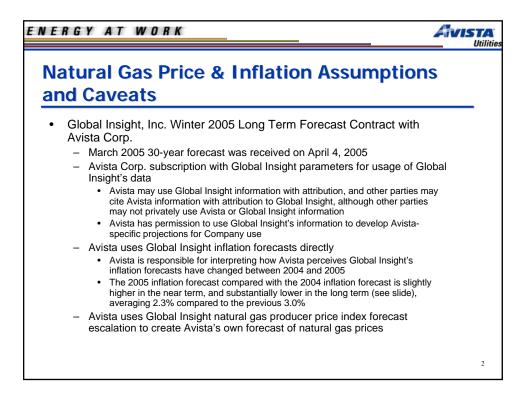
Revised List	of Scenarios
 High Gas * Increase prices 50% to ~\$9/dth Low Gas * Decrease prices 50% to ~ \$3/dth Emissions 2 * \$25/ton CO₂ Low Transmission * Reduce transmission capital costs by 33% High Wind Penetration 5,000 MW NW wind replaces other new resources * Indicates new capacity expansion run will	 Energy Market Bubbles Electricity market mimics real estate building cycles Loss of Large AVA Plant Noxon "lost" for 5 years High AVA Load Double load growth to ~4% Low AVA Load No load growth WECC-Wide Renewable Portfolio Standard 25% renewables by end of study, replacing other new resources

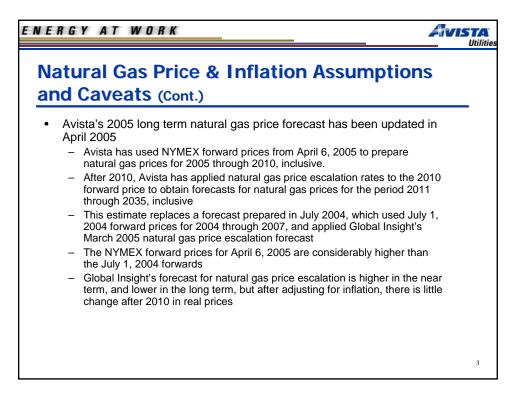


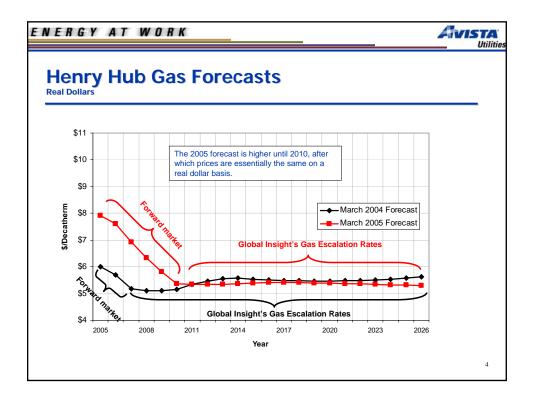


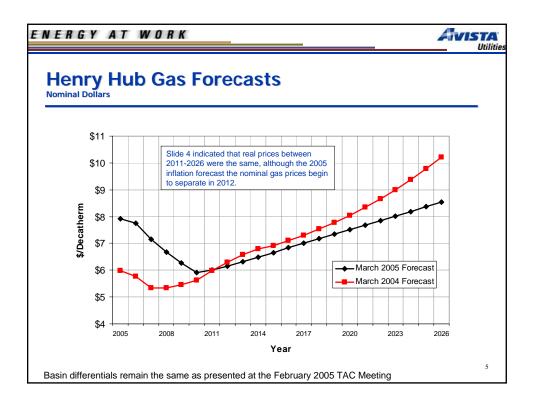


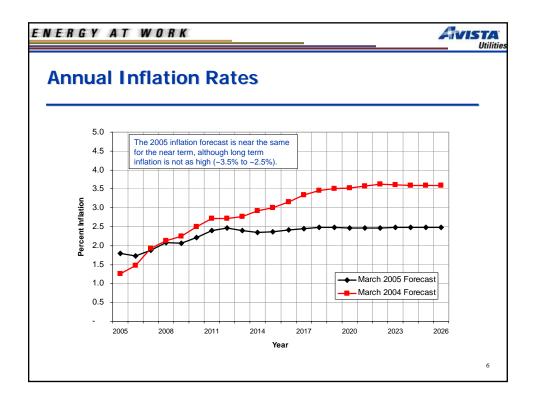


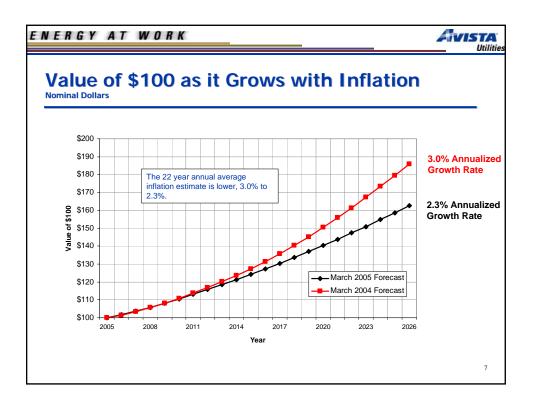

VERGY AT WORK	
2005 Draft IRP Outline	
Section 1: Introduction & Summary	
• Outline of the IRP process	
Section 2: Loads & Resources	
• Generating assets and long term contracts	
• Load forecasts, energy & capacity positions	
• Planning reserves and sustained capacity	
• Wind capacity and forecasting	
Section 3: Demand-Side Management	
• Past and future activities	
DSM in AURORA	3

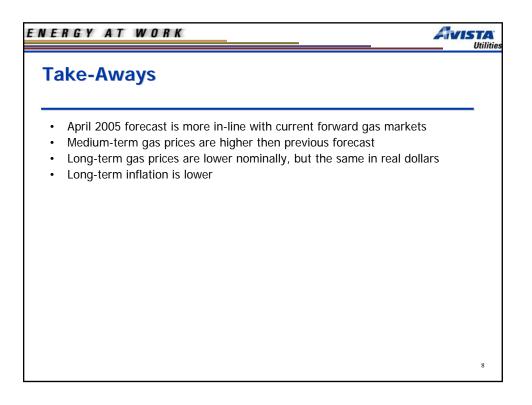


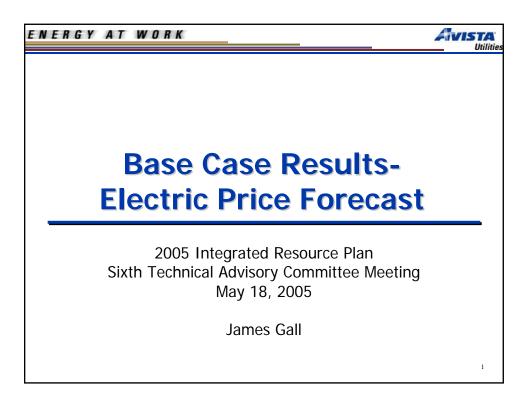


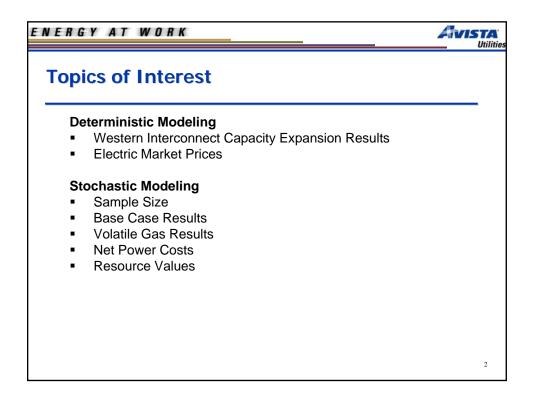


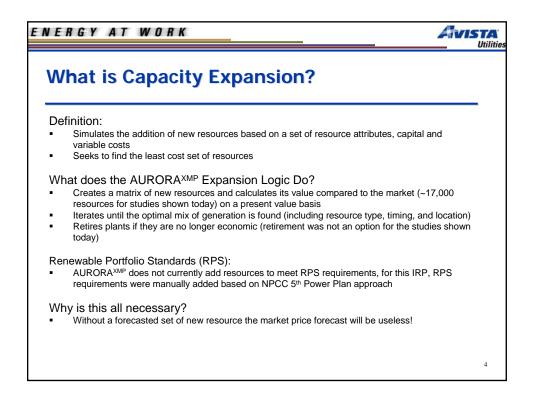


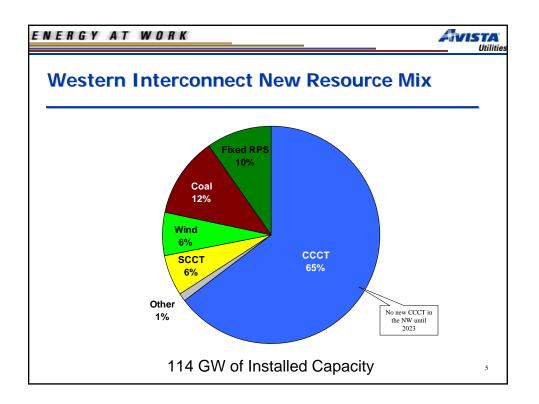


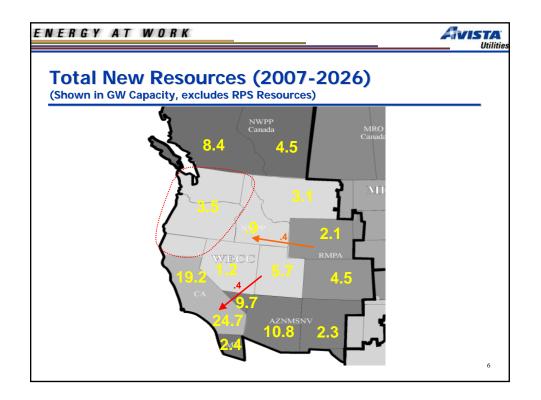


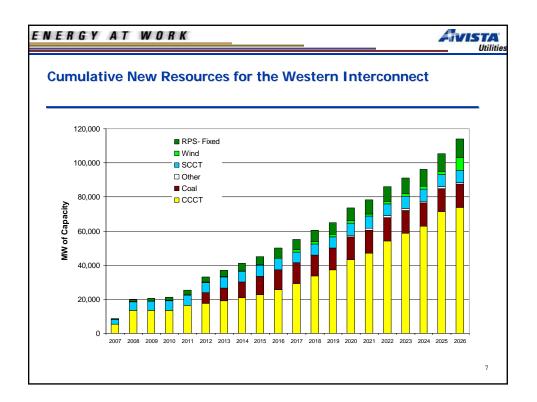


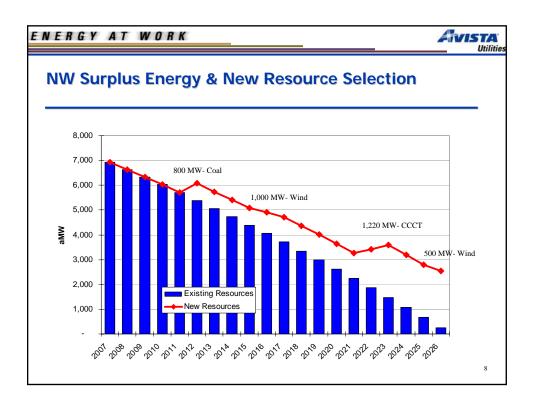


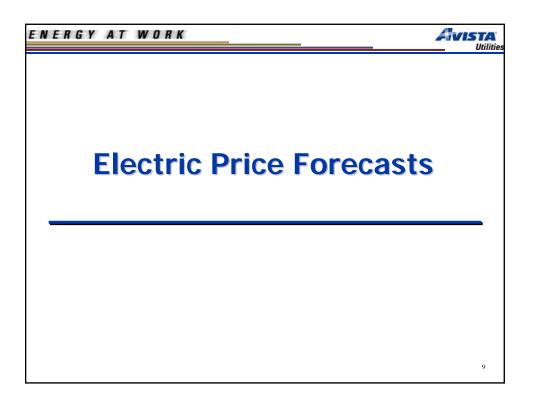


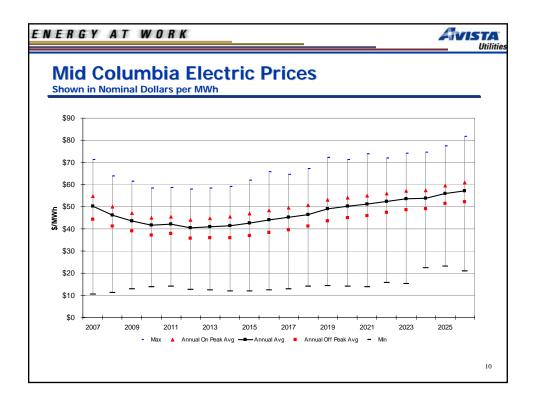


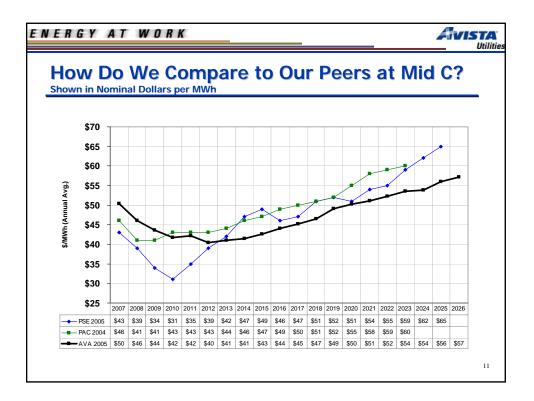


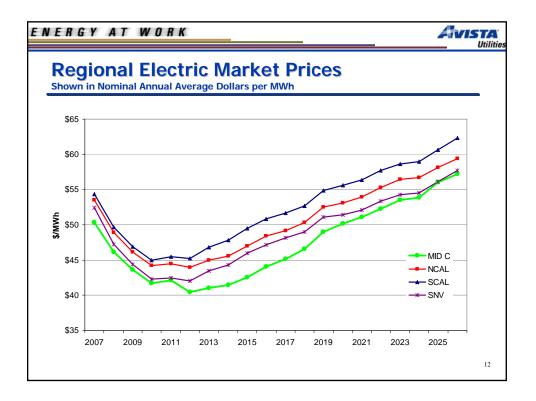


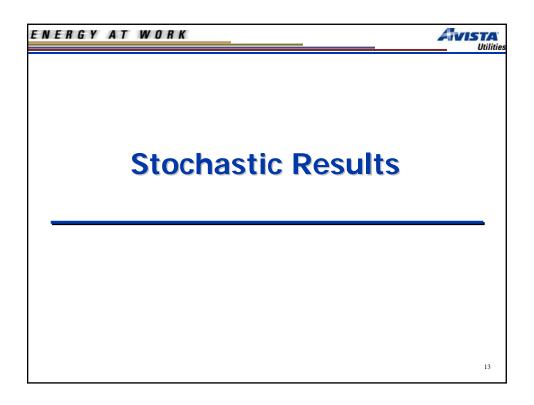


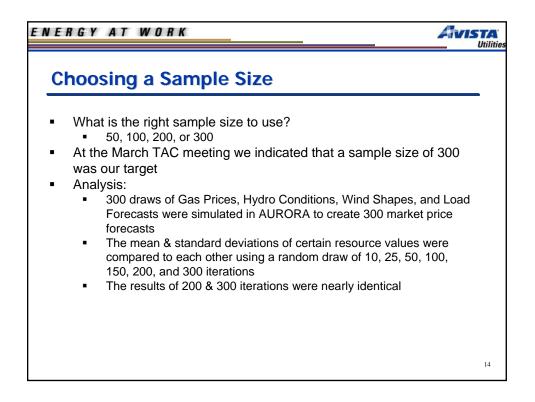


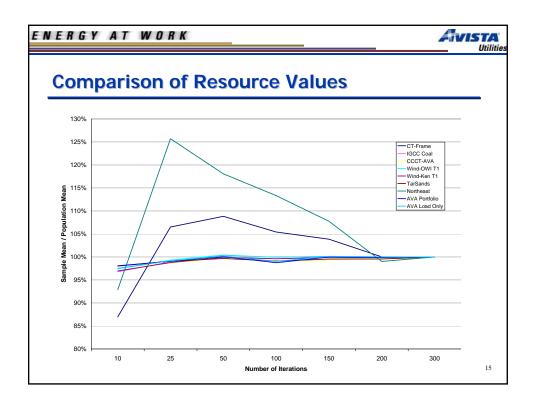


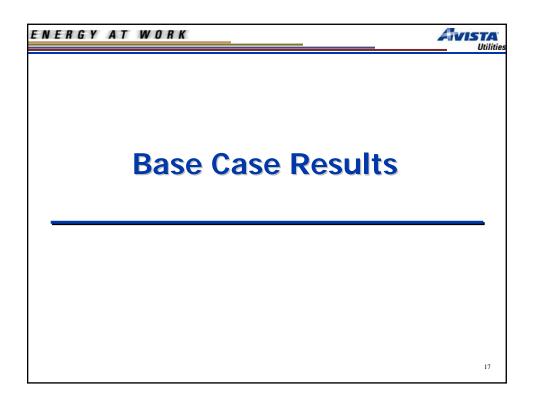


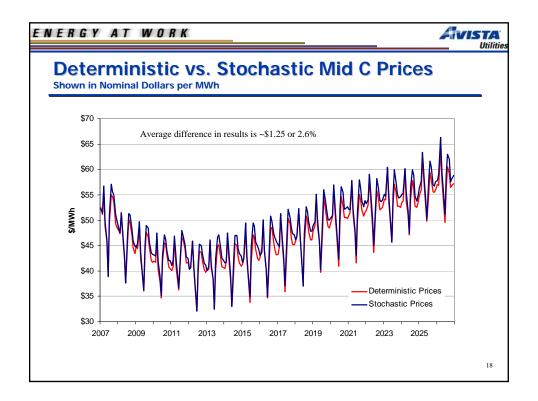


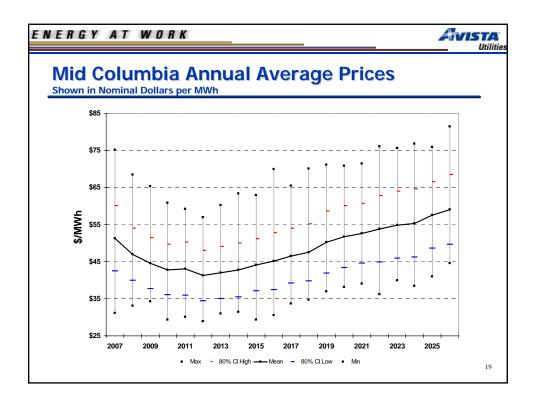


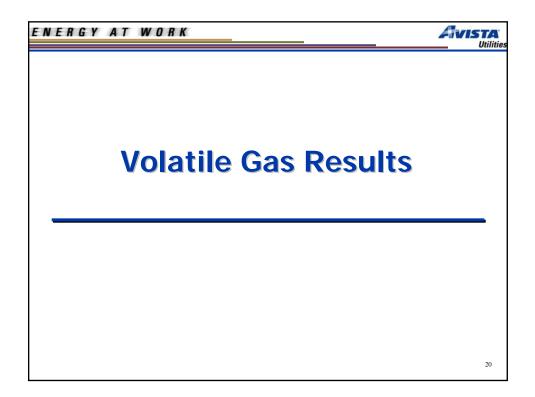


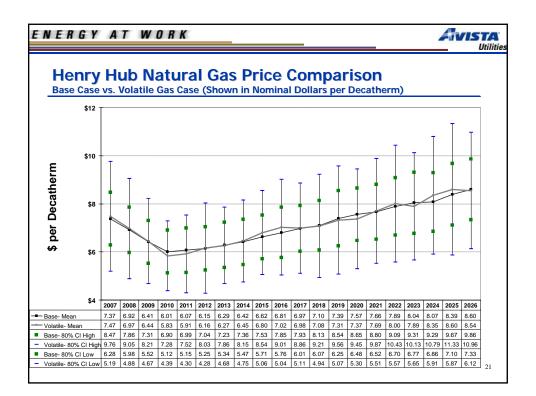


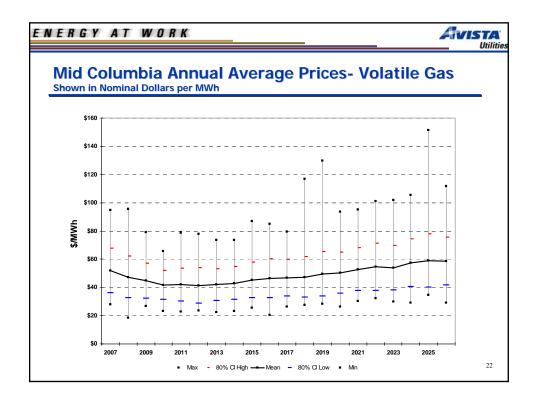


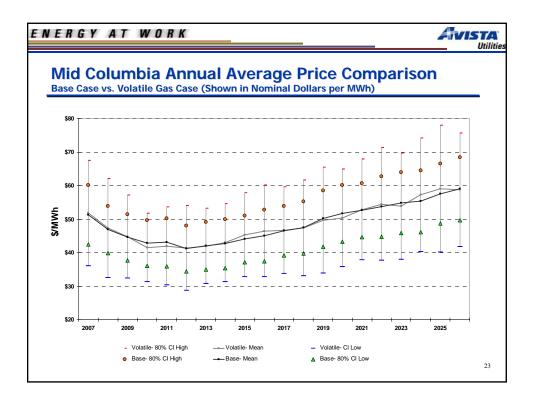


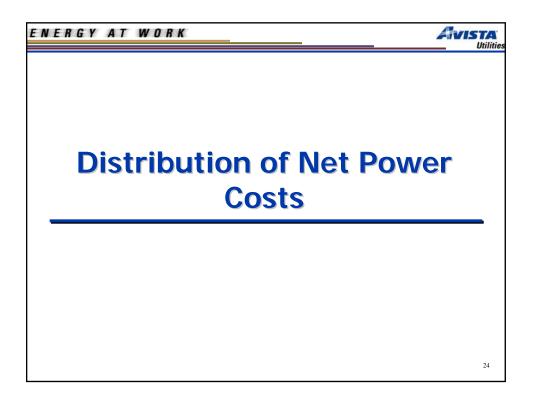


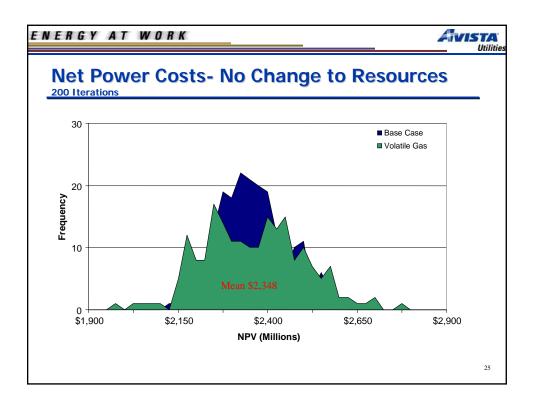


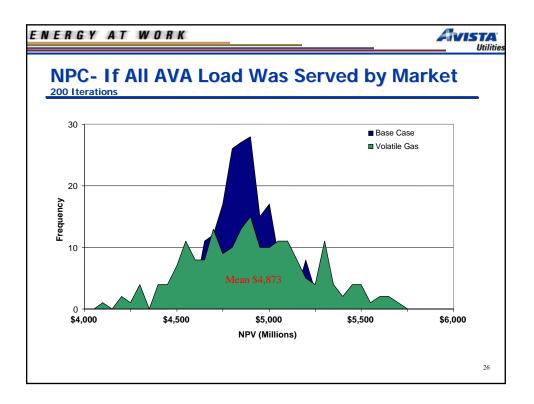

Market Price Standard Devation Monthly Market Price Standard Devation Iterations OWI 50 8.2% 75 6.6% 100 5.6% 150 4.0%		te Differend <u>AZ</u> 8.8% 6.8%		ons
Iterations OWI 50 8.2% 75 6.6% 100 5.6%	<u>SP15</u> 8.9% 6.9%	<u>AZ</u> 8.8% 6.8%	<u>UT</u> 8.3%	5115
50 8.2% 75 6.6% 100 5.6%	8.9% 6.9%	8.8% 6.8%	8.3%	
75 6.6% 100 5.6%	6.9%	6.8%		
100 5.6%				
		5.7%	5.7%	
100 11070	4.0%	3.9%	4.1%	
175 3.1%	3.0%	3.0%	3.1%	
200 2.7%	2.7%	2.7%	2.7%	
Monthly Market Price Mean Abso	olute Diffe	erence fron	1 300 Iterations	
Iterations OWI	<u>SP15</u>	AZ	<u>UT</u>	
50 2.0%	1.7%	2.0%	2.0%	
75 1.6%	1.3%	1.5%	1.5%	
100 1.2%	1.0%	1.2%	1.2%	
150 0.9%	0.8%	0.9%	0.9%	
175 0.7% 200 0.6%	0.6% 0.5%	0.7% 0.6%	0.7% 0.6%	

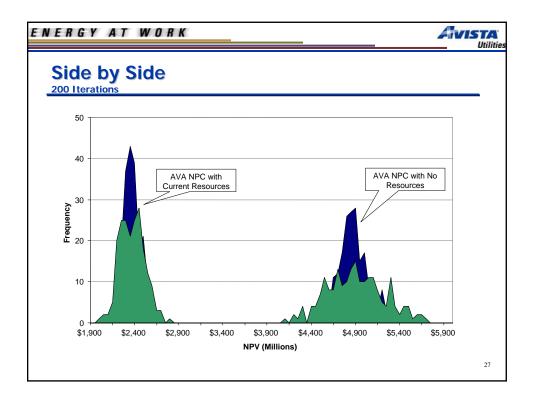


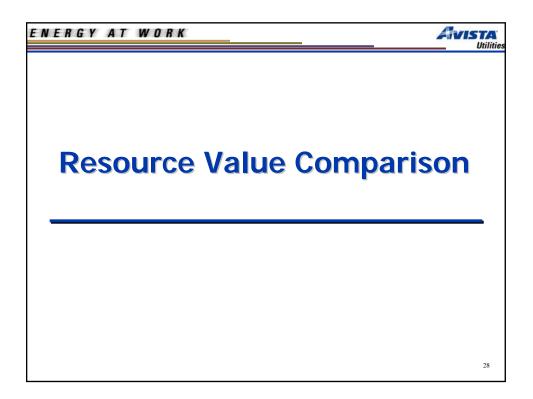


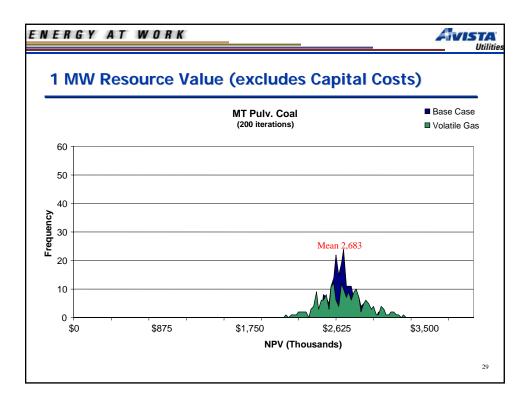


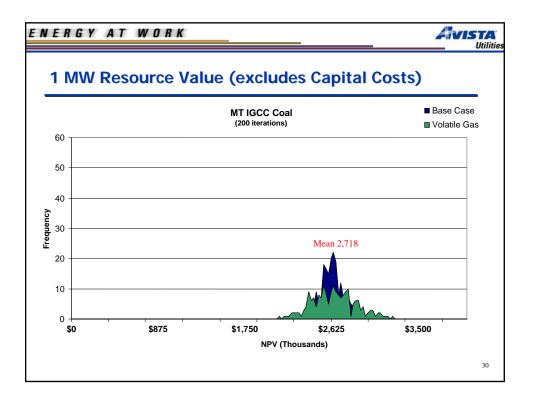


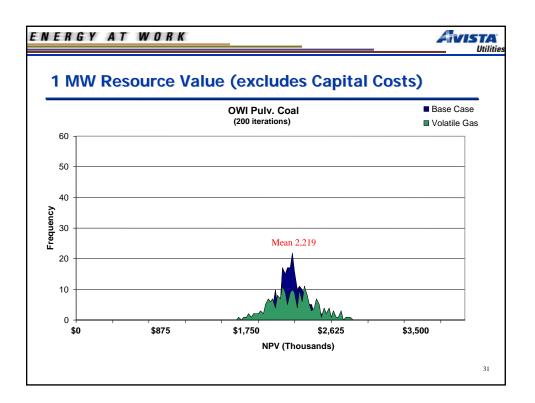


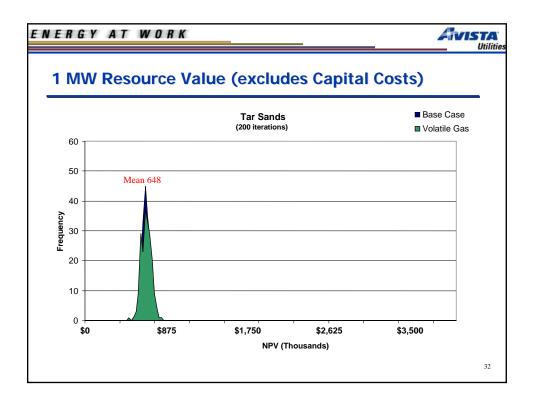


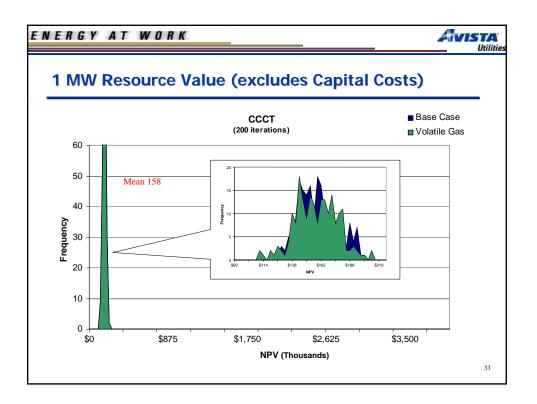


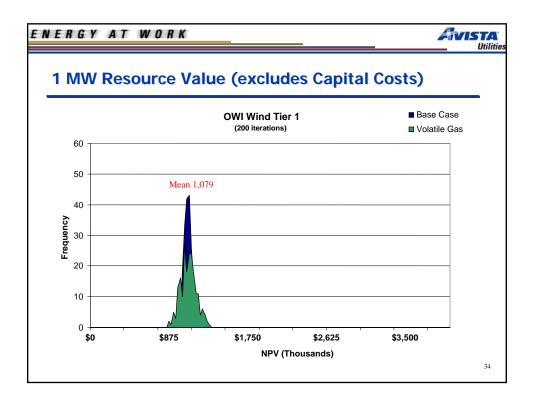


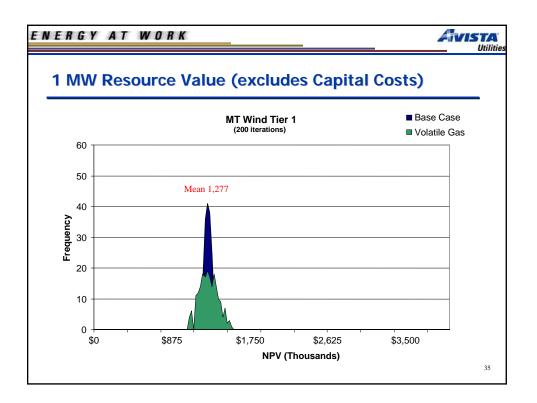


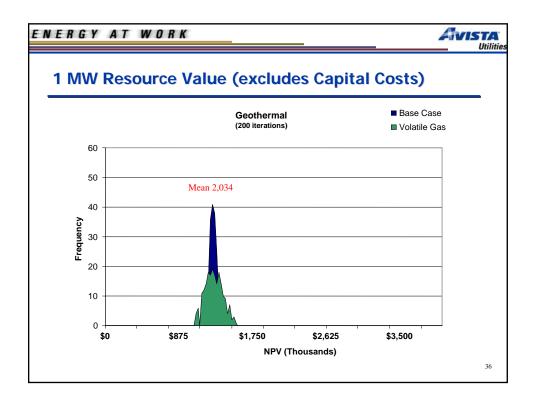


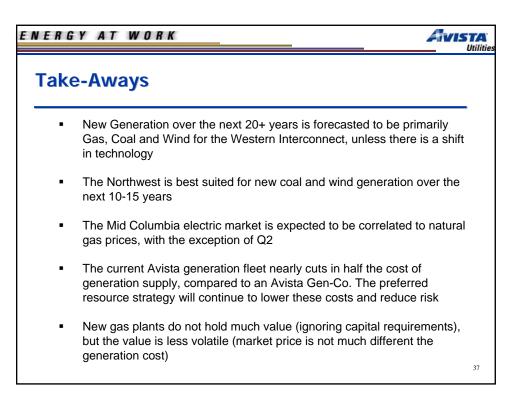


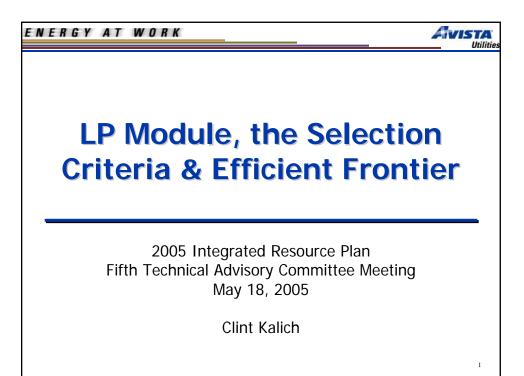


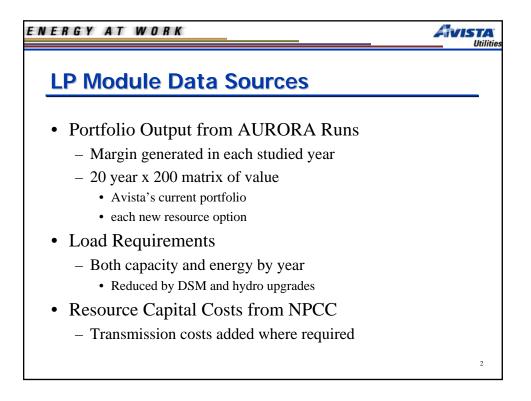


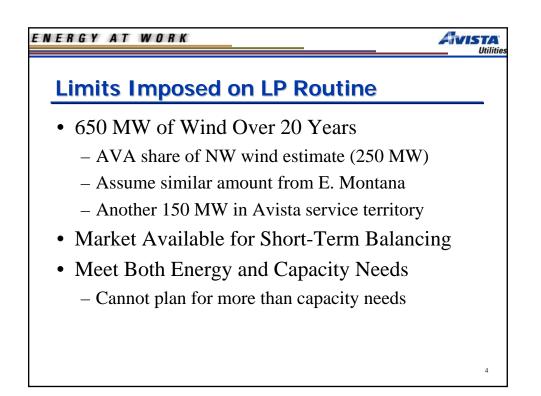


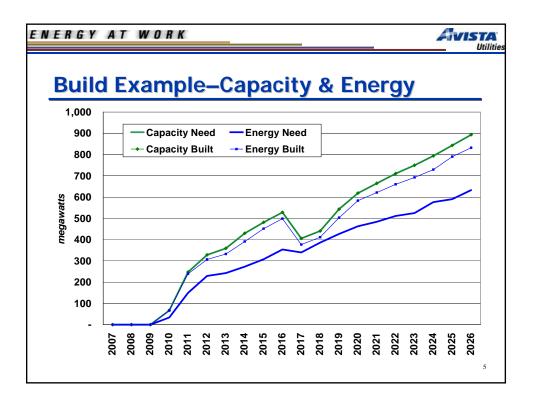


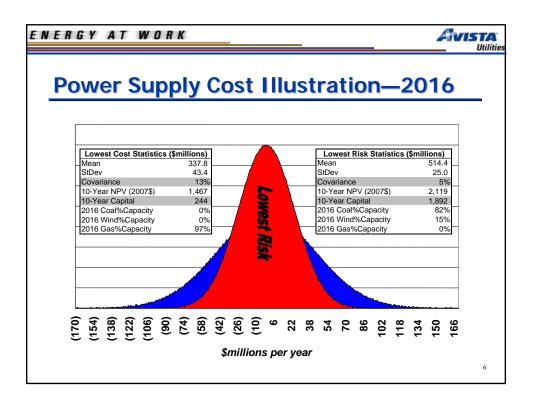


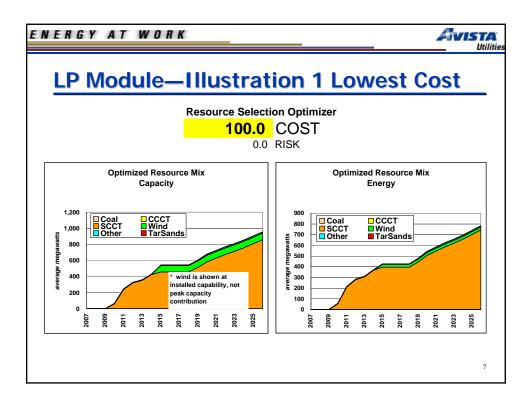


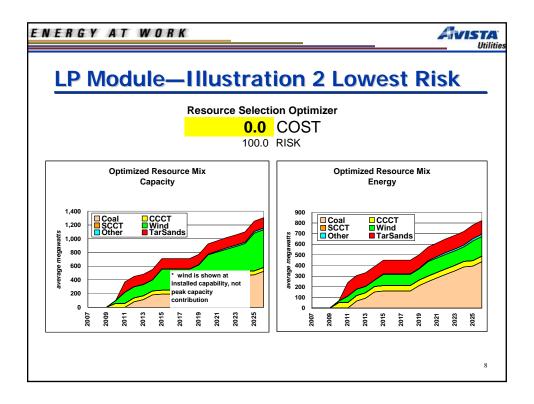


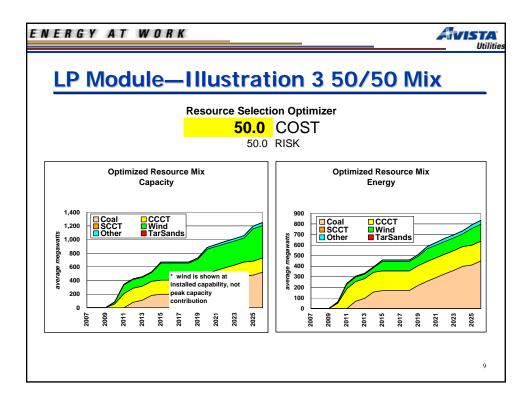


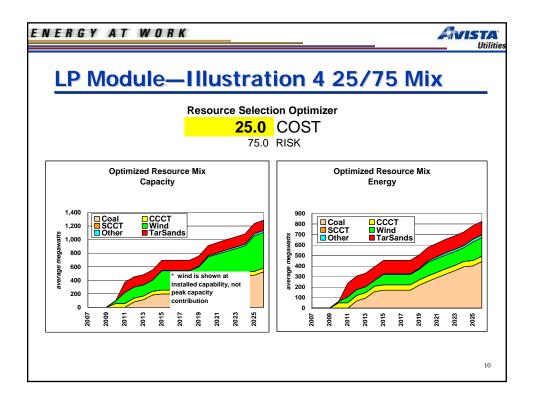


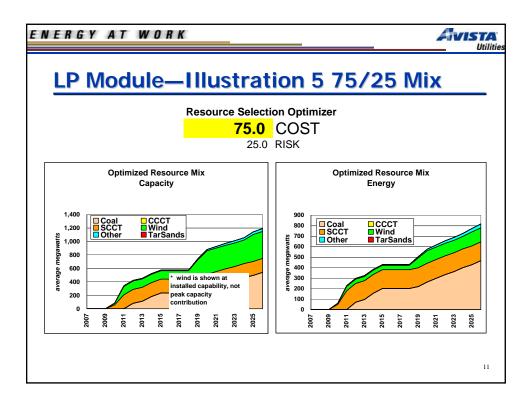


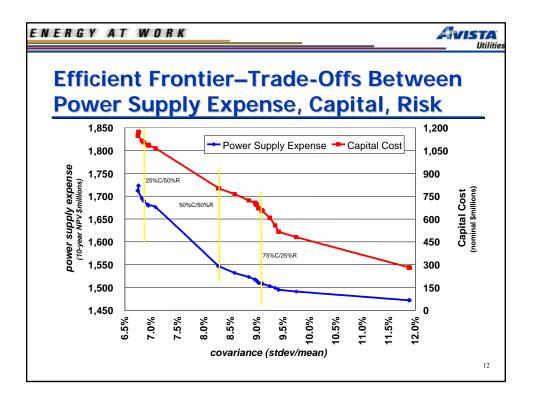

LP Module Optimization Routine

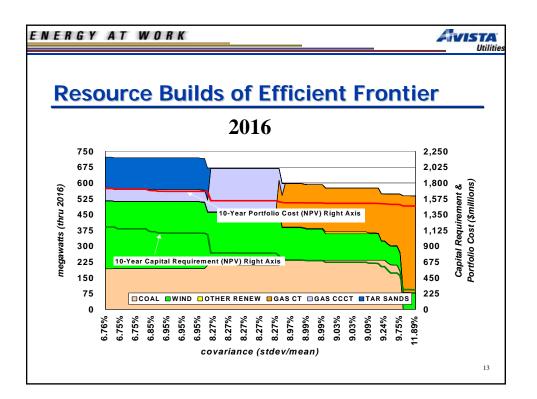

- Match Load Growth With Best Resources
- Weight First 10 Years of Study Heaviest
- Optimization For Mix of Low Cost and Low Risk
- Generate "Efficient Frontier"
 - Visual Basic code automates its creation
 - Illustrates trade-offs graphically
 - Cost, risk, capital requirements
 - Helps Avista determine an optimal mix

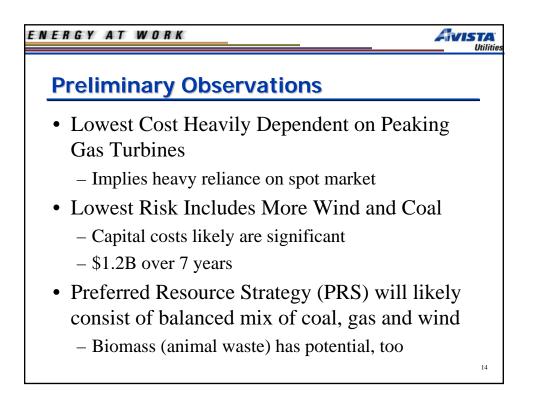


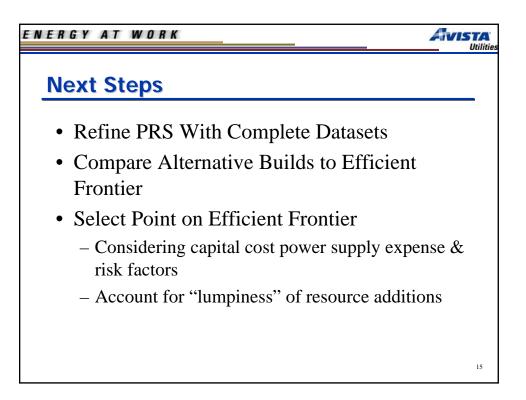


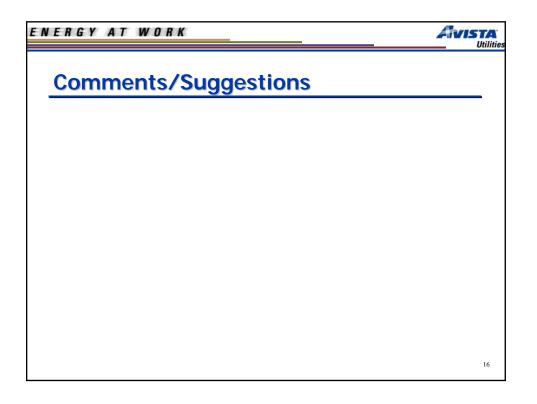












Avista Corporation Estimated Resource Integration Costs for the 2005 IRP April 29, 2005 Scott A. Waples

Introduction:

The Avista Merchant has requested integration costs for various resources that they might acquire in the future. Points of integration are critical for this discussion; however although these resources vary in fuel type, the type of generation is not material for much of this discussion and will be considered only when necessary (when, as in some wind or biomass development, 1000 MW in one facility is not likely).

Various integration points for new generation will be discussed below. It should be noted that rigorous study has not been completed for any of these alternatives (engineering judgment only), thus the costs provided are not of a "construction estimate" quality. Also note that as the size of the resource to be integrated increases, the certainty of the estimates becomes more suspect. A 50 MW resource can be integrated in many places on our (or other) systems. 350 MW can be integrated in specific areas, 750 MW in fewer; and at the high end- 1000 MW of new resource- a generic integration cost of \$1.5 billion has been assigned due to the uncertainty of impacts to the Avista system (and/or its neighboring systems). Should it become clear that Avista requires that size of resource, a detailed regional process would be undertaken to determine the exact impacts and integration costs.

Colstrip:

The present transmission system to the west of (and serving) the Colstrip generating complex is a double circuit 500 kV line. A regional study under the auspices of the Northwest Power Pool (NWPP) NTAC committee is presently underway to determine rough integration costs for such a project. Those studies are not yet complete, so the following estimates are subject to revision in the near future.

- 350 MW: It is expected that to integrate 350 MW at Colstrip, a 500 kV series capacitors and other reinforcements would be required. Cost: Approximately \$100M.
- 750 MW: It is expected that to integrate 750 MW at Colstrip, 500 kV series capacitors and other reinforcements (including 230 kV reinforcements in Eastern Washington) would be required. Cost: Approximately \$400M.
- 1000 MW: It is expected that major new 500 kV facilities would be required to integrate this capacity at Colstrip. Cost: Approximately \$1.5B.

Alberta Oil Sands, Mid Columbia Purchase, Nuclear Purchase, Kennewick Wind:

Presently there is no suitable method of integrating energy from the Alberta oil sands into the Avista system. Because of the distances involved, integration into the United States power grid at capacity levels less than 3000 MW is unlikely. Because of the capacity required for the economics of the project to "pencil", it is anticipated that transmission from the oil sands would be a Direct Current 500 kV line. We assume that one of the DC terminals would be at the Mid Columbia. Avista could then purchase portions of this energy to be delivered to its system from that market hub. It should be noted that a regional scoping effort is presently being undertaken to more closely estimate costs for this project, and thus these estimates should change in the near future.

The Mid Columbia Purchase option should be no different than the Oil Sands integration. Similarly, it is expected that power from a new nuclear plant would be delivered at the Mid Columbia for delivery into the Avista system.

- 350 MW: Estimated Cost: \$100M.
- 750 MW: Estimated Cost: \$150M.
- 1000 MW: Cost: Approximately \$600-800M.

<u>Rosalia:</u>

The present transmission system serving the Rosalia, Washington, area is a low capacity 115 kV line. It might be suitable for integration of 40-50 MW in its present configuration, however by the end of 2007, this line will be reconstructed to a high capacity 230 kV line.

- 350 MW: It is expected that to integrate 350 MW at Rosalia, very little new transmission would be required. Cost: Approximately \$10M.
- 750 MW: It is expected that to integrate 350 MW at Sprague, additional 230 kV reinforcement would be required in the Avista system. Cost: Approximately \$80M.
- 1000 MW: It is expected that major new 500 kV facilities would be required to integrate this capacity at Sprague. Cost: Approximately \$1.5B.

<u>Rathdrum:</u>

The present transmission system serving the Rathdrum, Idaho, area is a high capacity double circuit 230 kV line.

- 350 MW: It is expected that to integrate 350 MW at Rathdrum, very little new transmission would be required. Cost: Approximately \$20M.
- 750 MW: It is expected that to integrate 350 MW at Rathdrum, additional 230 kV reinforcement would be required in the Avista system. Cost: Approximately \$70M.
- 1000 MW: It is expected that major new 500 kV facilities would be required to integrate this capacity at Rathdrum. Cost: Approximately \$1.5B.

Sprague:

The present transmission system serving the Sprague, Washington, area is a low capacity 115 kV line. This line might be suitable for integration of 40-50 MW in its present configuration, however new 230 kV construction would be required for any larger amount of generation.

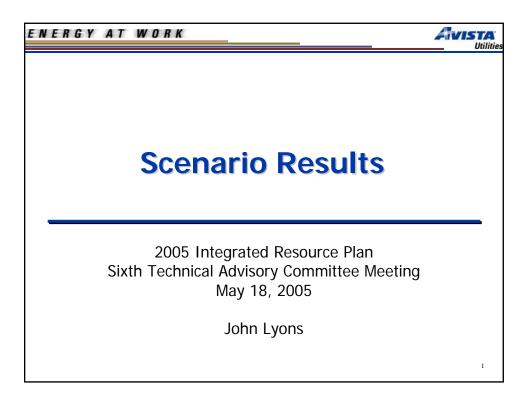
- 350 MW: It is expected that to integrate 350 MW at Sprague, a double circuit 230 kV line would be constructed between the plant and the Spokane area. Cost: Approximately \$50M.
- 750 MW: It is expected that to integrate 350 MW at Sprague, a high capacity double circuit 230 kV line would be constructed between the plant and the Spokane area. Additional transmission would be required between the site and the Mid Columbia. Cost: Approximately \$100M.
- 1000 MW: It is expected that major new 500 kV facilities would be required to integrate this capacity at Sprague. Cost: Approximately \$1.5B.

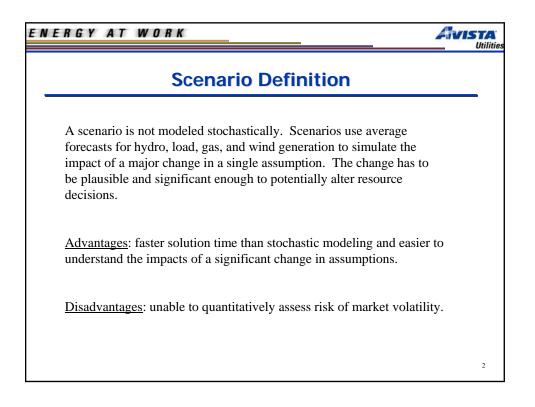
Eastern Montana Wind:

The present transmission system to the west of (and serving) the present generation in Montana is a double circuit 500 kV line. A regional study under the auspices of the Northwest Power Pool (NWPP) NTAC committee is presently underway to determine rough integration costs for wind integration from eastern Montana. Those studies are not yet complete, so the following estimates are subject to revision in the near future.

- 350 MW: It is expected that to integrate 350 MW at Sprague, a double circuit 230 kV line would be constructed between the plant and the Spokane area. Cost: Approximately \$150M.
- 750 MW: It is expected that to integrate 350 MW at Sprague, a high capacity double circuit 230 kV line would be constructed between the plant and the Spokane area. Additional transmission would be required between the site and the Mid Columbia. Cost: Approximately \$450M.
- 1000 MW: It is expected that major new 500 kV facilities would be required to integrate this capacity at Sprague. Cost: Approximately \$1.5B.

Othello Area Wind


Project sizes of between 80-150 MW have been proposed for the Othello area. Depending upon the final project size, location, and timing, integration costs could vary from \$10M to \$70M. Detailed studies would need to be completed to optimize the transmission in this area if this wind development were to occur.


Nevada Geothermal:

Generation from Nevada would have to be wheeled over other systems. Costs for this alternative is not known.

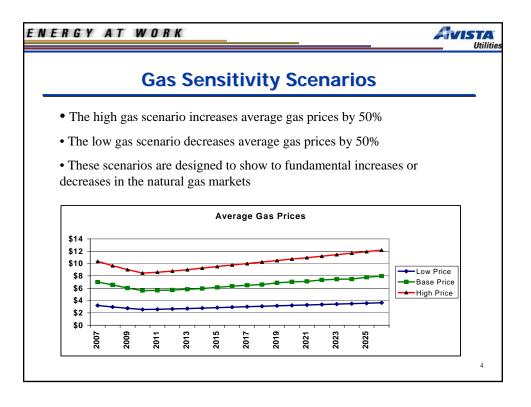
Landfill Biomass, Manure Biomass

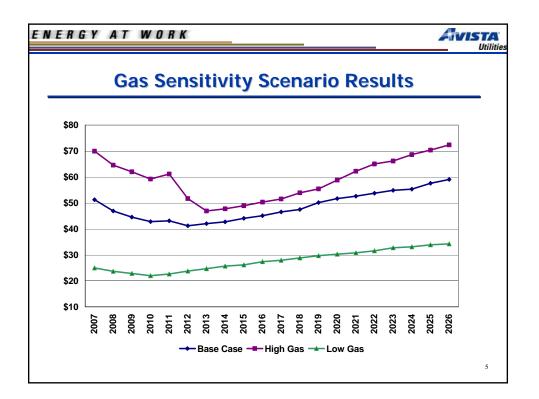
Biomass generation is expected to be small. Integration costs are not known.

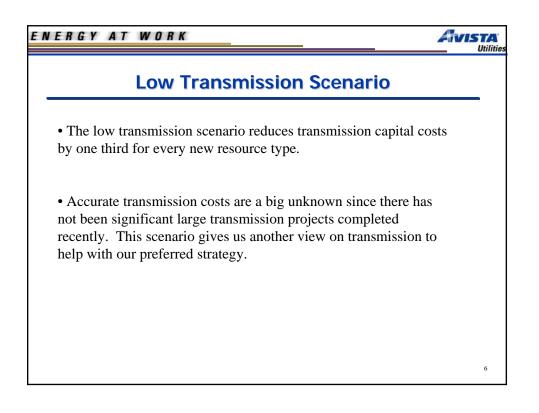
3

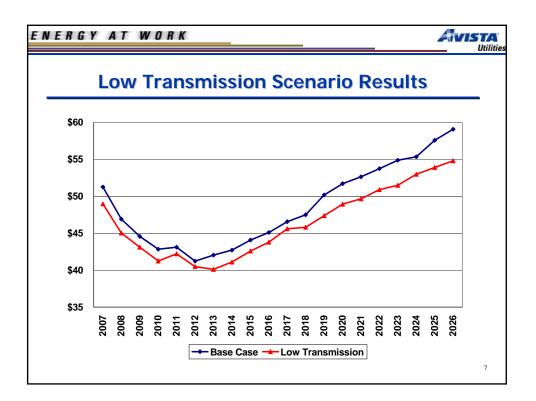
Scenario Process

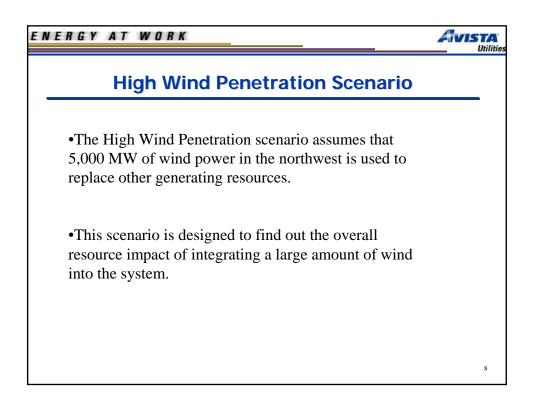
• Each of the scenarios were developed to help us understand the impact of a significant change in our assumptions about the future.

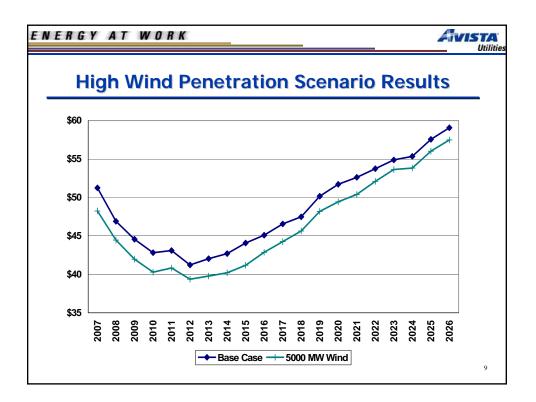

• The values of different resources will fluctuate under different scenarios. The different resource values will be included in the final IRP.

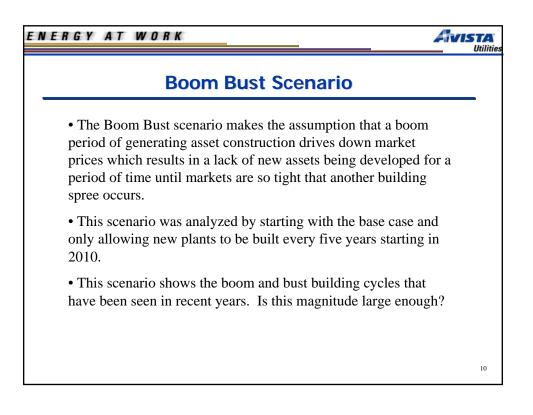

• A wind plant will be worth more than a coal plant in a high carbon tax environment.

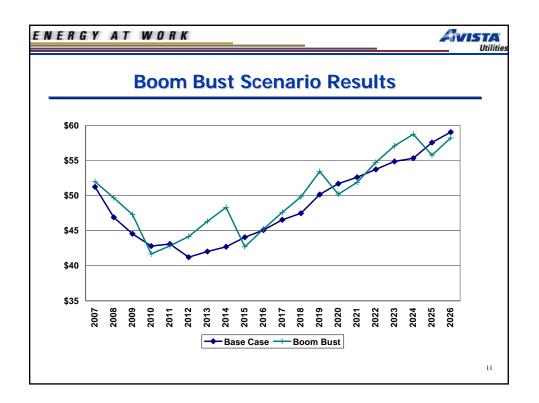

• An overall increase in the gas market will change marginal resources.

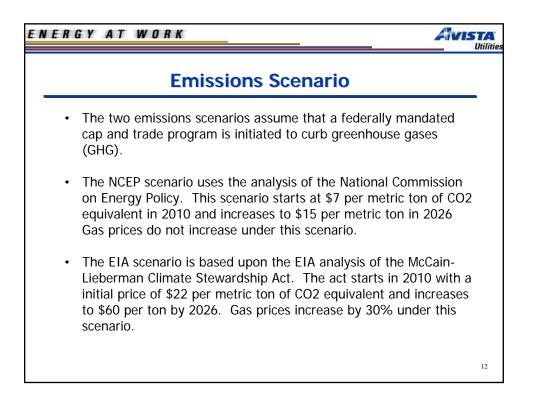

• These examples show our understanding of the general direction of resource changes under different scenarios, but we still need to calculate the scenarios to understand the magnitude of the changes.

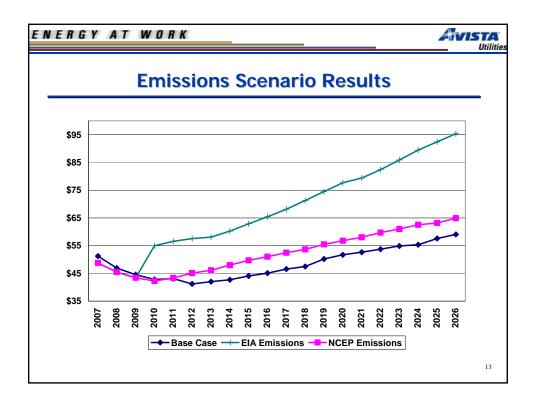

• Some scenarios are calculated using Aurora because the entire WECC marketplace will be affected, while others are more easily solved outside of Aurora because they only affect Avista.

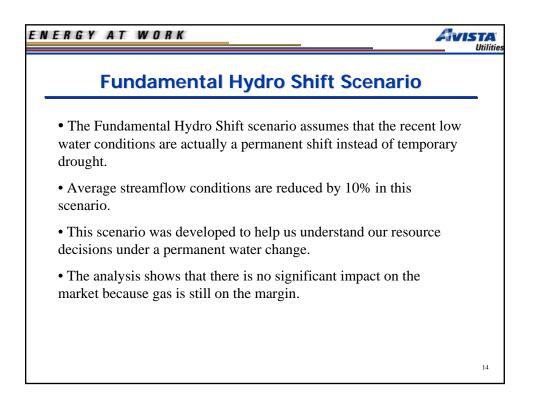


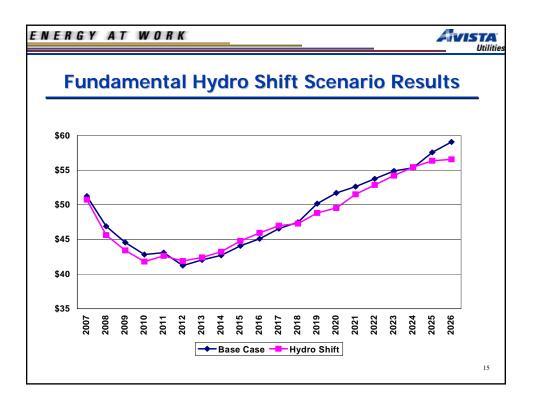


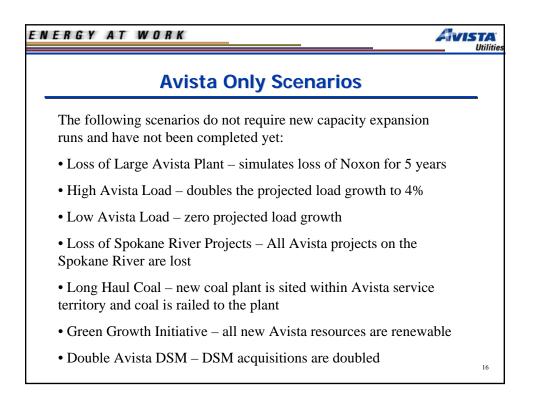


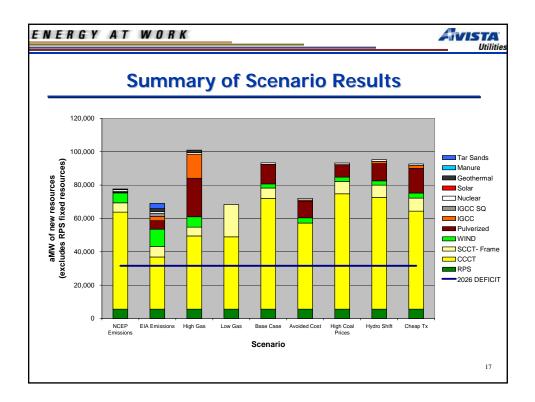


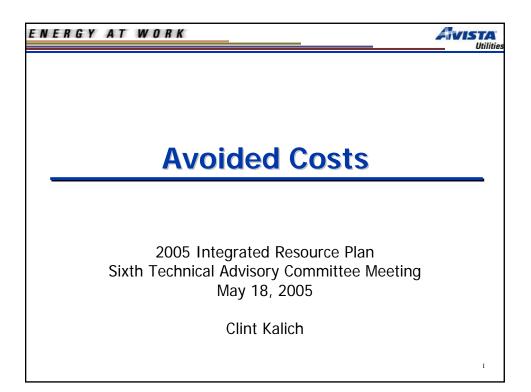


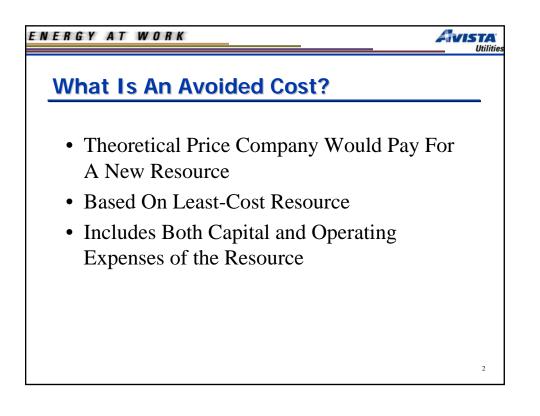


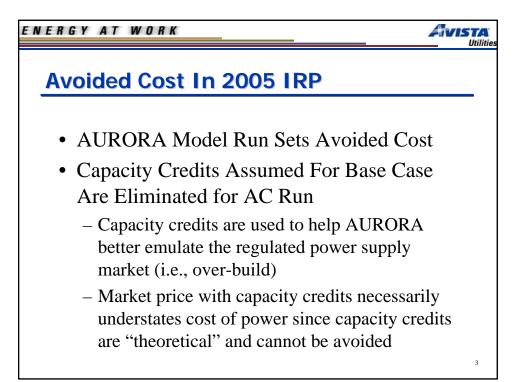


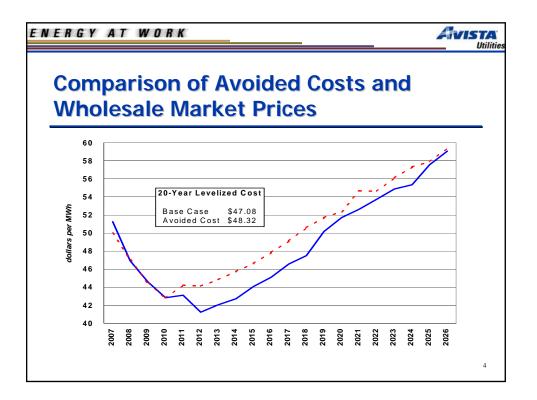


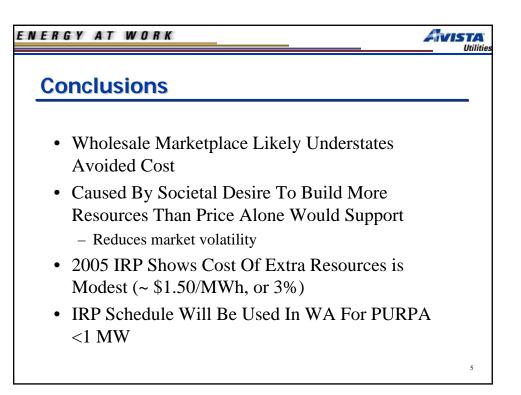


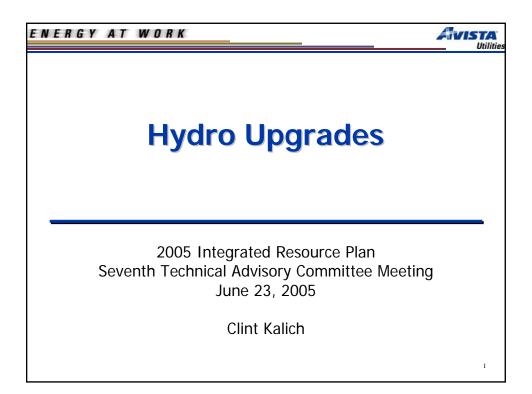


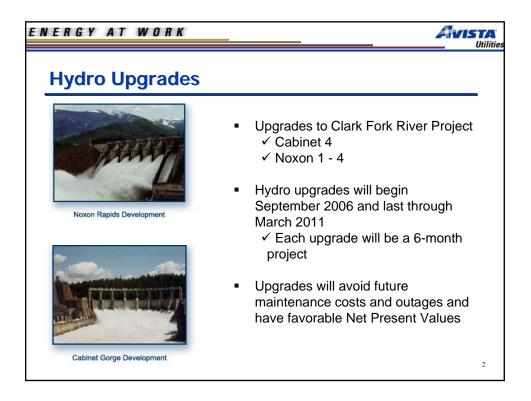


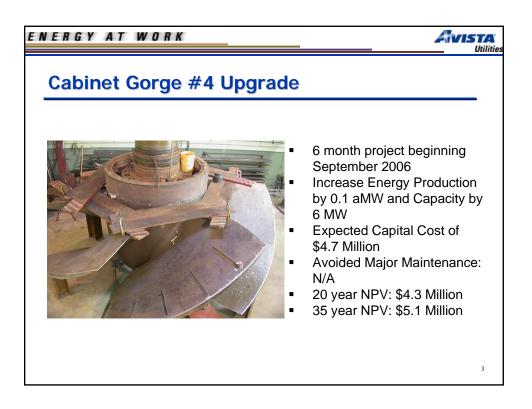


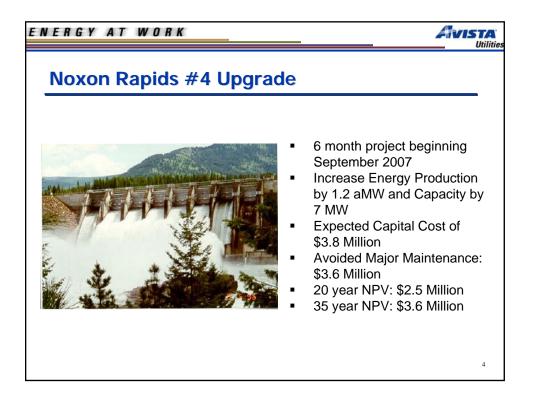


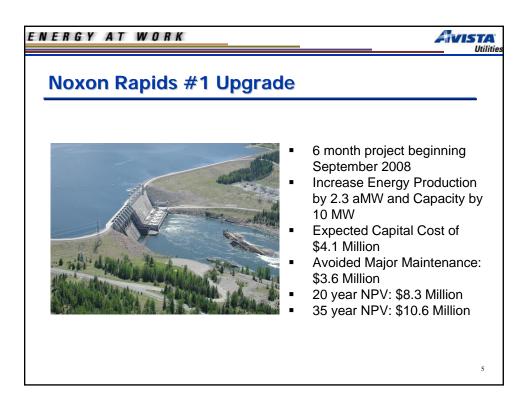


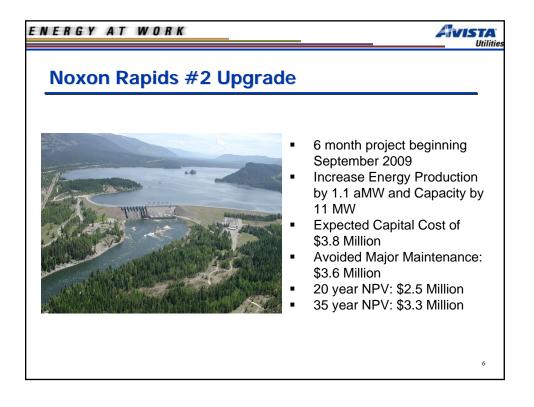


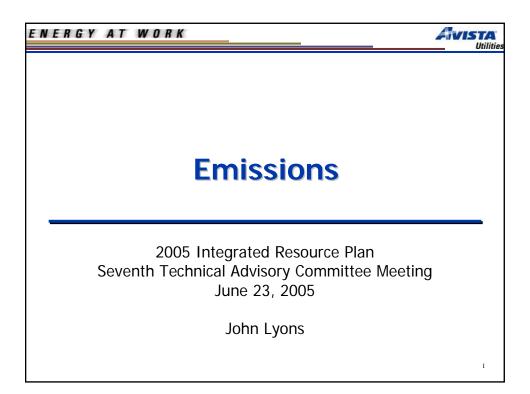


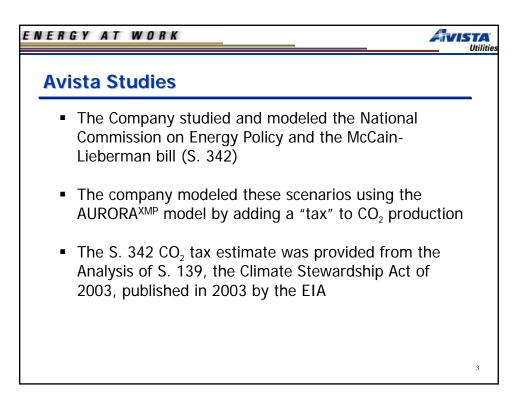


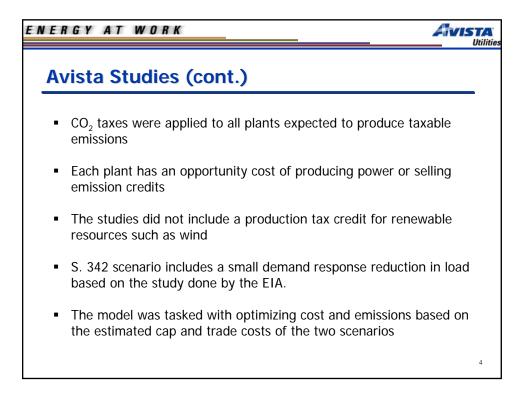


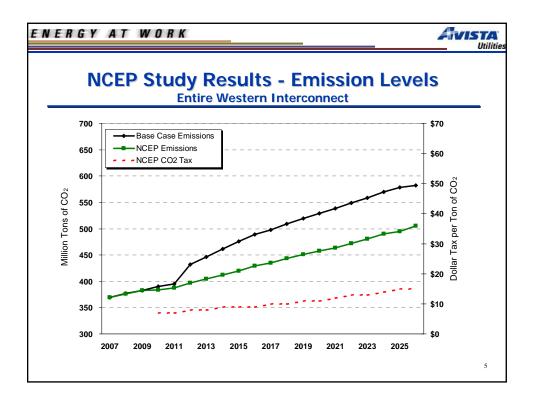


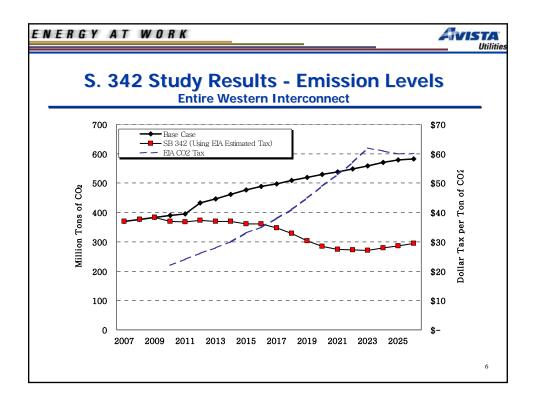




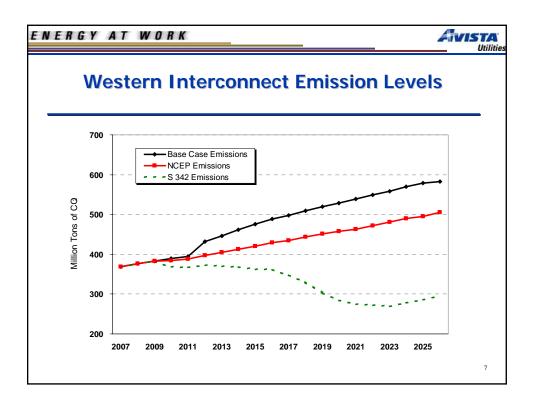


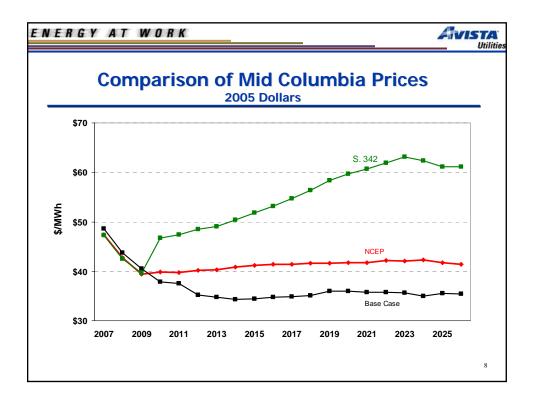

Noxon Rapids #3 Upgrade	
	6 month project beginning September 2010 Increase Energy Production by 1.3 aMW and Capacity by 10 MW Expected Capital Cost of \$3.9 Million Avoided Major Maintenance: \$3.6 Million 20 year NPV: \$5.3 Million 35 year NPV: \$6.8 Million

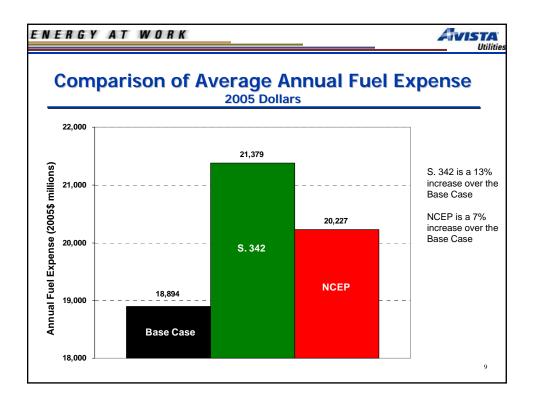

<u>Year</u>	<u>Cab 4</u>	<u>Nox 1</u>	<u>Nox 3</u>	Nox 4	Nox 2	<u>Total</u>
Capacity (MW)	7.0	10.0	10.0	7.0	11.0	45.0
Generation (GWh)	0.6	20.4	11.8	10.2	8.8	51.8
Generation (aMW)	0.1	2.3	1.3	1.2	1.0	5.9
Capital Cost (\$millions)	4.7	4.1	3.9	3.8	3.8	20.3
Avoided Major Maint. (\$millions)	0.0	3.6	3.6	3.6	3.6	14.4
35-Year NPV (\$millions)	5.1	10.6	6.8	3.6	3.3	29.4
20-Year NPV (\$millions)	4.3	8.3	5.3	2.5	2.5	22.9

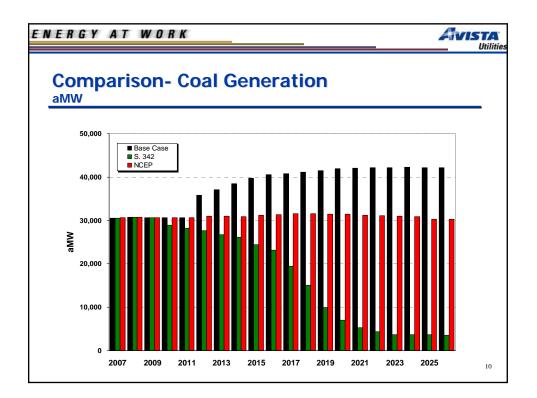


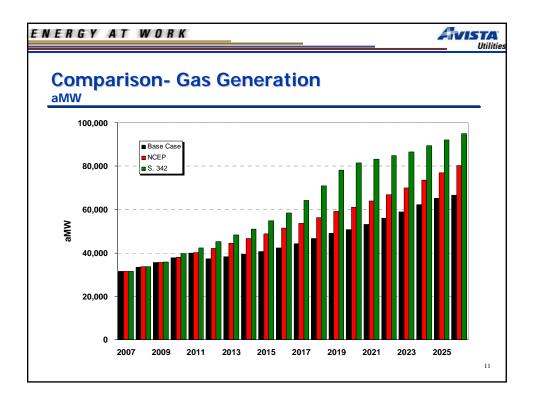
IERGYAT WORK	ST/A Utilit
Current Emissions News	
 Senator Jeff Bingaman (D-NM) recently considered legislation similar to the National Commission on Energy Policy recommendations 	_
 The Amended McCain-Lieberman bill was defeated on June 22nd in favor of the voluntary reductions by Senator Chuck Hegel (R-Neb.) 	
 Another attempt to reduce greenhouse gas emissions is to require a 10% renewable portfolio standard (net of hydro) by 2020 	
	2

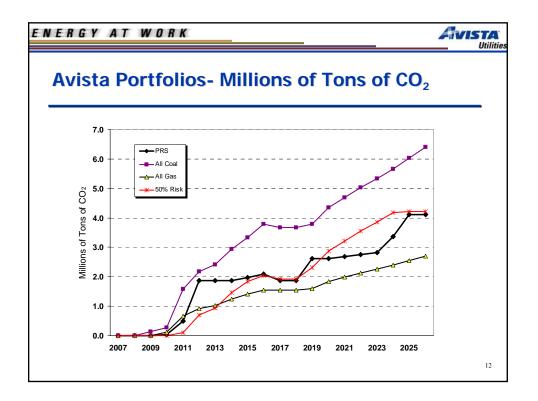


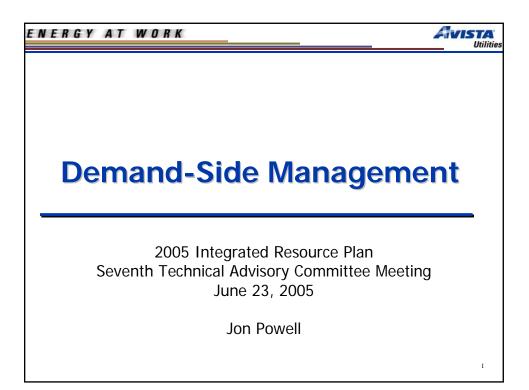


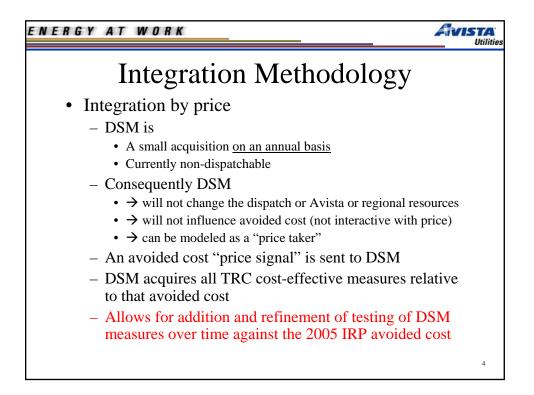


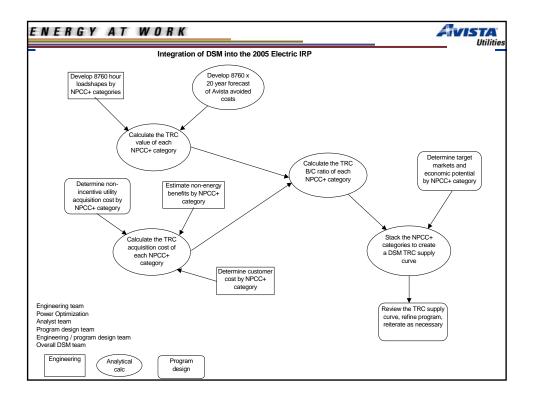


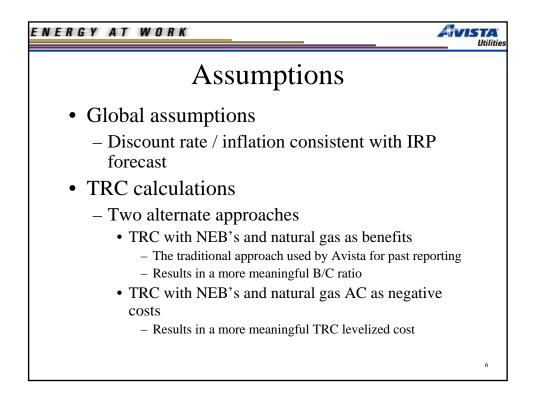

Appendix C 245

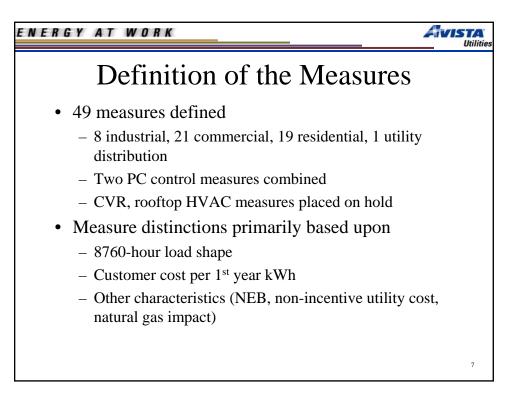


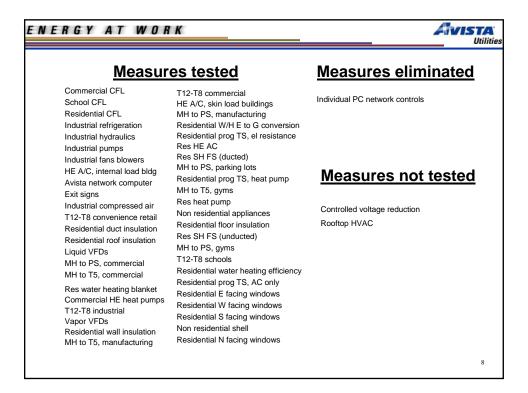


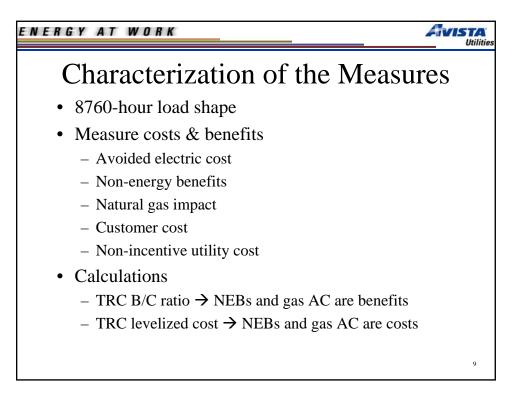


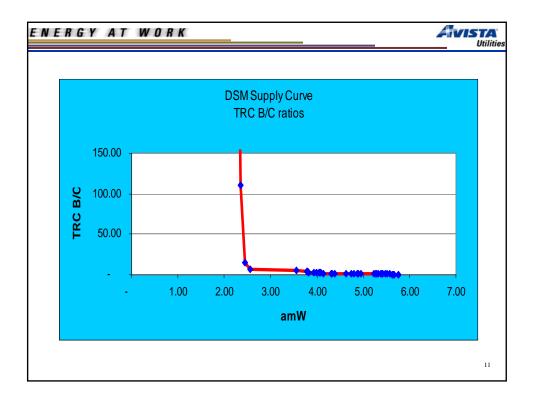


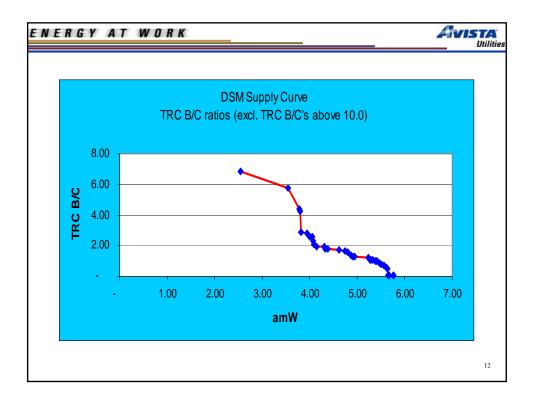


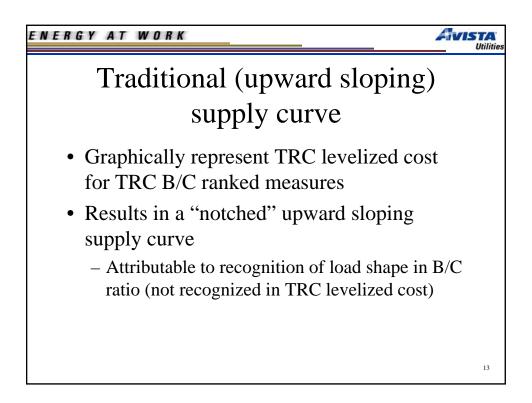

ENERGY AT WORK	
Overview	
 Defined 49 DSM measures 	
 Combined two measures into one 	
 Insufficient data to evaluate two measures 	
• Tested against a 8760-hour avoided cost +10%	
• 36 measures passed the TRC test	
• 5.4 amW (47.5 million kWhs) pass TRC test	
 Local acquisition component only 	
• Excludes 1.0 to 1.4 amW share of regional acquisition	
 Local acquisition 19% over current goal 	
– Local +regional acquisition 41% to 49% over current	
– Overall acquisition goal exceeds share of NPCC goal	
• Applying IRP results in completing the tactical st Avista's 2006 DSM business plan	age of

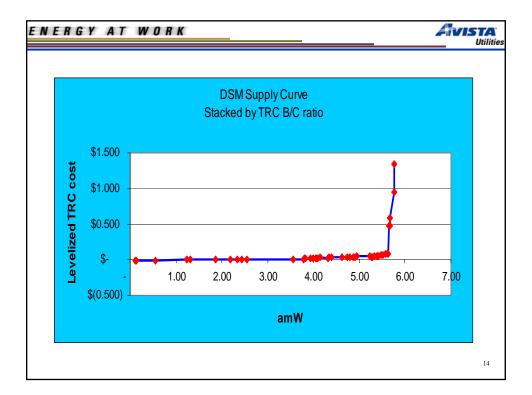


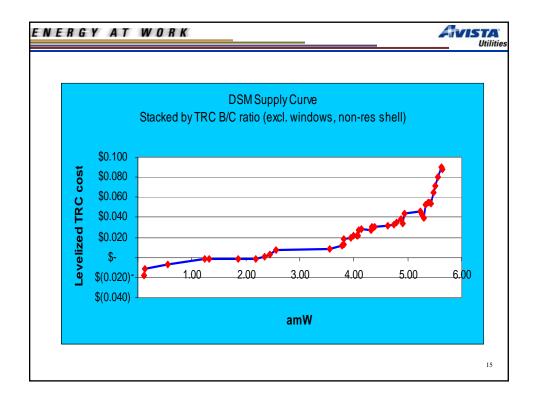











ENERGYAT WORK	Utilities
The Analysis	
Began with complete indexing to historical acquisition	
Iterative improvement process	
 Fine-tuned to maximize net TRC benefits 	
• Aggregate resource acquisition tested ranged from 4.1 amW to 7.0 amW	
 Final test portfolio consisted of 5.8 amW 5.4 amW of this passing the TRC test 36 of 46 measures tested passed 	
 All evaluated measures stacked by TRC B/C Creating a <u>downward</u> sloping supply curve Methodology allows for post-IRP refinement to be 	
integrated into DSM operations	10

