
Appendix

2009

Electric Integrated Resource Plan

Appendix A – Technical Advisory Committee Meeting Presentations

August 31, 2009

2009 Integrated Resource Plan

Technical Advisory Committee Meeting No. 1 Agenda May 14, 2008

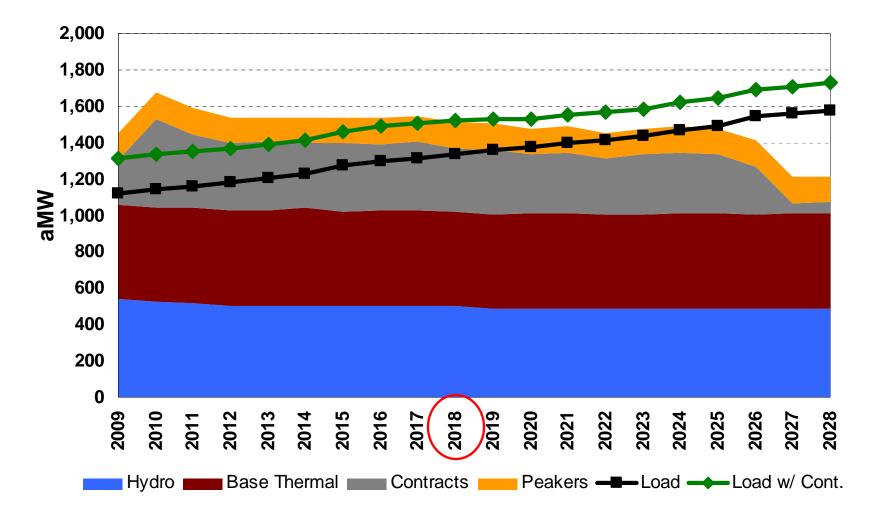
	Торіс	Time	Staff					
1.	Introduction	10:30	Vermillion					
2.	Load & Resource Balance Update	10:35	Gall					
3.	Climate Change Update	11:15	Lyons					
4.	Lunch	12:15						
	Special Guest - Steve Silkworth- update on renewable acquisitions							
5.	Loss of Load Probability Analysis	1:15	Gall					
6.	2009 IRP Topic DiscussionsWork PlanAnalytical Process ChangesOther	2:00	Kalich					
7.	Adjourn	3:30						

Load and Resource Balance Forecast

James Gall

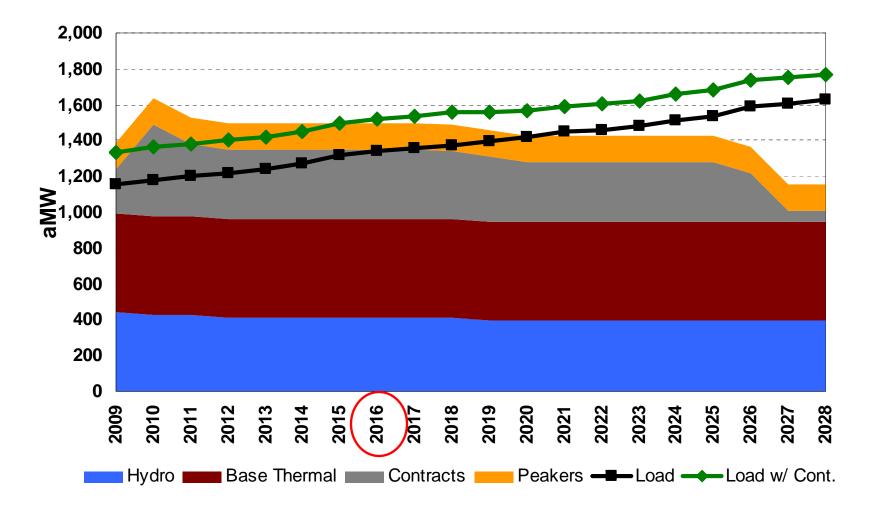
2007 IRP L&R Review

- Capacity & Energy short beginning 2011
- Load is expected to grow at 2.3% over the next 10 years, and 2.0% over the next twenty years
- Lancaster will be added to the utility's portfolio beginning in 2010, pushing our deficit out to 2015 for capacity and 2017 for energy

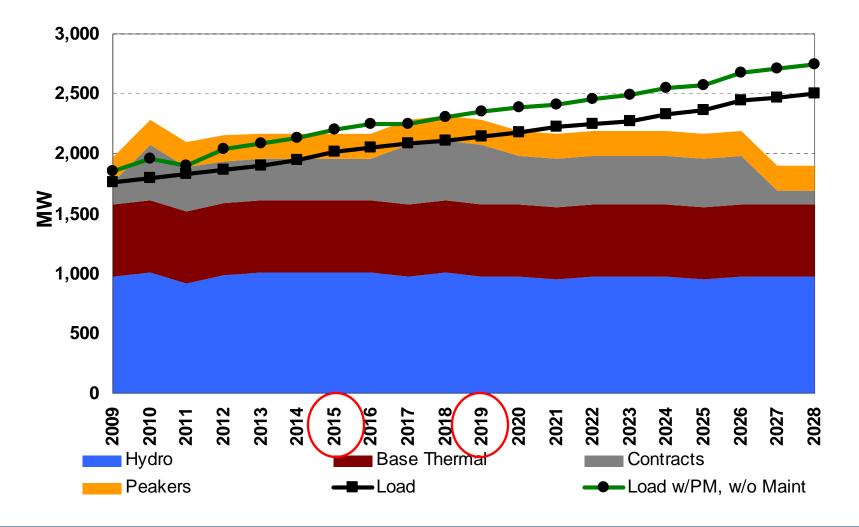

Current L&R

What's Changed:

- Lancaster- 270 MW CCCT in Rathdrum, ID will be available Jan 1, 2010
- Load- 10 year growth rate 1.9%, 20 year growth rate 1.8% for Peak and Energy. The 2010 forecast is 52 aMW lower than previous forecast or 4.4% lower, due to slow down in growth and implementation of conservation programs.
- Hydro- Uses 2006/07 Northwest Power Pool Headwater benefits study, mean energy is used versus median energy [-8 aMW]
- Misc- Updates to contracts, most from WNP-3 expected availability [+22 aMW]



Annual Average Energy Position



Annual Average Energy Position (exclude Q2)

Annual Position at System Peak

Washington State RPS (aMW)

On-line Year	<u>2009</u>	<u>2010</u>	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2015</u>	<u>2016</u>	<u>2017</u>	<u>2018</u>	<u>2019</u>	<u>2020</u>
Native Load (Excludes Potlatch)	1,012	1,034	1,053	1,074	1,094	1,121	1,153	1,177	1,194	1,211	1,233	1,253
WA State Load	659	674	686	700	713	730	751	767	778	789	803	816
Load 10% Change of Exceedance	28	29	29	30	30	31	32	33	33	34	34	35
Planning RPS Load	687	702	715	729	743	761	783	799	811	822	837	851
RPS %	0%	0%	0%	3%	3%	3%	3%	9%	9%	9%	9%	15%
Required Renewable Energy	0.0	0.0	0.0	21.3	21.7	22.1	22.6	69.5	71.2	72.5	73.5	124.5
Current Qualifying Resources												
Stateline 1999	7.6	7.6	7.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Lake 3 1999	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Little Falls 4 2001	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Cabinet 2 2004	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9
Cabinet 3 2001	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Cabinet 4 2007	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Apprentice Credits	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Hydro 10% Chance of Exceedance	<u>(4.1)</u>	(4.1)										
Total Qualifying Resources	16.1	16.1	16.1	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5
Net Requirement Need (Completed)	0.0	0.0	0.0	12.8	13.2	13.6	14.1	61.0	62.7	64.0	65.0	116.0
Budgeted Hydro Upgrades												
Noxon 1 2009	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3
Noxon 2 2010	0.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Noxon 3 2011	0.0	0.0	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
Noxon 4 2012	0.0	0.0	0.0	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Little Falls 1 2015	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.6	0.6	0.6	0.6	0.6
Little Falls 2 2016	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.6	0.6	0.6	0.6
Apprentice Credits	0.5	0.7	0.9	1.2	1.2	1.2	1.3	1.4	1.4	1.4	1.4	1.4
Hydro 10% Chance of Exceedance	<u>(1.0)</u>	<u>(1.4)</u>	<u>(1.9)</u>	<u>(2.4)</u>	<u>(2.4)</u>	<u>(2.4)</u>	<u>(2.6)</u>	<u>(2.8)</u>	<u>(2.8)</u>	<u>(2.8)</u>	<u>(2.8)</u>	(2.8)
Total Budgeted Hydro Upgrades	1.8	2.6	3.6	4.5	4.5	4.5	5.1	5.6	5.6	5.6	5.6	5.6
Net Requirement Need (Budgeted)	0.0	0.0	0.0	8.2	8.6	9.1	9.0	55.3	57.1	58.3	59.4	110.4

Climate Change Update

John Lyons, Ph.D.

Climate Change Update

- Federal GHG legislation Overview of Lieberman-Warner Bill
- EPA Analysis of Lieberman-Warner
- EIA Analysis of Lieberman-Warner
- Washington Greenhouse Gas Legislation
- Regional Greenhouse Gas Initiative

Lieberman-Warner Climate Security Act of 2007

- Covers emissions of 10,000 mtco2 or greater
- ➢ GHG Emissions Reduction Goals:
 - 2012 2005 levels (5,775 mmtco2)
 - 2020 15% below 2005 levels (4,924 mmtco2)
 - 2030 35% below 2005 levels (3,860 mmtco2)
 - 2040 50% below 2005 levels (2,796 mmtco2)
 - 2050 70% below 2005 levels (1,732 mmtco2)
 - 2007 total U.S. GHG emissions were about 6,000 mmtco2

Lieberman-Warner Climate Security Act of 2007

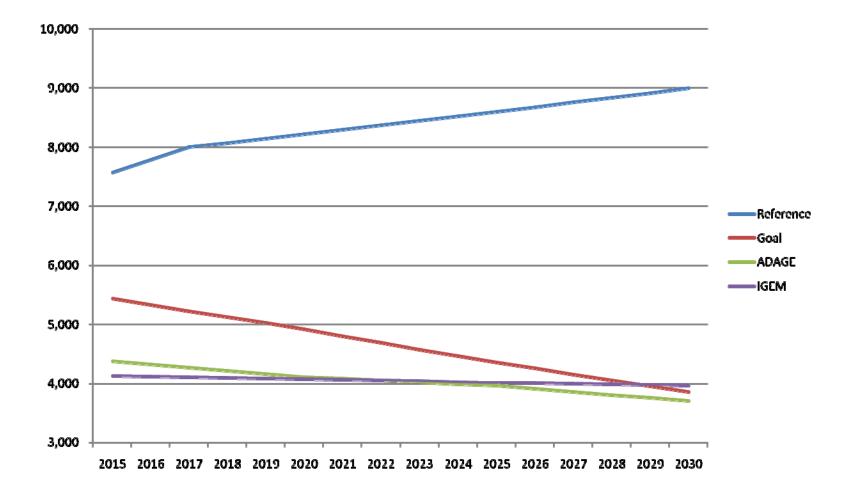
> 73.5% of allowances distributed for free in 2012 to 14 different groups, free allocations decrease over time

> Allows unlimited banking and trading of allowance

Borrowing is from EPA is allowed with interest for up to 15% of obligations

➤ 30% of reductions can be offsets (15% domestic and 15% international)

Establishes a Carbon Market Efficiency Board to monitor and intervene in the carbon market



EPA Analysis of Lieberman-Warner

- Reference Case
- S. 2191 Scenario
- S. 2191 Scenario with Low International Actions
- ➤ S. 2191 Scenario Allowing Unlimited Offsets
- ➤ S. 2191 Scenario with No Offsets
- ➤ S. 2191 Constrained Nuclear and Biomass
- ➤ S. 2191 Constrained Nuclear, Biomass, and CCS
- S. 2191 Constrained Nuclear, Biomass, and CCS + Beyond Kyoto + Natural Gas Cartel
- Alternative Reference Scenario
- ➤ S. 2191 Alternative Reference Scenario

U.S. Carbon Footprint Projections 2015 – 2030

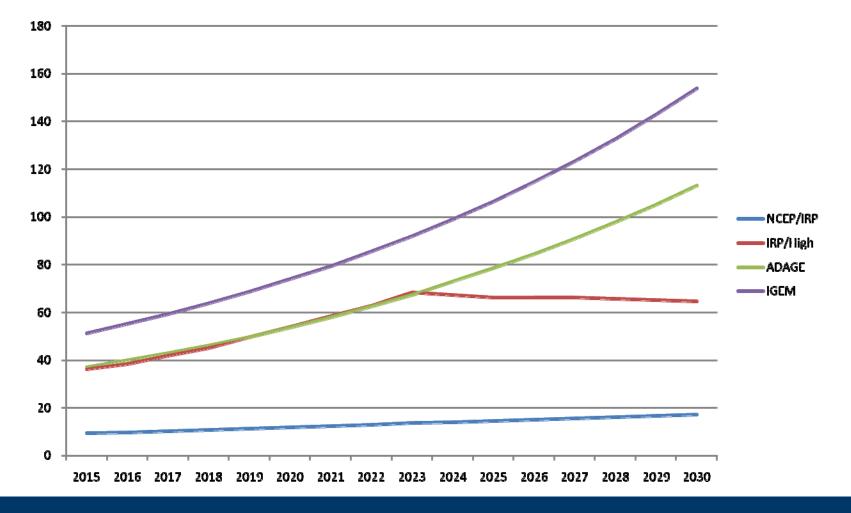
Federal Spending of Auctioned Credits

	ADA	GE	IGEM		
Category	2015	2030	2015	2030	
Administration of S. 2191 (assumed to be 1% of auction revenues)	1.6	2.3	2.2	3.2	
Zero or Low-Carbon Energy Technologies Deployment	7.8	23.7	10.9	32.7	
Advanced Coal and Sequestration Technologies Program	6.1	18.5	8.5	25.6	
Fuel from Cellulosic Biomass Program	1.5	4.4	2.0	6.1	
Advanced Technology Vehicles Manufacturing Program	2.9	8.9	4.1	12.3	
Sustainable Energy Program	6.1	18.5	8.5	25.6	
Energy Consumers	8.5	25.6	11.7	35.4	
Climate Change Worker Training Program	2.4	7.1	3.3	9.8	
Adaptation for Natural Resources in the U.S. and Territories	8.5	25.6	11.7	35.4	
International Climate Change Adaptation and National Security Program	2.4	7.1	3.3	9.8	
Emergency Firefighting Program	1.2	1.2	1.2	1.2	
Energy Independence Acceleration Fund	0.9	2.8	1.3	3.9	
Total	49.9	145.7	68.7	201.0	

ADAGE (Applied Dynamic Analysis of the Global Economy - Ross 2007)

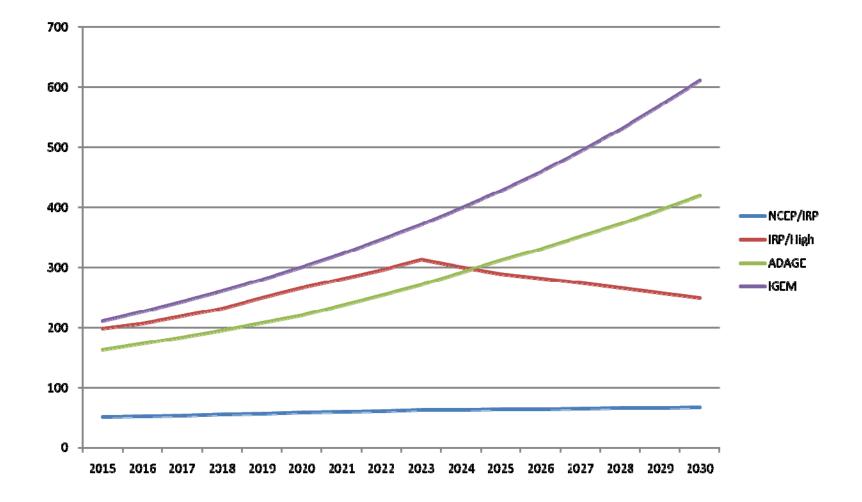
IGEM (Intertemporal General Equilibrium Model - Jorgenson 2007)

Value of Auctioned & Allocated Allowances


	ADA	GE	IGEM		
Category	2015	2030	2015	2030	
Subtitile A - Auctions (pre-spent by Feds)	47.0	147.0	64.0	201.0	
Subtitle B - Early Action	3.0	0.0	4.0	0.0	
Subtitle C - States	18.0	26.0	24.0	35.0	
Subtitle D - Electricity Consumers	14.0	21.0	20.0	29.0	
Subtitle E - Natural Gas Consumers	3.0	5.0	4.0	6.0	
Subtitle F - Bonus Allowances for CCS	6.0	9.0	9.0	13.0	
Subtitle G - Domestic Ag/Forestry	8.0	12.0	11.0	16.0	
Subtitle H - International Forest Protection	4.0	6.0	5.0	8.0	
Subtitle I - Transition Assistance	54.0	6.0	74.0	9.0	
Subtitle J - Landfill / Coal Mine CH4 Allowance Set - Asides	2.0	2.0	2.0	3.0	
Total	159.0	234.0	217.0	320.0	
net of customer "refunds"	142.0	208.0	193.0	285.0	
customer refund %	11%	11%	11%	11%	

ADAGE (Applied Dynamic Analysis of the Global Economy - Ross 2007)

IGEM (Intertemporal General Equilibrium Model - Jorgenson 2007)



EPA Analysis of U.S. Carbon Emission Cost (\$/Metric Ton)

EPA Analysis Total U.S. Carbon Emission Cost (\$billions)

AVISTA

EIA Analysis of Lieberman-Warner

- Analysis included 7 cases
- Reference Case
- ➤ S. 2191 Core
- No International Offsets Case

> S. 2191 High Cost (CCS, Nuclear and biomass costs 50% higher than in the base case)

- ➤ S. 2191 Limited Alternatives
- S. 2191 Limited Alternatives / No International Offsets
- ➤ S. 1766 Update (Low Carbon Economy Act of 2007)

EIA Analysis Results

As expected, impacts directly related to the availability and cost of low-carbon technologies such as CCS and nuclear, as well as the availability of international offsets

Results are also dependent upon the assessment of the current high commodity prices being permanent or temporary

- Most reductions before 2030 are electricity-related
- ➢ GDP reductions in the S. 2191 cases
 - ➤ 2020: 0.3% to 0.9%
 - > 2030: 0.3% to 0.8%
 - Higher manufacturing impacts

EIA Analysis Results

Significant increases in new capacity because of early retirement of coal plants through 2030

There are limited opportunities in the electric power industry after 2030 because the most GHG-intensive plants will have been retired, but population growth will require new generation

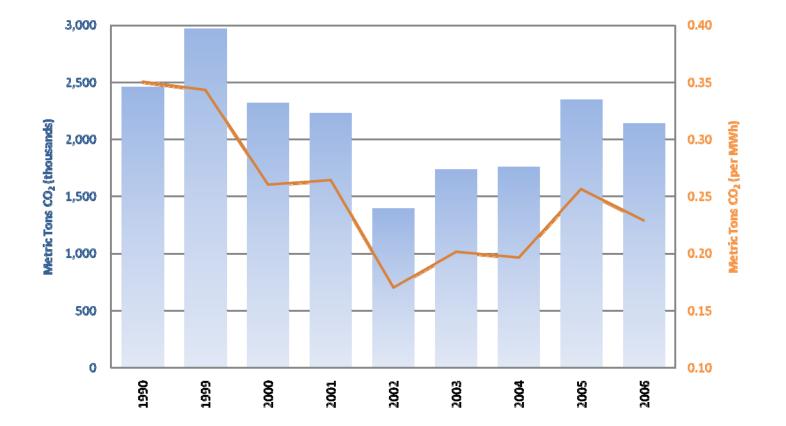
- Delivered coal prices increase 405% to 804% in 2030 (2006\$)
- ➤ Natural gas prices increase 34% to 107% in 2030 (2006\$)
- Retail gasoline prices increase \$0.41 to \$1.01 in 2030

Washington State GHG legislation

Washington state has three different laws that directly impact GHG emissions and electric resource planning:

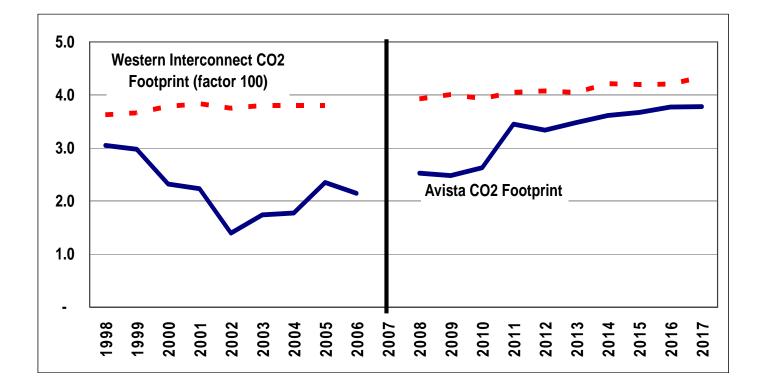
- Washington Energy Independence Act (I-937): 15% of new generation must be renewable by 2020
- SB 6001: Limits new base load generation to 1,100 pounds of CO₂ per MWh
- HB 2815: Sets GHG reductions goals for the state as part of the Western Climate Initiative

Washington HB 2815


Goals are set to meet Washington's share of the Western Climate Initiative

- > 2020 Below 1990 levels
- > 2035 25% below 1990 levels
- ≥ 2050 50% below 1990 levels

May 2008: Guidelines are expected to be released by Department of Ecology



Avista Generation Carbon Footprint (WRI-WBCSD Protocols, Selected Years 1990-2006)

Avista/WI Generation Carbon Footprint (millions of tons)

Regional Greenhouse Gas Initiative (RGGI)

- Begins January 1, 2009
- Memorandum of understanding signed in 2005 and includes 10 northeastern states
- \succ Caps CO₂ emissions from all power plants greater than 25 MW
- Emissions capped at 121 million short tons per year from 2009 through 2014
- ➤ 2015 2019 emissions cap reduced by 10%
- 25% of allowances must be strategic or customer oriented in nature
- Some offsets allowed amount tied to allowance price
- ➢Quarterly auctions beginning in September 2008 with most states having 100% auctions

Loss of Load Probability

James Gall

What is Loss of Load Probability?

A measure of the probability that a system demand will exceed capacity during a given period; often expressed as the estimated number of days over a long period, frequently 10 years or the life of the system.

- U.S. Department of Energy

Our study is measured as # of draws where there was a loss of load, for example 1 in 20 draws, is 5%.

LOLP Model Overview

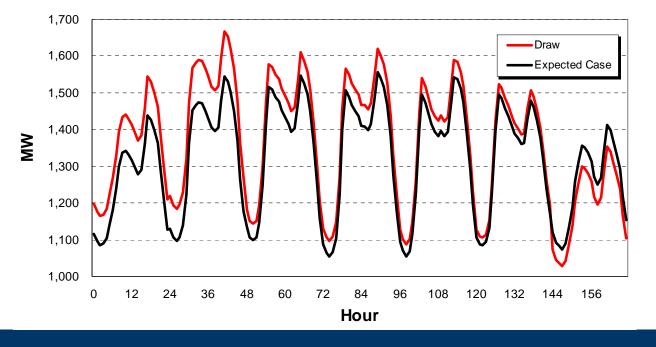
What is it?

- Estimates the probability that not all of load will be served in a given simulation
- Uses available capacity for a given week in January and August
- Simulates major random events, such as wind, hydro, load, and forced outages
- Used to validate planning margin in IRP forecast period

What it is <u>not</u>?

- Energy dispatch model
- Financial costs are not considered
- No estimates for localized transmission/distribution outages
- Does not take into account natural disaster/terrorism related outages

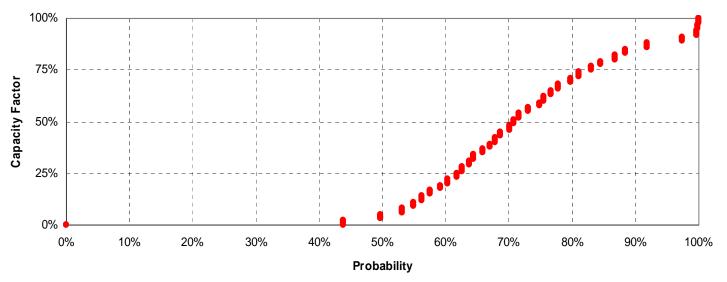
How It Works


Runs for 168 continuous hours (7 days) in January & August

- 1) Load is estimated (-)
- 2) Available capacity from thermal resources (+)
- 3) Run of river hydro (+)
- 4) Wind shape calculated (+)
- 5) Contracts are netted (+/-)
- 6) Available storage hydro is shaped to high load hours (+) [LP]
- 7) Market energy purchased up to an assumed limit (+) [LP]
- 8) Federal hydro release from upstream storage (+) [LP]
- 9) If load is not served in one or more hours, loss of load occurs

Load

- Uses actual 2007 hourly load shapes for January and August
- Each day an amount of energy is drawn,
 - Correlated to previous day to simulate cold and hot snaps,
 - Based on historic weekly energy shape, and
 - Normal distributions are assumed


Hydro

- Available energy is a random draw from 70 year historical record from the Northwest Power Pool
- Run-of-River projects use this energy shaped to historical flow
- Storage projects use a Linear Program (LP) to move hydro energy to more valuable hours subject to storage constraints and minimum and maximum capacity.
- Plants can spill energy, and draft reservoirs to minimum level
- Scenarios can be studied with/without federal hydro release from upstream storage to prevent load loss

Wind

- Hourly shape based on expected mean energy and frequency distribution for on/off peak hours by month
- Hour to hour correlation
- Future enhancement will have projects correlated

January: On-Peak

Forced Outages

- For each plant:
 - Forced Outage Rate (FOR)
 - Mean Time To Repair (MTTR)
 - Ramp Rate
- For each hour a unit has a probability of an outage, calculated as:

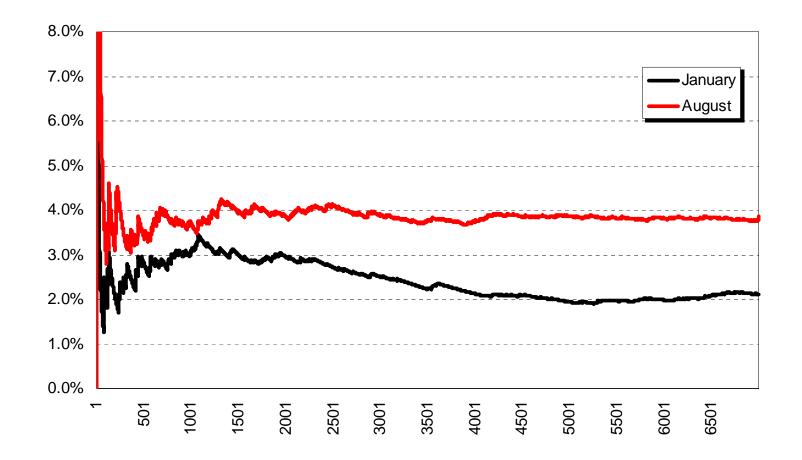
Outage Probability = FOR x 8760 / MTTR / 52

e.g. 0.10 x 8760 / 24 / 52 = 70% chance of outage in the week or 0.42% in a given hour

 If an outage is drawn, another probability is calculated if the unit is to return to service, calculated as:

Return to Service if: Rnd# > 1 / MTTR, than "on", otherwise "off"

 If a unit has a ramp rate, such as 10 hours, the units available generation will increase linearly over 10 hours until it reaches maximum capability



2009 Results- Base Case

	January	August
Loss of Load	2.1%	3.8%
Market Reliance	47.6%	55.6%
Peak Load	2,023	2,005
Average Peak Load	1,656	1,492
Average Load	1,319	1,081
Available Market (MW)	300	300
Federal Hydro	0	0

How Many Iterations Do You Need?

2009 Results- Scenario 1, Less Market Opportunity 200 MW (on-peak), 300 MW (off-peak)

	January	August
Loss of Load	7.4%	12.1%
Market Reliance	47.3%	56.1%
Peak Load	2,053	1,841
Average Peak Load	1,656	1,494
Average Load	1,319	1,081
Available Market (MW)	200	200
Federal Hydro	0	0

2009 Results- Scenario 2, Increase Market Opportunity 400 MW of Market

	January	August
Loss of Load	0.4%	0.9%
Market Reliance	47.3%	56.1%
Peak Load	2,026	1,762
Average Peak Load	1,656	1,494
Average Load	1,319	1,081
Available Market (MW)	400	400
Federal Hydro	0	0

2020 Results- Scenario 3, Potential Future

	January	August
Loss of Load	3.3%	0.8%
Market Reliance	41.7%	19.6%
Peak Load	2,494	2,279
Average Peak Load	2,048	1,849
Average Load	1,631	1,338
Available Market (MW)	300	300
Federal Hydro	0	0

Adds: Lancaster (270 MW), Reardan (50 MW), CCCT (200 MW), Wind (200 MW)

2020 Results- Scenario 4, All Wind Future

	January	August
Loss of Load	9.8%	3.2%
Market Reliance	73.5%	51.8%
Peak Load	2,515	2,198
Average Peak Load	2,048	1,848
Average Load	1,629	1,138
Available Market (MW)	300	300
Federal Hydro	0	0

Adds: Lancaster (270 MW), Reardan (50 MW), CCCT (0 MW), Wind (400 MW)

2020 Results- Scenario 5, Flat Wind Future

	January	August
Loss of Load	6.0%	1.8%
Market Reliance	65.7%	39.0%
Peak Load	2,662	2,238
Average Peak Load	2,047	1,851
Average Load	1,630	1,339
Available Market (MW)	300	300
Federal Hydro	0	0

Adds: Lancaster (270 MW), Reardan (50 MW), CCCT (0 MW), Wind (400 MW)

2009 Results- Scenario 6, 5% LOLP Case

	January	August	
Loss of Load	4.9%	5.1%	
Market Reliance	47.5%	54.8%	
Peak Load	1,992	1,780	
Average Peak Load	1,657	1,493	
Average Load	1,319	1,080	
Available Market (MW)	235	270	
Federal Hydro	0	0	

What it takes to stay at 5% LOLP for 2009 if remove 100MW of market availability

- Remove 100MW of Market: 15.1%/15.9%
- Add 100MW of CCCT: 5.0%/5.4%
- Add 300MW of Wind: 7.9%/11.1%
- Add 600MW of Wind: 6.0%/8.3%

2009 Results- Scenario 7, Federal Hydro 16 hrs

	January	August	
Loss of Load	0.1%	0.0%	
Market Reliance	47.6%	55.8%	
Peak Load	2,025	1,785	
Average Peak Load	1,657	1,493	
Average Load	1,320	1,080	
Available Market (MW)	300	300	
Federal Hydro	16 hrs	16 hrs	

2009 IRP Topic Discussions

Clint Kalich

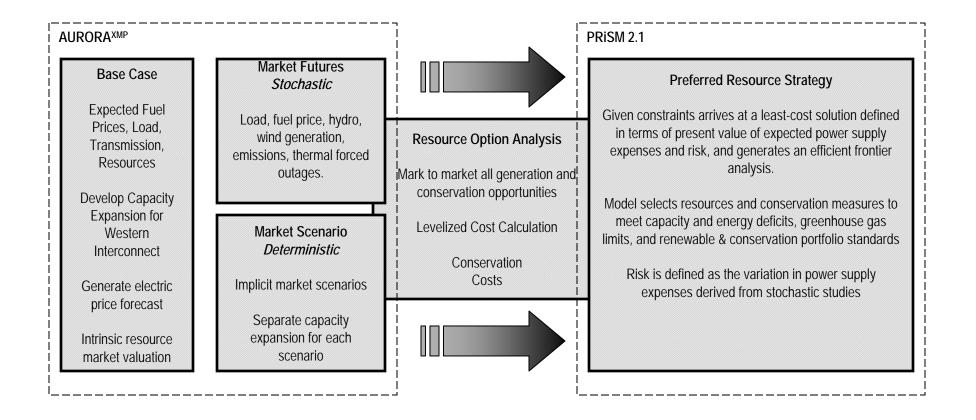
Work Plan – Proposed TAC Meeting Schedule

May 14, 2008 - Kickoff Meeting

August 2008 – TBD

October 2008 – TBD

January 2009 – Review of final modeling and assumptions


March 2009 – Review of scenarios and futures, resource, and transmission costs

April 2009 – Review of final PRS

June 2009 – Review of report

Work Plan – Flow Diagram

Work Plan – Timeline on IRP Development

Preferred Resource Strategy

Identify Regional resource options for electric market price forecast	8/15/2008
Identify Avista's resource options	8/31/2008
Develop PRiSM 2.1 model & implement	9/15/2008
Update AURORA ^{xmp} database for electric market price forecast	9/30/2008
Select natural gas price forecast	10/10/2008
Finalize deterministic Base Case	10/17/2008
Create datasets/statistics variables for risk studies	10/31/2008
Base case risk study complete	11/30/2008
Develop Efficient Frontier & PRS	1/30/2009
Simulation of risk studies "futures" complete	1/30/2009
Simulate market scenarios in AURORA ^{xmp}	2/27/2009
Evaluate resource strategies against market futures & scenarios	3/20/2009
Present to TAC preliminary study and PRS	3/31/2009

Work Plan – Timeline on IRP Development

Writing Tasks	
File 2009 Integrated Resource Planning Work Plan	8/30/2008
Prepare Report and Appendix Outline	9/15/2008
Prepare text drafts	4/15/2009
Prepare charts and tables	4/15/2009
Internal draft released	5/1/2009
External draft released	6/15/2009
Final editing and printing	8/1/2009
Report distribution	8/30/2009

Analytical Process Changes

DSM Fully Integrated Into PRiSM

Valuation, risk, selection

PRiSM Improvements

- "Lumpiness" added
- Portfolio carbon limits
- Additional resource options
- Plant retirement
- New efficient frontier method (balancing risk and cost)
- End effects more accurately modeled
- Added AFUDC
- Market and green tag purchases risk

Resource dispatch & valuation

Evaluating options to AURORA (e.g., LP Model)

Planning Futures/Scenarios

- More carbon looks
- Solar cost collapse
- Sustained high gas prices
- Lots of nuclear (government support/promotion)
- 25% RPS nationwide
- Back to the Future
 - Determine cost of renewable energy & carbon legislation
- Other Ideas from TAC??

2009 Integrated Resource Plan Technical Advisory Committee Meeting No. 2 Agenda August 27, 2008

	Торіс	Time	Staff
1.	Introduction	10:30	Vermillion
2.	Risk Assumptions/PRiSM	10:35	Gall
3.	Resource Assumptions	11:30	Lyons
4.	Lunch	12:15	
5.	Scenarios and Futures	1:15	Lyons
6.	Demand Side Management	2:00	Powell
7.	Adjourn	3:30	

Stochastic Analysis & Resource Portfolio Selection Modeling

James Gall

Presentation Overview

<u>Risk</u>

- Discuss methods and risk assumptions, expected (mean) values will be discussed at later TAC meetings
- Variable correlations are difficult to quantify, recommendations are placeholders until better information is available or the TAC agrees the assumption is acceptable for modeling purposes
- Risk analysis is modeled in AURORA- impacts electric markets prices and the cost of new resource options
- Feedback and suggestions are needed

<u>PRiSM</u>

- Overview of the model and enhancements
- Feedback and suggestions are welcome

Stochastic Analysis Methods & Assumptions

Long-Term Correlation Matrix

	Gas Prices	CO ₂ Prices	NO _x Prices	SO ₂ Prices	New Coal Prices	Hog Fuel Prices	Load Growth
Gas Prices	1.00						
CO ₂ Prices	0.50	1.00					
NO _x Prices		0.75	1.00				
SO ₂ Prices		0.75	1.00	1.00			
New Coal Prices		-0.25	-0.25	-0.25	1.00		
Hog Fuel Prices		0.50				1.00	
Load Growth	-0.25	-0.25					1.00

Carbon Dioxide Credit Prices (CO₂, GHG)

- Similar method to 2007 IRP
- For each iteration, a potential carbon cost scenario is selected, based on a weighting of 10 EPA studies.
- After the scenario is selected, the cost is treated as an expected value and a lognormal distribution is applied to each year.
- Further, natural gas and other market price drivers are correlated to the CO₂ prices
- The intent of this method is model the unknown nature of climate change legislation, it potential for year-to-year price volatility, and its affect on other major market price drivers.

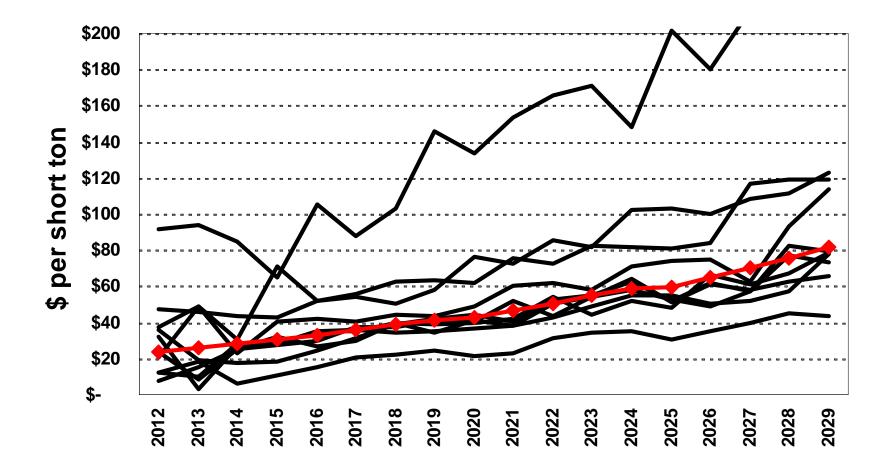
Carbon Dioxide Credit Prices (nominal)

%	Nominal \$/ Short Ton	2010	2011	2012	2016	2020	2025	2029
10%	EPA S. 2191 ADAGE	-	-	28.60	39.08	50.89	72.40	94.74
3%	EPA S. 2191 IGEM	-	-	40.50	53.13	70.15	98.04	122.32
15%	EPA S. 2191 ADAGE - Low Intl Action	-	-	26.20	36.53	48.14	66.36	88.25
10%	EPA S. 2191 IGEM Unlimited Offsets	-	-	8.70	16.09	20.63	28.66	47.69
2%	EPA S. 2191 IGEM with No Offsets	-	-	80.80	100.39	134.79	190.04	221.27
3%	EPA S. 2191 ADAGE Scenario 6	-	-	39.70	51.85	67.39	95.02	119.07
2%	EPA S. 2191 ADAGE Scenario 7	-	-	57.20	72.29	94.90	132.73	159.63
35%	EPA S. 2191 Alt. Ref. ADAGE	-	-	21.00	30.14	38.51	54.30	75.27
5%	EPA S. 2191 Alt. Ref. IGEM	-	-	35.00	46.75	61.89	85.97	109.34
15%	EPA S. 1766 ADAGE	-	-	10.20	17.37	20.63	28.66	47.69
100%	Expected Value	-	-	23.46	33.09	42.76	59.91	81.31

Carbon Dioxide Credit Prices (Cont.)

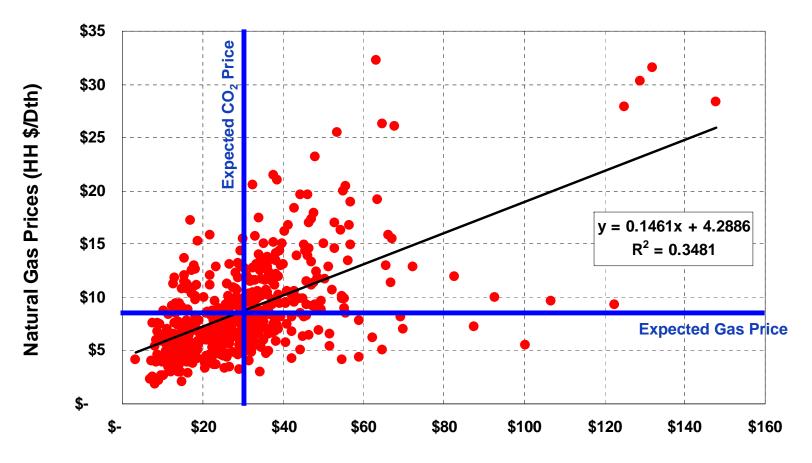
Randomly draws price strips for each AURORA iteration

 Each year has lognormal distribution (draw is the mean), market become less volatile over time as market matures


- 2012-2014 prices use 50% sigma
- 2015-2016 prices use 25% sigma
- 2017-2029 prices use 10% sigma

2012 Price Distribution

CO₂ Price Trends (10 Simulations)

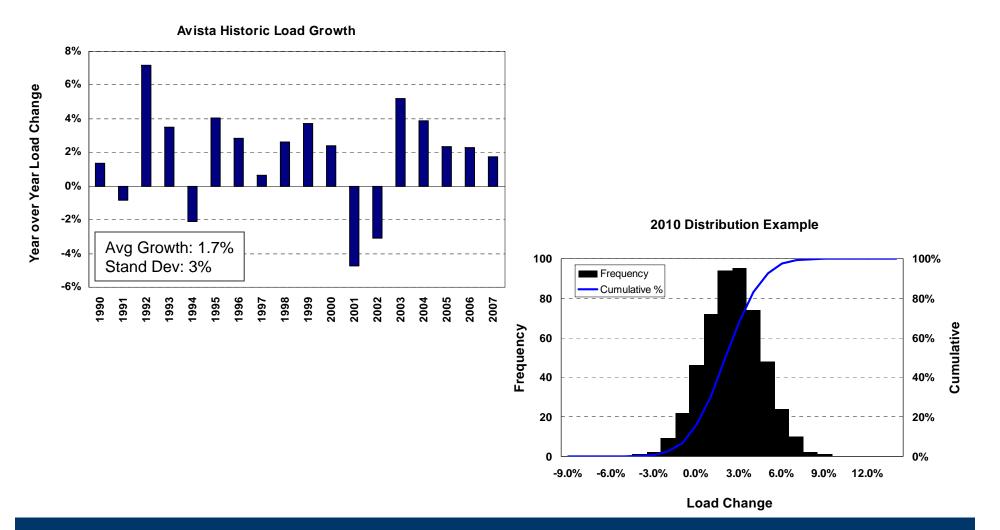

Natural Gas Prices

- Lognormal distribution
- Correlated to CO₂ credit prices (50% as placeholder),
 - Wood Mackenzie will help identify this assumption by studies that model gas prices by changes in gas demand from CO₂ legislation
- Assumes 35% sigma before CO₂ volatility is applied, than ~58-70%
- Monthly prices may be correlated to load in the winter
- No direct annual serial correlation
- Load growth is negatively correlated at 25%

Modeled Natural Gas & CO₂ Price Relationship

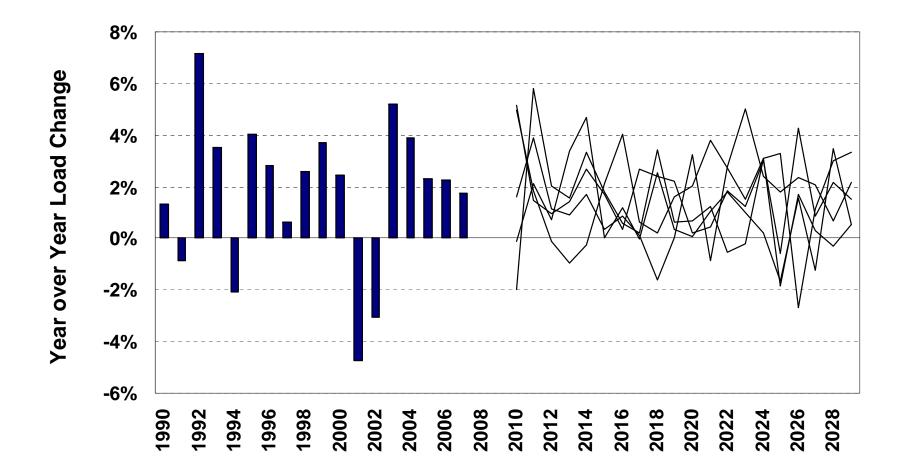
Year 2015, Correlation 59%, 500 draws

CO₂ Prices (\$/Short Ton)



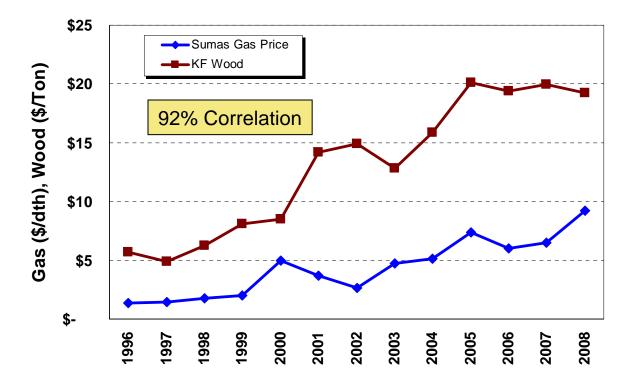
Load Growth

- Normal distribution
- Standard deviation is equal to expected value, represents potential volatility due economic activity (perhaps too volatile)
- Energy load growth negatively correlated to gas (-25%), CO₂ (-25%),
- Peak load variance modeled as weather variance
- Western Interconnect regional correlation between zones, similar to the 2007 IRP
- Potential correlation between natural gas prices in winter



Avista Load Growth Example

Load Growth Example (Forecast- 5 draws)


AVISTA

Hog Fuel (Wood Waste) Prices

- Normal distribution
- Standard deviation: 10% of expected value
- Positively correlated CO₂ (50%) prices,
 - A higher CO₂ price could add demand to Wood Prices to offset CO₂
- Potential correlation to load growth, but more likely correlated to on economic growth, while loads tend to have additional drivers
- What about correlating to natural gas prices

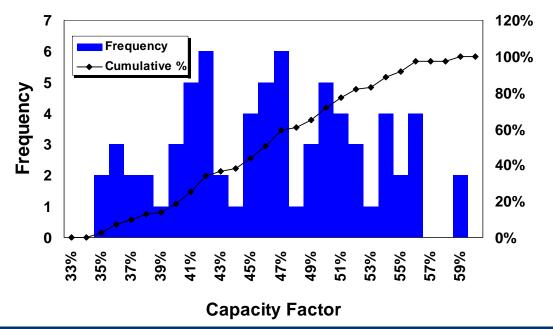
Kettle Falls Prices Compared to Sumas Gas Prices

A multiple regression including inflation & natural gas prices were tested to see if inflation was actually the cause for the correlation.

The results indicated that Sumas gas prices was not a significant predictor of wood prices. **Therefore natural gas will not be correlated to wood prices for this IRP.**

Mine Mouth Coal Price

- Normal distribution
- Standard deviation: 10% of expected value
- Negatively correlated to CO₂ (-25%), and other emissions (-25%)
 - As policy changes decreasing domestic coal demand, prices could potentially lower as coal mines remain open for international demand
- Basis for short and long-haul coal prices for new coal optionsthis should not affect market prices to any extent
- No change to existing coal prices for existing plants


NO_X and SO_2 Credit Prices

- Lognormal distribution
- Standard Deviation: 10% of expected values
- Expected values will be based on July 2008 Wood-Mackenzie study
- Positively correlated to CO₂ prices (75%)
 - Stricter CO₂ policy will likely lead to stricter air emissions policy and additional gas fired generation- requiring the needs for credits
- Negatively correlated to new coal prices (-25%)
- No mercury prices will be modeled in this IRP, rather controls will be assumed to be installed on required plants.

Hydro

- Each year of each iteration will randomly draw of historical 70 year history (1929-1998)
- No historical evidence of normality

Mid Columbia Hydro Project Capacity Factor Distribution

Wind

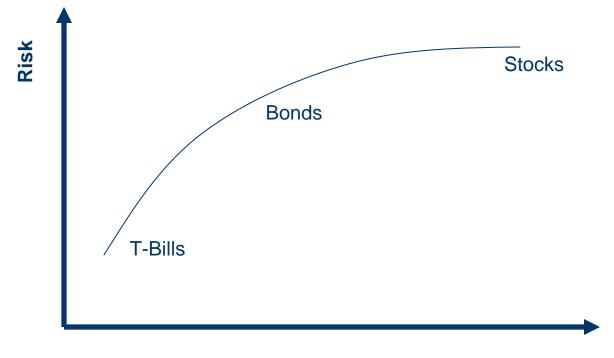
- Generic wind for existing projects will use fixed shape with distribution of energy- this is only used for market analysis.
- For potential Avista wind resources, each hour will be randomly drawn based on its probability of occurrence in a given month and time of day with correlation to previous hour.
 - Statistics are available for potential projects on the Columbia River, Reardan, and Montana.
- Similar method was used in the 2007 IRP.
- Potential correlation to winter hydro conditions and will be evaluated

Forced Outages

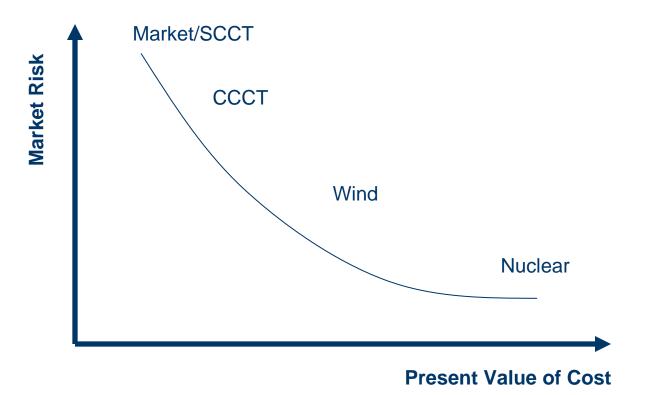
- Use AURORA logic for random forced outages
- Only Coal, Nuclear, and CCCT plants will be modeled with F/O logic
- Mean Repair Times:
 - Nuclear: 84 hours
 - Coal: 72 hours
 - CCCT: 24 hours

PRiSM Preferred Resource Strategy Model

Overview & Enhancements


What is PRiSM?

- Preferred Resource Strategy Model
 - Selects resource & conservation opportunities on an optimal cost and risk basis using a linear program (What's Best!)
 - What's Best is a linear programming tool added to MS Excel
- Objective function is to either select resource strategies to meet our energy/capacity/market/RPS/CO₂ requirements on a least cost or least risk basis
- Cost is measured by the present value of incremental fuel & O&M expenses and new capital investment
- Risk is measured by the variation in fuel & variable O&M expenses in years 2019 & 2029 (possible PV of 20 years)


Efficient Frontier-Introduction

Expected Return

Efficient Frontier-Introduction

New Enhancements

- Conservation measures are selected in model rather than an input (only measures that are between \$xx/MWh & \$xxx/MWh)
- Resources are now added in increments rather than any amount
- Use more precise method to estimate frontier curve
- Meets both summer & winter capacity requirements
- Ability to retire resources
- Ability to account for greenhouse gas caps
- More accurate ability to take into account post IRP time period

2009 IRP Resource Assumptions

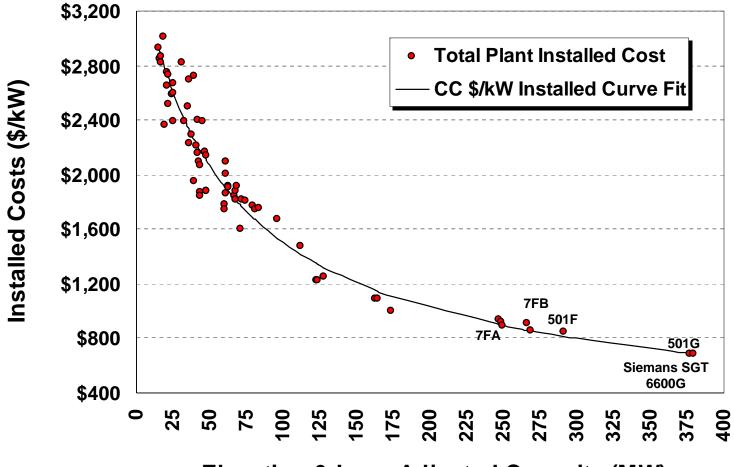
John Lyons

Supply Side Resource Data Sources

- Resource lists developed internally
 - Trade journals
 - Press releases
 - Engineering studies and models (ThermoFlow)
 - Announcements from state commissions
 - International projects
 - Proposals from developers
- Power Council
- Consulting firms/reports: Wood Mackenzie, Goldman Sachs, Black & Veatch
- State and federal resource studies
- These data sources are used to develop generic resource types

Resource Differences from 2007 IRP

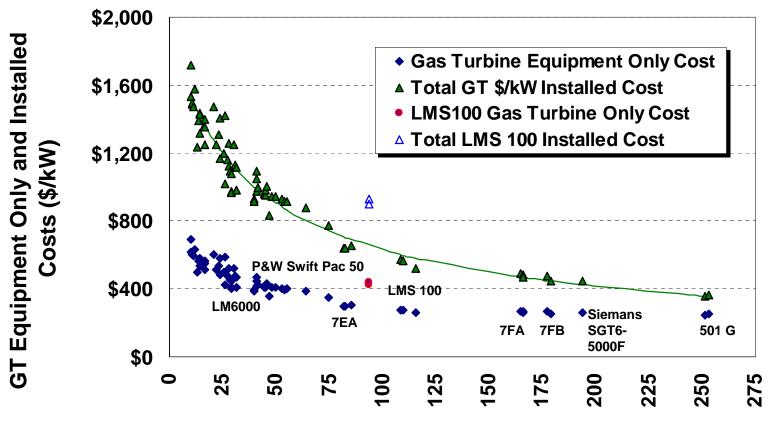
- Fewer types of coal resources are included only ultra critical and IGCC plants are being modeled
- Alberta oil sands are not included as a resource option
- Solar and hydro are being included as resource options for the preferred resource strategy
- Adding more specifics for the Other Renewable Resources category – geothermal, biomass, and solar resources are being modeled separately


Non-Renewable Supply Side Resources

- Natural Gas Combined Cycle (CCCT)
 - 2 x 1 and 1 x 1 with duct burner water cooled (1x1 for PRS)
 - 2 x 1 and 1 x 1 with duct burner air cooled
 - 600 MW with sequestration
- Natural Gas-Fired Simple Cycle Aero, Frame, and Hybrid
- Small co-generation (< 5 MW)
- Pipeline co-generation
- Coal ultra critical, IGCC, and IGCC with sequestration
- Nuclear

2008 Combined Cycle Total Installed Cost Estimate

2,000 Feet Elevation



Elevation & Loss Adjusted Capacity (MW)

AVISTA

2008 Simple Cycle Total Installed Cost Estimate

2,000 Feet Elevation

Elevation and Loss Adjusted Capacity (MW)

Renewable Supply Side Resources

- Geothermal
- Wind 100 MW, < 5 MW, and offshore
- CCCT Wood Boiler
- Wood Gasification Conversion
- Open Loop Biomass landfill gas, wood, waste, etc.
- Closed Loop Biomass
- Solar Photovoltaic
- Solar Thermal
- Roof Top Solar
- Tidal Power
- Hydrokinetics
- Run of River Hydro
- Pumped Storage

Avista Resource Upgrades

- Little Falls Unit #1 4 Upgrades
- Post Falls Unit #6 Upgrade
- Upper Falls Upgrade
- Long Lake new unit and new powerhouse
- Cabinet Gorge #5
- Scheduled upgrades and acquisitions are included in the L&R
 - Noxon Rapids Units #1 4 scheduled for 2009 2012
 - Lancaster Generation Facility 2010
 - Reardan preliminarily scheduled for 2011

Avista 2009 IRP Resource Assumptions

Draft as of 8/27/08 2009 Dollars

			Capital Cost-	Terrer			Net HHV	Mariatia			14/2 - 4	Course of the												
Resource (not locational specific)	First Year Available		Exclude AFUDC (2009\$/kW)	Transmission Interconnect (\$/kW)	Construction (Yrs)	Fixed O&M (\$/kW/Yr)	Heat Rate(s) (Btu/kWh)	Variable Costs (\$/MWh)	Gas Transport (\$/Dth/Mn)	Fuel Charge (%	Winter Capacity) Credit (%)	Summer Capacity Credit (%)	Availability (%)	Forced Outage (%)	Annual Avg Maintenance) (days)	Min Dispatch (%)	Start up Cost (\$/MW/Start)	Start up Fuel (Dth/MW/Start)	Ramp Rate (%/hr)	CO2 (Ibs/mmbtu)	SO2 (Ibs/mmbtu	NOX (lbs/mmbtu)	Federal Incentives	Sources/Notes
CCCT (2x1) w/ duct	2011	N/A	(2000¢/)	(\$,)	3	(\$1.117	6,750/ 8,500	3.29	0.27	1.0	105	95	90.1	5	18	55	35	6.6	20	117	0.0006	0.02	No	
CCCT (2x1) w/ duct	2011	N/A			3		6,900/ 8,700	3.29	0.27	1.0	105	95	90.1	5	18	55	35	6.6	20	117	0.0006	0.02	No	
CCCT (1x1) w/ duct	2011	N/A	900		3	11.0	6,750/ 8,500	3.29	0.27	1.0	105	95	90.1	5	18	55	35	6.6	20	117	0.0006	0.02	No	O&M: '08 CS2 Budget (LTSA/Major Maint is in VOM calculation), emissions based on CS2, Eng. Est.
CCCT (1x1) w/ duct burner (dry)	2011	N/A	928		3	11.0	6,900/ 8,700	3.29	0.27	1.0	105	95	90.1	5	18	55	35	6.6	20	117	0.0006	0.02	No	Capital Cost Est from Thermoflex and HR based on
CCCT (600MW, w/ Seq)	2025	N/A					0,700		0.27	1.0	105	95	90.1	5	18					11.7	0	0	No	
Small Co-Gen (<5MW)	2011	15	2,000		1.5	5.0	5,700	5.00	0.27	1.0	105	95	92.3	5	10	n/a	n/a	n/a	n/a	117	0.0006	0.02	No	
Pipeline Co-Gen	2010								n/a	n/a						n/a	n/a	n/a	n/a	n/a	n/a	n/a	No	
Frame SCCT	2010	N/A	480		1.5		10,200	5.00	0	3.4	105	95	92.3	5	10		15	3.7	100	117	0.0006	0.02	No	Thermoflex, NPCC
Hybrid SCCT (LMS 100)	2010	N/A	900		1.5		8,400	5.00	0	3.4	105	95	92.3	5	10				100	117	0.0006	0.02	No	Thermoflex, NPCC
Wind (100MW)	2010	500	2,400		2	50.0	n/a	3.00	n/a	n/a	TBD	TBD	28-33	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	FULL PTC- 10 Yrs (end 2011)	Recent press, O&M from Uwe's latest O & M Presentation
Wind (<5MW)	2010	10	3,000		2		n/a	3.00	n/a	n/a	TBD	TBD	20.0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	FULL PTC- 10 Yrs (end 2011)	
Wind (Offshore)	2018	100	5,000			95.0	n/a		n/a	n/a	TBD	TBD	45.0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	FULL PTC- 10 Yrs (end 2011)	PSE Assumption from Wind Developer
Coal (Ultra Critical)	2019	N/A	3,000		8	38.0	8,825	1.30	n/a	n/a	100	100	89.2	7	14	50	n/a	n/a	8	205	0.12	0.07	No	Black & Veatch (O&M), VOM Goldman Sachs, main based on Colstrip
Coal (IGCC)	2022	N/A	3,600		8	41.0	8,130	4.00	n/a	n/a	105	95	89.2	7	14	75	n/a	n/a	4	205	0.03	0.15	No	Black & Veatch (O&M), VOM Goldman Sachs, assu extra gasifier
Coal (IGCC w/ Seq)	2025	N/A	5,040		8	50.0	9,595	4.40	n/a	n/a	100	100	88.3	7	17	75	n/a	n/a	4	20.5	0.003	0.015	No	Escalated rates from IGCC based on NPCC for O& capital 40% higher than IGCC
Geothermal	2012		4,250		3	75.0		5.00	n/a	n/a	110	90	93.4	5	6	n/a	n/a	n/a	n/a	10	n/a	n/a	FULL PTC- 5 Yrs (End 2011)	Capital Costs per Avg of Kitz & Public Renewable Partners, O&M per GS Study
CCCT Wood Boiler	2012	20	2,500		3	121.0	10,500	6.00	n/a	n/a	100	100	90.1	5	18	0	n/a	n/a	n/a	202	0.025	0.17	HALF PTC- 5 Yrs (End 2011)	Emissions data per Kettle Falls & TD analysis
Wood Gasification Conv. for CCCT DB		25							n/a	n/a			100.0				n/a	n/a	n/a	202			HALF PTC- 5 Yrs (End 2011)	
Wood Gasification Conversion (KFCT)		7							n/a	n/a			100.0				n/a	n/a	n/a	202			HALF PTC- 5 Yrs (End 2011)	
Biomass Open Loop (landfill,wood,waste,etc)	2011		5,000		2				n/a	n/a	100	100	92.3	5	10	n/a	n/a	n/a	n/a	n/a	n/a	n/a	HALF PTC- 5 Yrs (End 2011)	Black & Veatch (Capital)
Biomass Closed Loop	2017				2				n/a	n/a	100	100	92.3	5	10	n/a	n/a	n/a	n/a	n/a	n/a	n/a	FULL PTC- 10 Yrs (end 2011)	
Solar Photovoltaic	2010	50	7,500		1	32.0	n/a	0.00	n/a	n/a		100	20.0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	30% ITC (End 2011)	Black & Veatch (Capital), O&M per Goldman Sachs Study
Solar Thermal	2010	50	4,200		3	65.0	n/a	0.00	n/a	n/a		100	30.0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	30% ITC (End 2011)	Black & Veatch (Capital) O&M per Goldman Sachs
Roof Top Solar	2010	50	8,000		0.5	30.0	n/a	0.00	n/a	n/a		100	15.5	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	30% ITC (End 2011)	Kyocera Website, O&M per Goldman Sachs Study
Nuclear	2022	500	5,500		10	97.0	10,400	0.55	n/a	n/a	100	100	87.1	8	18		n/a	n/a		n/a	n/a	n/a	FULL PTC- 10 Yrs (end 2011)	Reports/Huron Consulting (Capex), Black & Veatch (O&M)
Tidal Power	2018	2	10,000		1.5	1000.0	n/a	0.00	n/a	n/a	0	0	30.0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	FULL PTC- 10 Yrs (end 2011)	Tidal Power Conference and CC fabricated based o range from conference
Little Falls 1 Upgrade	2014	1.0	2,600		2	0.0	n/a	0.00	n/a	n/a	100	100	61.0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	HALF PTC- 10 Yrs (end 2011)	Avista Engineering Preliminary Estimate
Little Falls 2 Upgrade	2015	1.0	1,800		2	0.0	n/a	0.00	n/a	n/a	100	100	61.0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	HALF PTC- 10 Yrs (end 2011)	Avista Engineering Preliminary Estimate
Little Falls 3 Upgrade	2016	1.0	3,200		2	0.0	n/a	0.00	n/a	n/a	100	100	61.0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	HALF PTC- 10 Yrs (end 2011)	Avista Engineering Preliminary Estimate
Little Falls 4 Upgrade	2017	1.0	1,300		2	0.0	n/a	0.00	n/a	n/a	100	100	61.0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	HALF PTC- 10 Yrs (end 2011)	Avista Engineering Preliminary Estimate
Post Falls 6 Upgrade	2018	0.2	5,000		2	0.0	n/a	0.00	n/a	n/a	100	100	50.0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	HALF PTC- 10 Yrs (end 2011)	Avista Engineering Preliminary Estimate
Upper Falls Upgrade	2019	2.0	3,500		3	0.0	n/a	0.00	n/a	n/a	100	100	90.0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	(end 2011)	Avista Engineering Preliminary Estimate
Long Lake 5 Addition	2020	24.0	2,167		5	1.0	n/a	0.00	n/a	n/a	100	100	30.0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	(end 2011)	Avista Engineering Preliminary Estimate
Long Lake 2nd Powerhouse	2020	60.0	2,000		6	2.0	n/a	0.00	n/a	n/a	100	100	2.0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	(end 2011)	Avista Engineering Preliminary Estimate
Cabinet Gorge Unit 5	2016	60.0	1,417		5	2.0	n/a	0.00	n/a	n/a	100	100	12.5	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	HALF PTC- 10 Yrs (end 2011)	Avista Engineering Preliminary Estimate
Pumped Storage	2020	25	5,000		8	5.0	n/a	Off-Peak Market	n/a	n/a	100	100	50.0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	No	Avista Engineering Preliminary Estimate
Hydrokinetics	2014	5	4,000		3	3.0	n/a	0.00	n/a	n/a			75.0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	(end 2011)	Avista Engineering Preliminary Estimate
Run of River Hydro	2020	N/A	4,500		5	2.0	n/a	0.00	n/a	n/a	100	100	30.0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	HALF PTC- 10 Yrs (end 2011)	Avista Engineering Preliminary Estimate
	1	0						1	1		1	1	i		1			1	1	1	1	1	· · · · ·	1

Scenarios and Futures

John Lyons

Uses of Scenarios and Futures

Provide details about impacts and size of impacts of different assumptions

- Avista's current load and resource portfolio
- Preferred Resource Strategy
- Wholesale electric market
- Different resource options

Market Scenarios

- Starts with the Base Case assuming expected conditions
 - Hydro
 - Load
 - Gas prices
 - Wind
 - Emissions prices
 - Forced outages
- Scenarios study the effects of fundamental changes to a driving force in the forecast
- Scenarios have quicker solution times and provide more understandable results due to the limited change in variables
- Used to test portfolio sensitivities

Market Futures

- A future is a stochastic or random study using Monte Carlo style analysis for risk quantification
- Multiple iterations provide a shape and boundaries to potential costs
- Avista's modeling process looks 21 years into the future with several hundred draws of hydro, load, wind, fuel prices, emissions costs, and thermal forced outage values
- Futures can quantitatively assess market risk
- Use a large amount of computational power for each future
- Results are sometimes difficult to understand because of the sheer number of variables

2009 IRP Market Futures

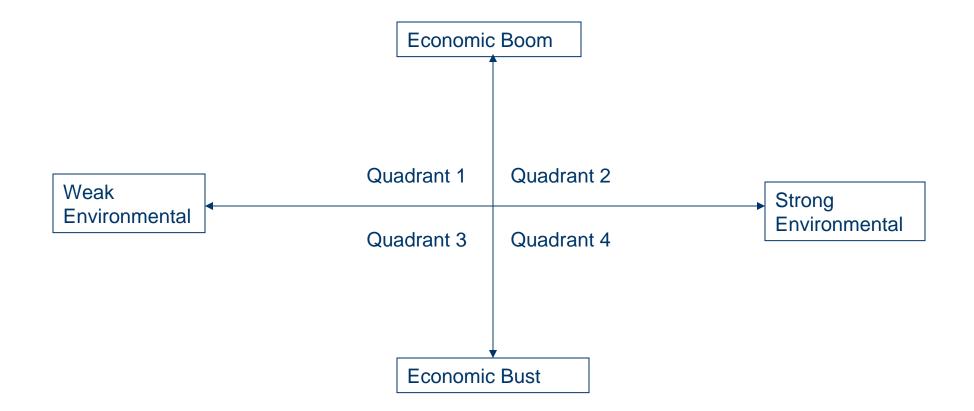
- Base Case: uses expected hydro, wind, load, fuel costs, and emissions costs
- Unconstrained Carbon: quantifies CO₂ emissions costs
- High CO₂ Costs: higher expected value of CO₂ emissions costs
- Volatile Fuel: increase natural gas price volatility

2009 IRP Market Scenarios

- High and Low Gas Prices: 50% higher and 50% lower prices
- CO₂ and Natural Gas: different levels of linkage between CO₂ and natural gas prices
- High and Low Load Growth
- Electric Car: high penetration of electric cars
- Constant Gas Growth: No downward trend in near term gas prices
- Unconstrained Carbon Costs: zero carbon costs
- High Carbon Costs: significantly higher than the Base Case
- **Nuclear:** significant new nuclear in the Western Interconnect
- Buck-a-Watt Solar: drastic decrease in photovoltaic solar costs

2009 IRP Portfolio Options

- Efficient frontier
- No Resource Additions market reliance
- **All CT** with and without green tags
- All CCCT with and without green tags
- Fixed Gas with and without
- All Renewables
- Wind and CT
- Nuclear available in 2020
- **Coal** available in 2018
- 2007 IRP
- Others?



New Scenario Approach

- Previous slides show Avista's past approach to scenarios and futures
- This approach is difficult to use to adjust our resource strategy
- Moving towards a smaller number of scenarios, where each scenario represents a fundamentally different future with its own assumptions
- Scenario matrix with the economy and environmental concerns
- 1. Base Case center of the matrix
- 2. Quadrant 1 Economic Boom and Weak Environmental
- 3. Quadrant 2 Economic Boom and Strong Environmental
- 4. Quadrant 3 Economic Bust and Weak Environmental
- 5. Quadrant 4 Economic Bust and Strong Environmental

Scenario Matrix – Environmental Regulation and Economics

Potential Scenario Drivers

- **Economic** inflation, load, commodities, and market developments
- Environmental carbon costs, RPS, and competition for renewables
- Political structure of carbon market
- Social views of environmental issues and response of customers to rate pressure
- Technological help or hindrance, new technologies, and electric cars
- **Organizational** business as usual, new ways of doing things

Demand-Side Management in the 2009 Electric IRP

Jon Powell

DSM / IRP Objectives

Opportunity to perform a comprehensive overview of electric resource opportunities and strategy on a level playing field

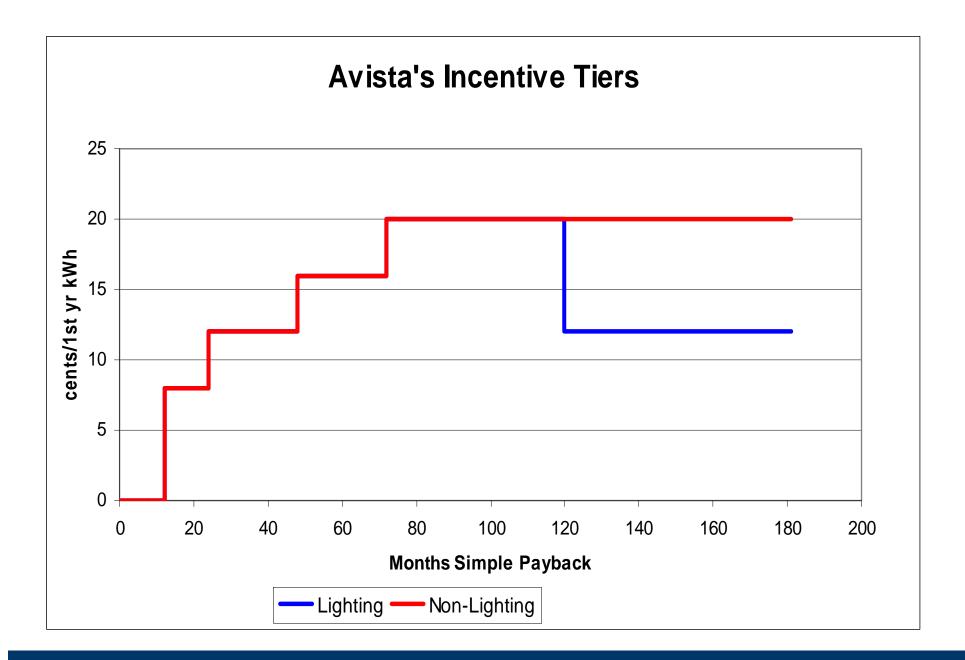
DSM Challenges in the IRP

- IRP results must be actionable to be meaningful
- The IRP must provide the basis for continual evaluation of DSM opportunities between IRP cycles
- "Normal" technical challenges of assessing DSM resources within the IRP

How Avista Addresses Challenges

- The biennial high-level IRP process is augmented with an annual detailed DSM business plan
- Our tariffs are reasonably flexible in the short-term; even more flexible in the long-term
- The IRP avoided cost stream forms the basis for intra-IRP DSM resource analysis and cost-effectiveness

Annual DSM Business Plan


- Establishes a corporate budget
- Allows for the detailed review of DSM opportunities
- Considers the packaging of measures
- Establishes a high-level program plan for promising measures:
 - Infrastructure requirements (labor and non-labor)
 - Outreach requirements (brochures, paid and free media, etc)
 - Establishes critical trade allies relationships (including potential regional cooperative efforts)
- Program trigger points are established
- Plan for the M&E necessary for program management and external reporting
- Calculate prospective cost-effectiveness (program and portfolio)

DSM Tariffs and Operations

- Tariffs can, and have, changed to meet resource acquisition needs
- DSM operations governed by Schedule 90 and funded by Schedule 91
- Tariffs allow for the inclusion of any measure into the DSM portfolio
- Four basic portfolio's within Avista's DSM operations
 - 1. Non-Residential mix of "site-specific" and prescriptive programs
 - 2. Residential exclusively prescriptive programs
 - 3. Residential Limited Income any measure cooperating with CAP agencies
 - 4. Regional NEEA's market transformation portfolio

Electric Avoided Costs

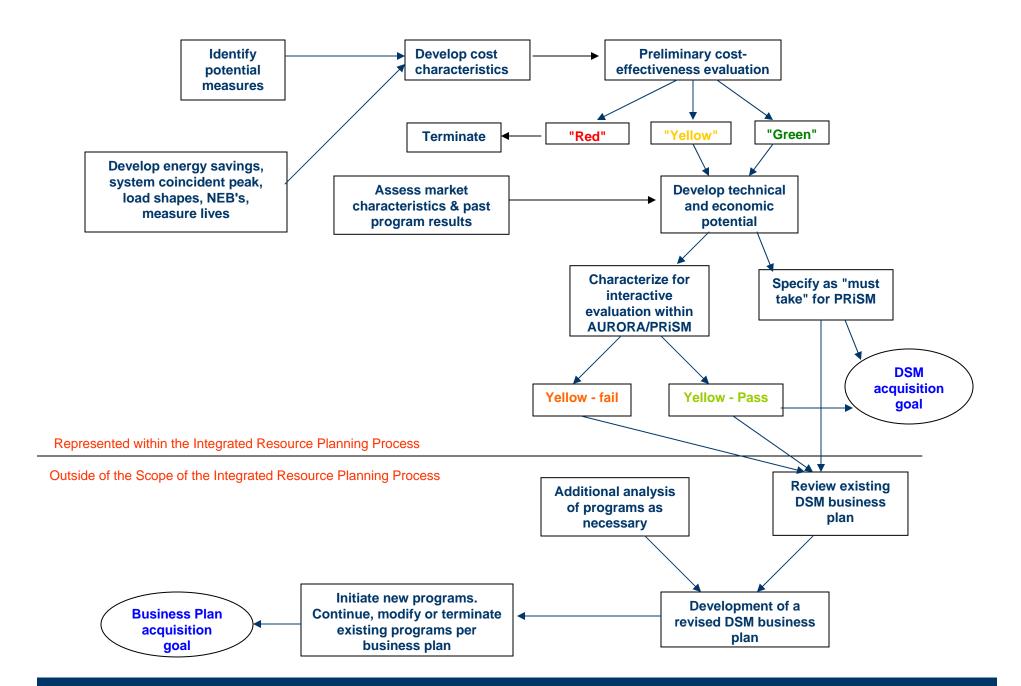
- Price is an efficient means of signaling resource scarcity
- Avoided cost composed of:
 - Commodity avoided cost (\$/kWh)
 - Distribution losses (\$/kWh)
 - Carbon cost (\$/kWh)
 - Value of risk reduction (\$/kWh)
 - Generation capacity (\$/kW)
 - T&D capacity (\$/kW)

Demand-Side Management in the 2009 Electric IRP

Lori Hermanson

Integration of DSM into the 2009 IRP

Interactive process that meets regulatory requirements and produces results for the business planning process.


- Identify commercially available non-residential technologies and applications
 - "Acceptance" or "rejection" within the IRP will not remove any technology or application from potentially being included in our non-residential portfolio
 - Almost 2,500 measures being evaluated for the 2009 IRP
- Re-evaluate existing residential measures and evaluate the inclusion of additional measures
 - May change the menu of qualifying residential measures.
 - Nearly 800 measures being evaluated for 2009

Integration of DSM into the 2009 IRP

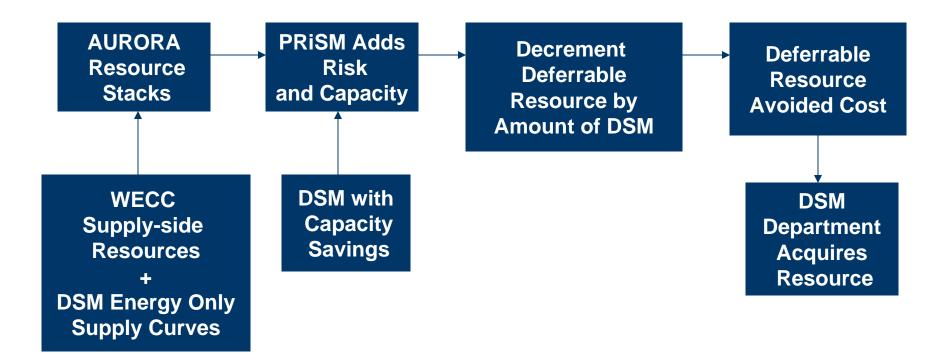
- Inclusion of Limited Income and Non-Residential Site Specific programs are done by modifying the historical baseline
 - Not necessarily limited to modifying baseline for price elasticity and load growth
- Improvements in estimating Site Specific programs
 - Identified the largest portion of Site Specific programs and are trying to make them more generic in nature
 - Can process more Non-Residential programs through the entire IRP process as opposed to modifying a historical base

Categories of Savings and Benefits

- Obtain savings, system coincident peak savings, incremental customer cost, non-energy benefits and life of each measure
 - Used to calculate a levelized sub-TRC cost
 - Sorted based on results into "reds," "yellows" and "greens"
 - Band of "yellow" energy only measures to be tested in AURORA is projected to be \$70-150/MWh
 - PRiSM automatically selects "greens"
 - Remainder of need is selected from passing "yellows"
 - Establishes the 2009 DSM acquisition goal

Integration of DSM into the 2009 IRP

- Last year was the first focus on deferring summer space cooling-driven load
 - Load profiles were assigned to each measure
 - Measures categorized by impact to cooling load
 - Zero impact measures received no additional value regardless of their load profile
 - Non-Drivers measures unrelated to space cooling but contribute to system load during a cooling-driven peak receive a capacity value based upon the average demand of their specific load profile during peak periods


Space Cooling

- Drivers measures that drive a space cooling peak received a capacity valuation based upon the maximum hourly demand for that load profile
- Improving method of addressing the space cooling driven peak
 - Using the Council's system coincident peak estimates
 - Measures with capacity savings will be tested in PRiSM against the avoided costs inclusive of risk and capacity
 - PRiSM will select measures and they will be incorporated into the final DSM acquisition goal

Incorporating DSM in the 2009 IRP

Integration by Price Signal

What Works – What Doesn't

- DSM is acquired in small annual amounts relative to the overall load requirement
 - "Snowballing" effect over time
- Historically Avista's DSM has been non-dispatchable
 - Demand Response pilot
 - When enough data is available, modifications to this existing process may need to be made to accommodate demand response technologies and applications
- Allows continuous modification and testing of new opportunities between IRPs in a consistent manner

Avista's 2009 Electric Integrated Resource Plan Technical Advisory Committee Meeting No. 3 Agenda October 22, 2008

	Торіс	Time	Staff
1.	Introduction	10:30	Vermillion
2.	Load Forecast	10:35	Barcus
3.	Lunch	11:45	
4.	Natural Gas Price Forecast	12:30	Rahn
5.	Electric Price Forecast	1:30	Gall
6.	Legislative Update	2:30	Sprague
7.	Adjourn	3:30	

F2009 Sales and Load Forecast

July 21, 2008 Operations Council Meeting

Randy Barcus Edited for 2009 Electric Integrated Resource Plan Third Technical Advisory Committee Meeting October 22, 2008

Summary of Results

Electricity Sales Forecast

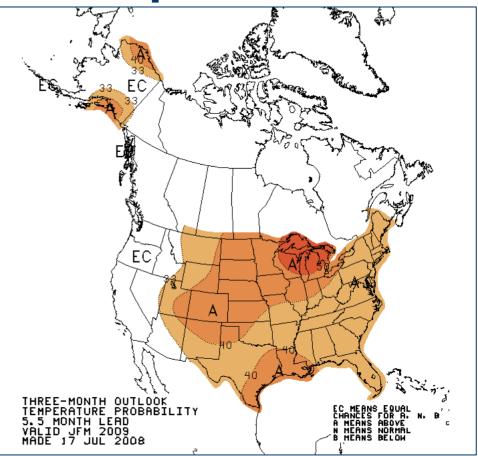
- ■2009 Forecast 9,138 million kWh
- 2009 in F2008 9,134 million kWh
- ■5 Year Growth Rate 2009-2014 +1.8%
- ■10 Year Growth Rate 2009-2019 +1.7%
- ■20 Year Growth Rate 2009-2029 +1.7%
- Last Year 20 Yr. GR 2009-2029 +1.8%

Natural Gas Firm Sales Forecast

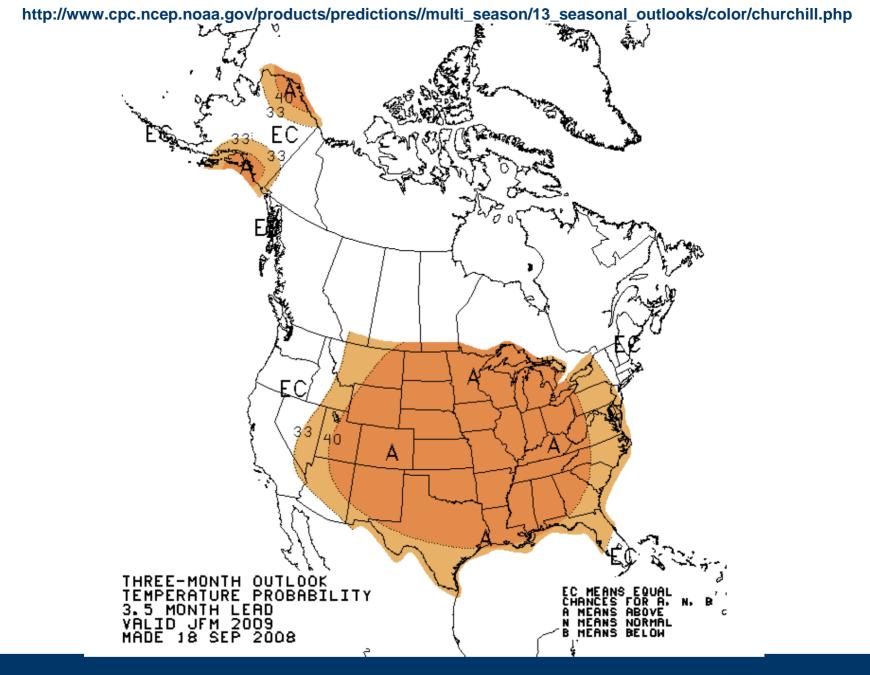
2009 Firm Forecast 338.5 million therms ■2009 in F2008 352.0 million therms ■5 Year Growth Rate 2009-2014 - Washington -0.2% - Idaho +1.0%- Oregon +0.8% - System +0.3%10 Year GR System +0.9%■20 Year GR System +1.3%■20 Year Customer GR +2.5%

Significant Assumptions

Economy—slower growth in near term, returns to trend


- Tight credit, housing bubble, but strong commodity prices for agriculture and metals
- Regional economy returns to long term trend in 2012

Avista Retail Prices


- Electric prices increase 10% in 2009 and thereafter until 2015, and at inflation plus real income growth thereafter
- Natural gas prices increase 20% in 2009 and 10% thereafter until 2015, and at inflation plus real income growth thereafter
- Carbon taxes are included in the 2012-2015 price increases

Global Warming Degree Days

- 2009 Heating and Cooling at NOAA Normal (1971-2000 avg.)
- 2010-2019 ramps to trend, 2020-2029 on trend

Ohe OLD FARMER'S ALMANAC

Intermountain Annual Weather Summary November 2008 to October 2009

Winter will be much colder and drier than normal, on average, with snowfall above normal in the north and below normal in the south. The coldest temperatures will occur in late December; early, mid-, and late January; and early February. The snowiest periods will be in mid-November, early and mid-December, mid- and late January, and late February.

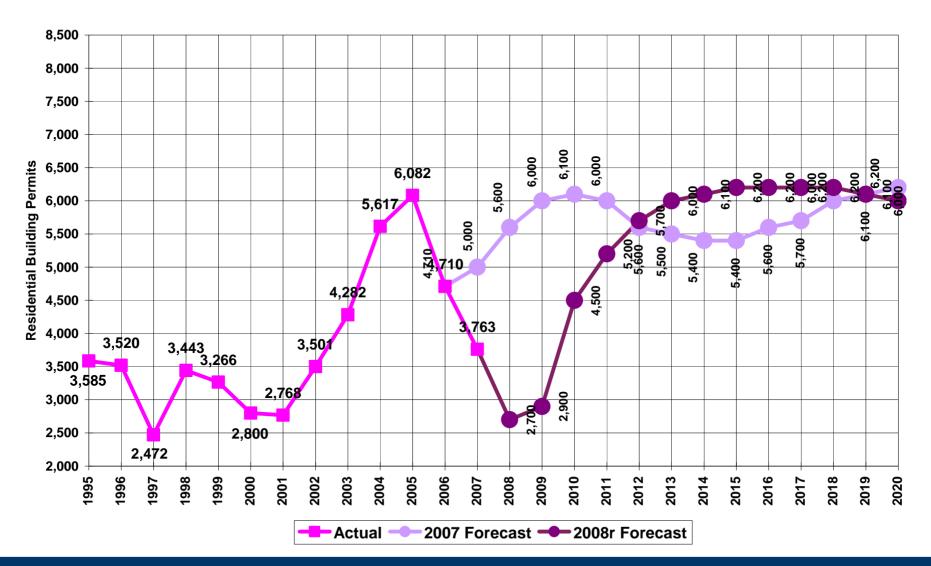
April and May will be cooler than normal, with slightly above-normal precipitation.

Summer will be cooler than normal, with slightly above-normal rainfall. The hottest periods will be in mid- and late June and early and mid- to late July.

September and October will be warmer and drier than normal.

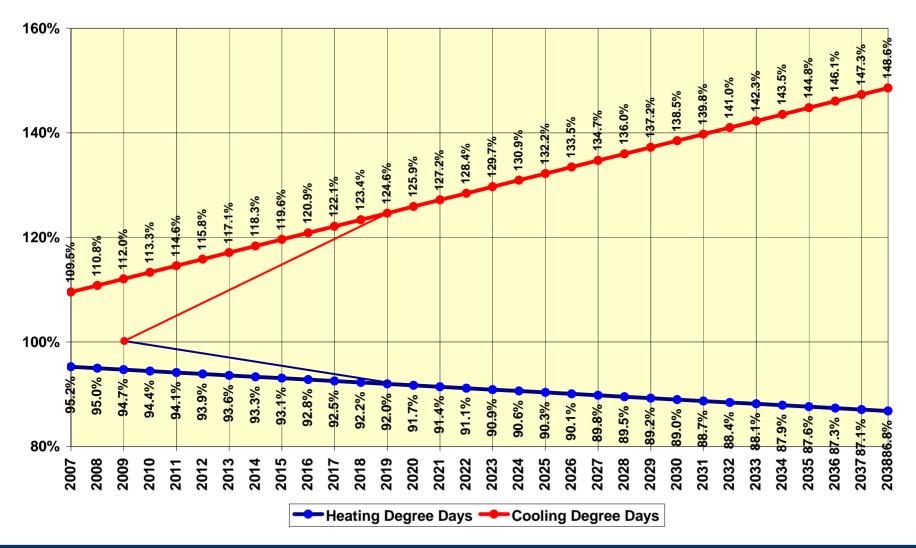
http://www.almanac.com/weatherforecast/us/13

Other Assumptions

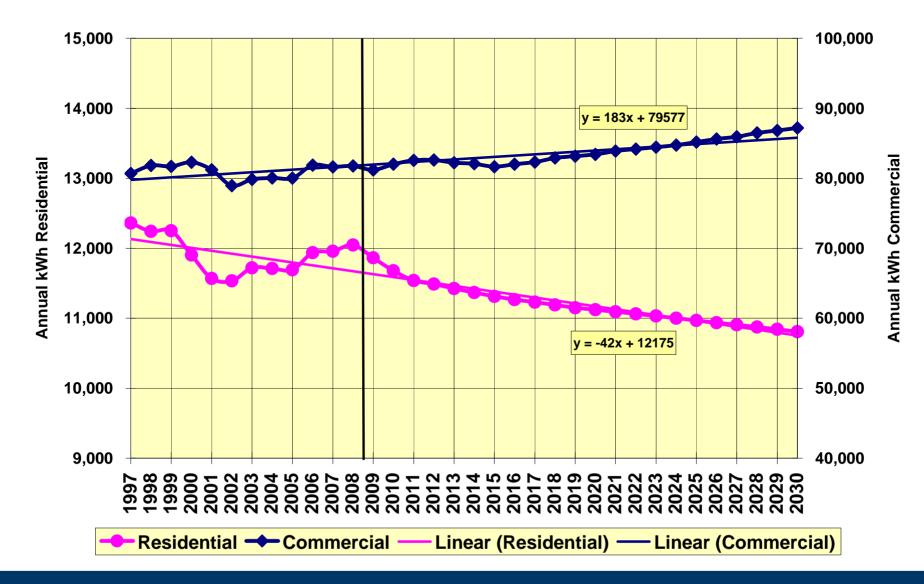

- DSM and Conservation—included in forecast at new levels
- Multi-Family Natural Gas—assuming successful penetration
- Inland Empire Paper—12 average MW added load in 2010
- Mining Loads—continued high silver prices lead to modest growth
- Lumber Loads—low levels through 2009, some bounce in 2010
- Plug-In Hybrid Cars—included in forecast

Other implicit assumptions

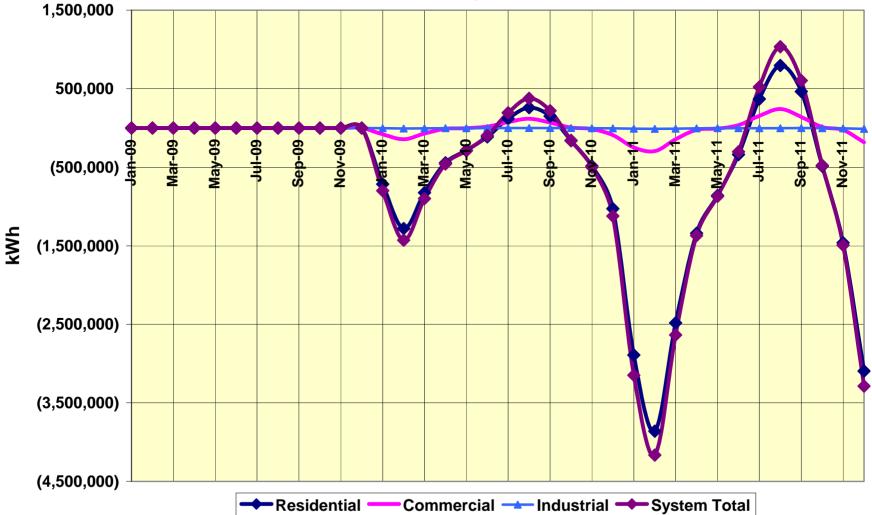
- Housing mix 40% single family, 30% condo/townhome, 30% multifamily rental
- Average new construction size is 30% larger than present average
- Growing plug loads (largely digital TV's) offset Energy Star savings
- The Energy Independence and Security Act of 2007 contains provisions that significantly impact electricity use, particularly residential lighting usage, over the next 5 to 10 years. The key lighting-related provisions that related to energy forecasters are:
 - Incandescent Light Bulb Standard. Requires roughly 25 percent greater efficiency for light bulbs, phased in from 2012 through 2014. This effectively bans the sale of most current incandescent light bulbs. The initial targets will be met by advanced incandescent lamps, which the major manufacturers are just introducing to the market, using halogen capsules with infrared reflective coatings. The longer-term targets will likely be met by compact fluorescent lamps and other advanced technologies, such as light emitting diodes and very advanced incandescent lamps now in development.
 - Lighting Efficiency Standard. Requires a minimum 45 lumens/watt efficiency standard for general service lamps by 2020.
 - Federal Building Lighting Standard. Requires that all lighting in Federal buildings use Energy Star products.
- The Energy Information Administration's 2008 Annual Energy Outlook (AEO) forecast provides insight into the impact that these provisions will have on residential lighting use. The 2008 Residential AEO forecast projects that lighting's share of total residential electricity usage will drop from 14.4% in 2011, the year before the incandescent light bulb standard takes place, to 10.7% in 2016. Over this five year period, lighting's share of electricity usage is projected to drop by approximately 25%.
- The long-run effect of the lighting standards on residential electricity usage is to decrease residential lighting share of usage to 8.3% by 2030, a reduction of over 40% from its 2011 level of 14.4%.



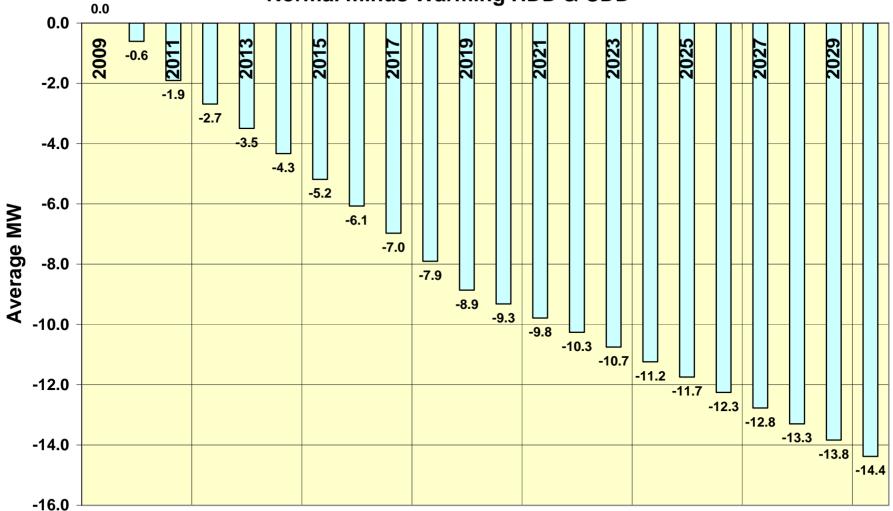
2008 Forecast Residential New Construction Kootenai & Spokane County Combined

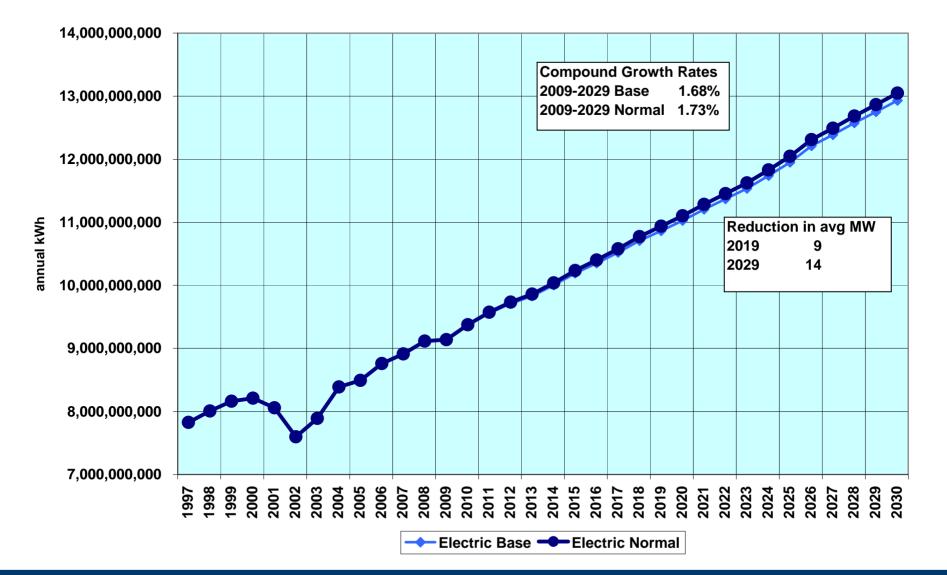


Spokane NWS Global Warming Degree Day Trends 2007-2038

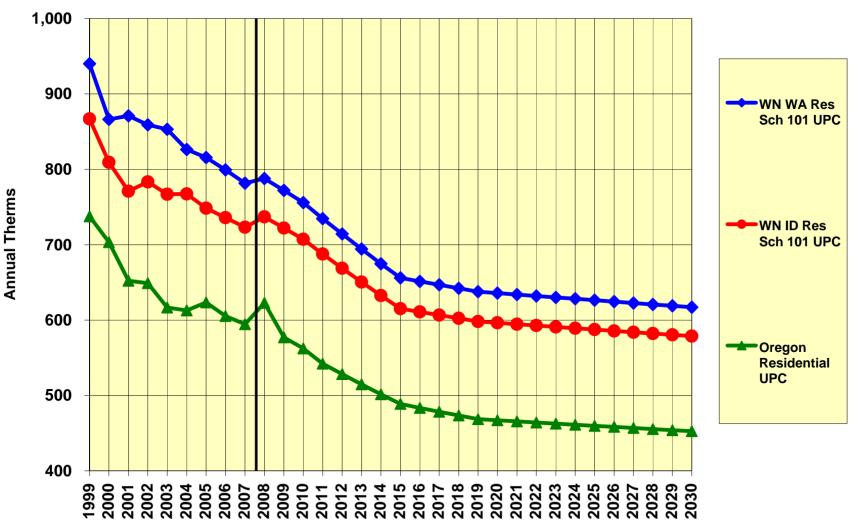

Electric Average Use per Average Customer

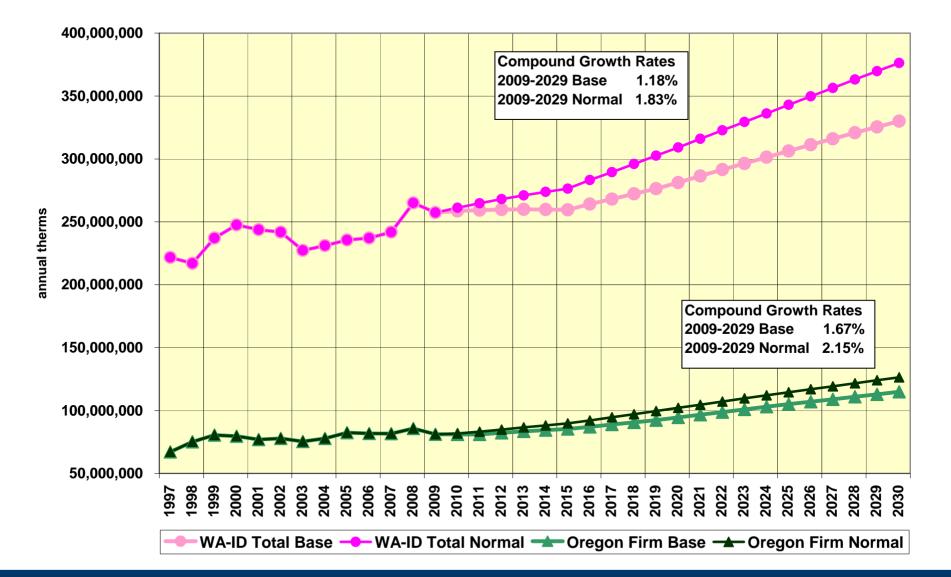
Global Warming Impact


Normal minus Warming HDD and CDD


MW Difference

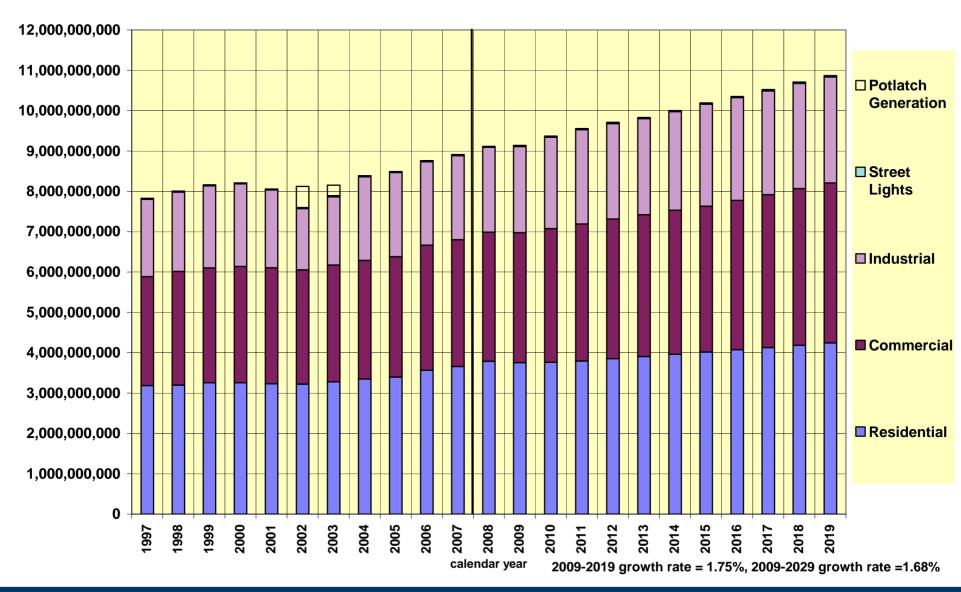
Normal minus Warming HDD & CDD


Electric Sales Forecast Base w/ GW vs. Normal Weather


Avista Residential by Schedule

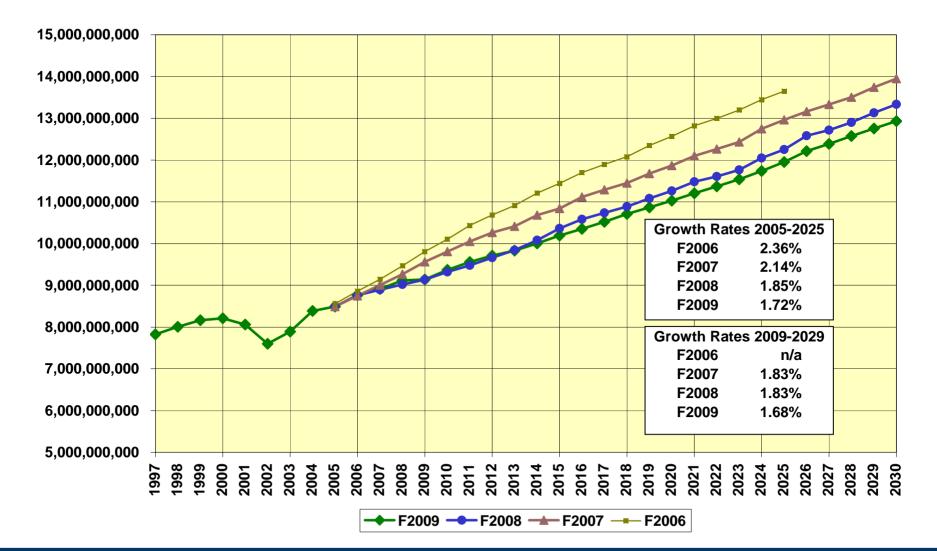
Therm Use Per Customer

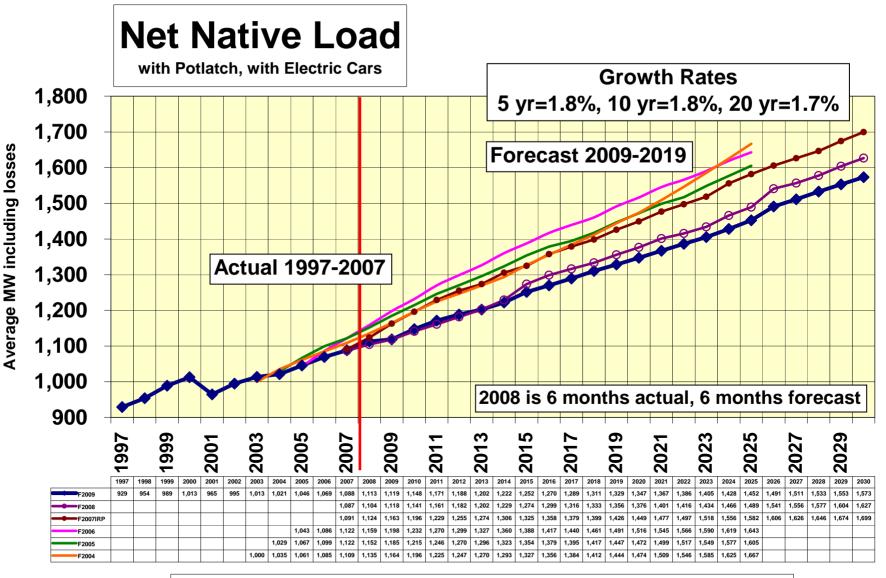
WA-ID & Oregon Natural Gas Base w/GW vs. Normal Weather



Avista Electric Service Area Plug-In Hybrid Car Sales Forecast

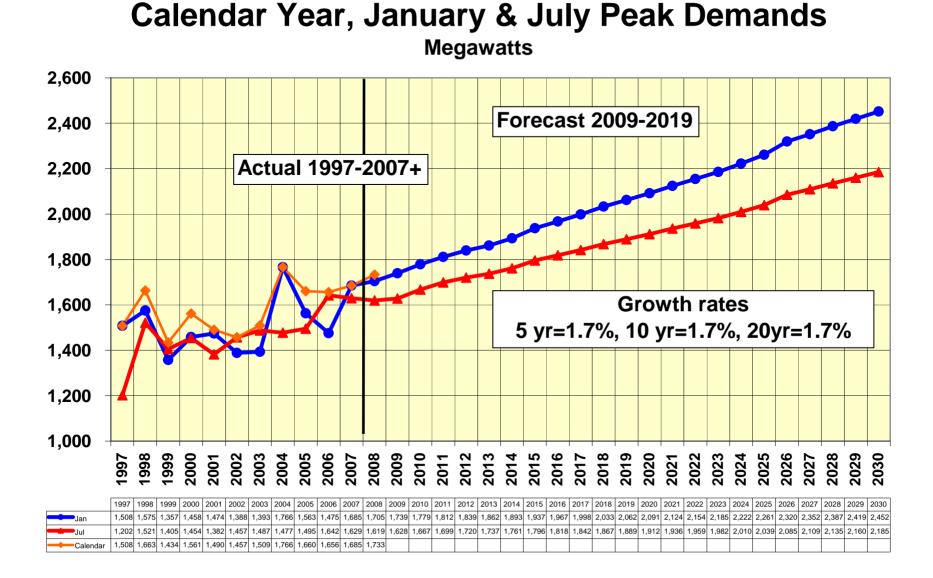
								i
			Incremental				Cumulative	Residential
		Hybrid	Sales of			Base Case	Percent	Sales with
	Market	Vehicles	Hybrid	kWh Energy	Average	Residential	Boost to	Hybrid
	Share	Served	Vehicles	Consumption	MW	Sales Forecast	Residential	Vehicles
2010	3.5%	1,000	1,000	2,500,000	0.3	3,761,638,997	0.1%	3,764,138,997
2011	6.0%	2,000	1,000	5,000,000	0.6	3,788,118,462	0.1%	3,793,118,462
2012	8.5%	3,500	1,500	8,750,000	1.0	3,842,900,187	0.2%	3,851,650,187
2013	11.0%	5,500	2,000	13,750,000	1.6	3,893,034,524	0.4%	3,906,784,524
2014	14.0%	8,000	2,500	20,000,000	2.3	3,941,757,508	0.5%	3,961,757,508
2015	18.0%	11,000	3,000	27,500,000	3.1	3,988,061,420	0.7%	4,015,561,420
2016	24.0%	15,000	4,000	37,500,000	4.3	4,034,409,825	0.9%	4,071,909,825
2017	26.0%	20,000	5,000	50,000,000	5.7	4,079,468,146	1.2%	4,129,468,146
2018	26.0%	25,000	5,000	62,500,000	7.1	4,123,323,408	1.5%	4,185,823,408
2019	26.0%	30,000	5,000	75,000,000	8.6	4,167,601,524	1.8%	4,242,601,524
2020	26.0%	35,000	5,000	87,500,000	10.0	4,215,588,573	2.1%	4,303,088,573
2021	26.0%	40,000	5,000	100,000,000	11.4	4,261,378,267	2.3%	4,361,378,267
2022	26.0%	45,000	5,000	112,500,000	12.8	4,306,622,849	2.6%	4,419,122,849
2023	26.0%	50,000	5,000	125,000,000	14.3	4,351,888,063	2.9%	4,476,888,063
2024	26.0%	55,000	5,000	137,500,000	15.7	4,396,064,205	3.1%	4,533,564,205
2025	26.0%	60,000	5,000	150,000,000	17.1	4,439,711,711	3.4%	4,589,711,711
2026	26.0%	65,000	5,000	162,500,000	18.6	4,481,771,729	3.6%	4,644,271,729
2027	26.0%	70,000	5,000	175,000,000	20.0	4,523,907,789	3.9%	4,698,907,789
2028	26.0%	75,000	5,000	187,500,000	21.4	4,564,967,067	4.1%	4,752,467,067
2029	26.0%	80,000	5,000	200,000,000	22.8	4,605,531,184	4.3%	4,805,531,184
2030	26.0%	85,000	5,000	212,500,000	24.3	4,645,605,390	4.6%	4,858,105,390
2,500 kWh	per car	80% WA	20% ID	2010-	2030 CGR	1.06%		1.28%


2009 ELECTRIC RETAIL SALES FORECAST



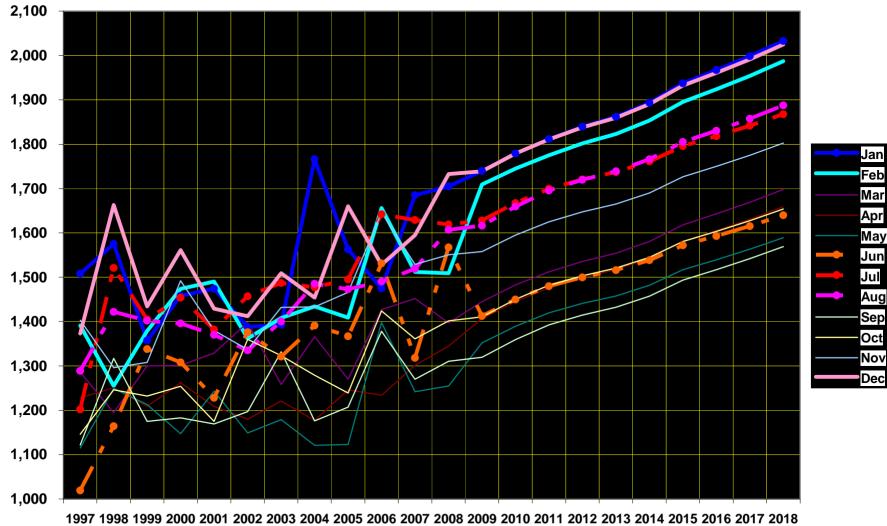
Load Growth Comparisons

(plug-in hybrid car consumption is included)



← F2009 ← F2008 ← F2007IRP — F2006 — F2005 — F2004

Peak Load Planning

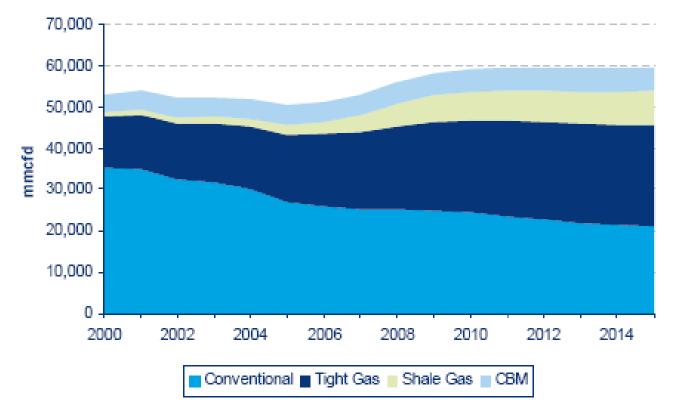

•Winter based on average coldest day

Data from 1890 to 2007	<u>Temp</u>		<u>HDD</u>	
Average Coldest Day (December & January)			11.7	53.3
Standard Deviation		10.2		
5% chance of exceedance	1.645	16.779	-5.1	70.1
1% chance of exceedance	2.330	23.766	-12.1	77.1
0.25% chance of exceedance	2.814	28.7	-17.0	82.0
 Summer based on average hottest day 				
Data from 1890 to 2007		<u>Te</u>	mp	<u>CDD</u>
Data from 1890 to 2007 Average Hottest Day (July & August)		<u>Te</u>	<u>mp</u> 80.0	<u>CDD</u> 15.0
		<u>Te</u> 3.405		
Average Hottest Day (July & August)	1.645			
Average Hottest Day (July & August) Standard Deviation	1.645 2.330	3.405	80.0	15.0

Peak Demand Trends

Actual Monthly Peaks through June 2008

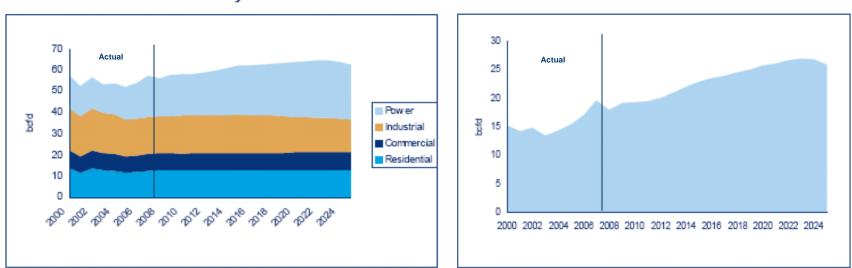
Questions & Answers



Natural Gas Price Forecast

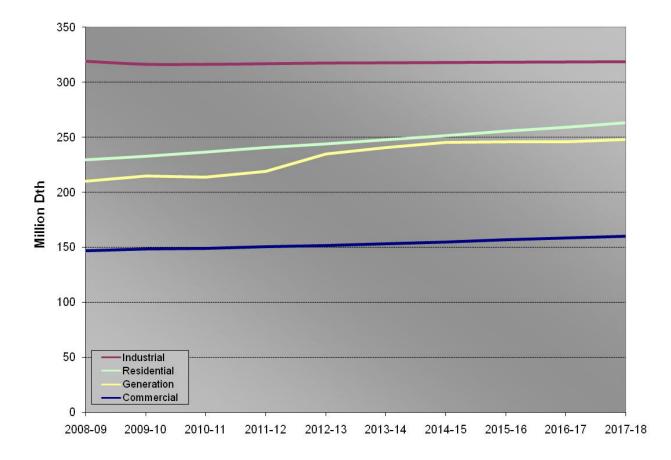
Greg Rahn, Manager Natural Gas Planning James Gall, Senior Power Supply Analyst

2009 Electric Integrated Resource Plan Third Technical Advisory Committee Meeting October 22, 2008


US Supply Growth Forecast through 2015

Source: Wood Mackenzie

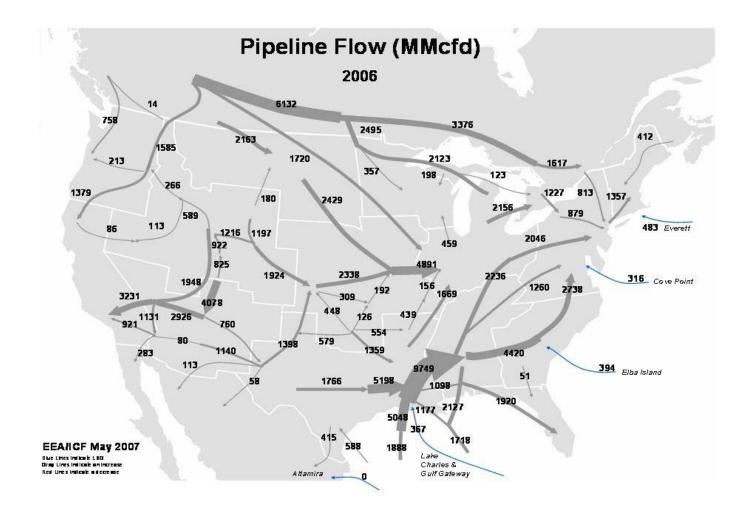
Generation Forecasted to Lead National Demand for Natural Gas



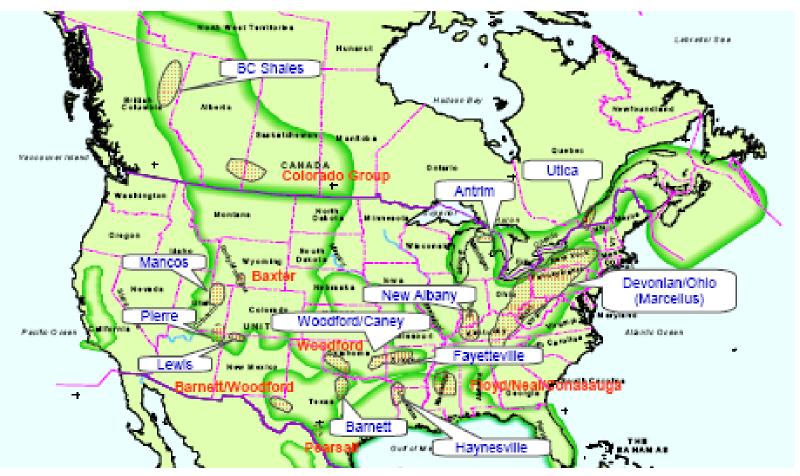
US Demand by Sector

Power Sector Demand

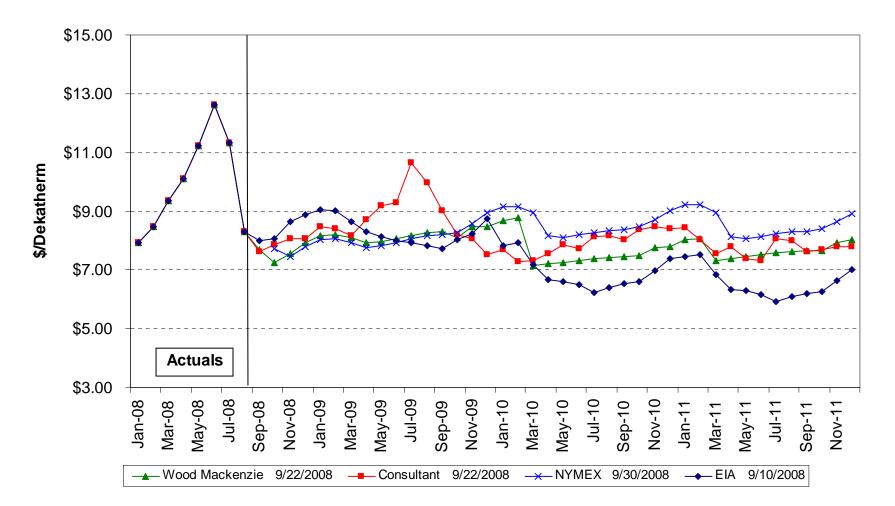
Source: Wood Mackenzie


Regional Natural Gas Demand Forecast

Source: Northwest Gas Association

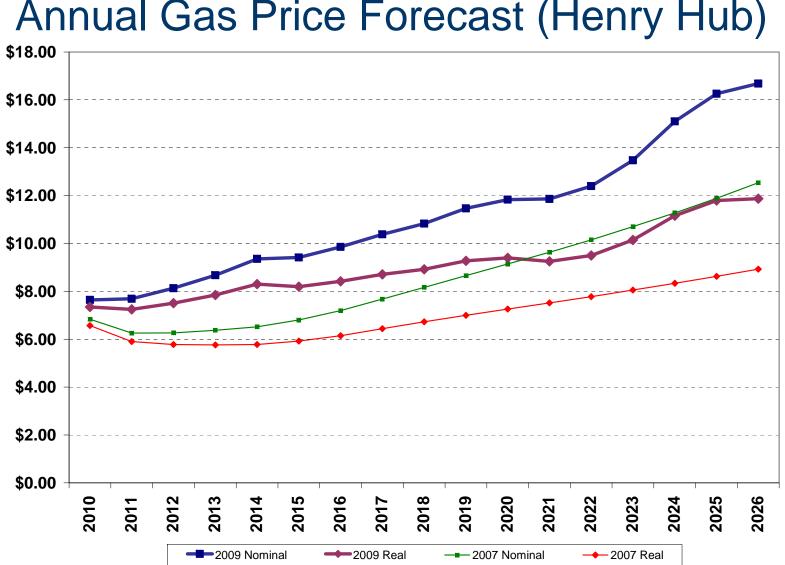


Interstate Pipeline Flow


Shale Gas Plays

Source: Wood Mackenzie

Henry Hub Short Term Price Forecasts



Forecast Assumptions

	2009	2015	2020
US Economic Growth (% GDP)	2.55%	2.84%	2.73%
US Gas Demand (bcf/d)	64.85	68.44	70.67
EG Demand (bcf\d)	19.33	22.88	26.41
WTI Oil Price (2008\$)	\$ 72.25	\$ 60.40	\$ 68.17
US Gas Prod. (bcf\d)	56.82	57.36	55.21
LNG Imports (bcf\d)	1.28	8.40	12.20
Alaska Pipeline			2021

Source: Wood Mackenzie

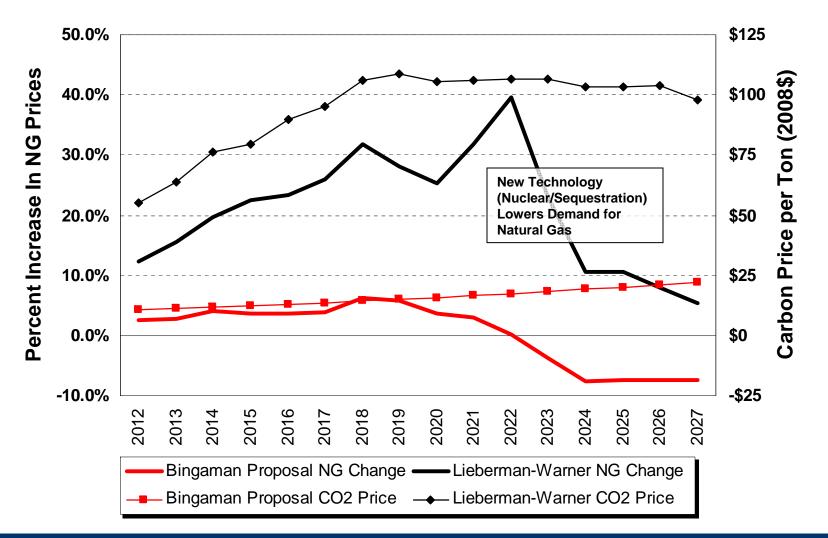


Annual Gas Price Forecast (Henry Hub)

Basin Differentials as a % of Henry Hub*

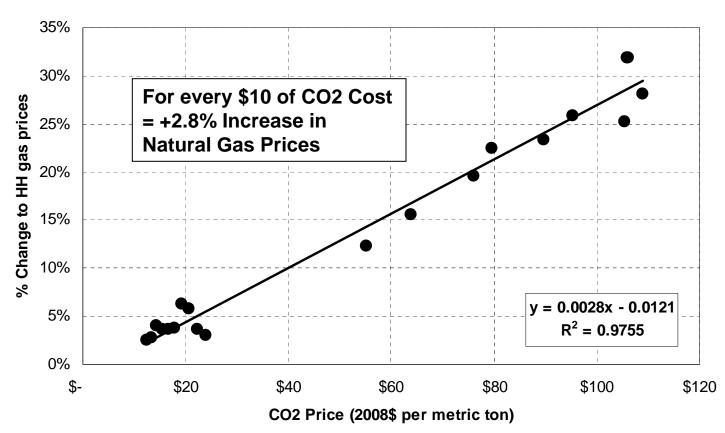
Location	%	
Henry Hub	100.0%	
AECO	96.7%	
Sumas	98.3%	
Malin	98.6%	
Opal	88.9%	
San Juan	97.9%	
So Cal	100.8%	

* Based on forecasted 20 year levelized nominal prices


Monthly Gas Shape*

Month	% of Annual	Month	% of Annual
Jan	103%	Jul	98%
Feb	104%	Aug	99%
Mar	97%	Sep	99%
Apr	96%	Oct	100%
May	97%	Nov	104%
Jun	98%	Dec	105%

* Based on 5 year average of monthly differentials to annual average (AECO)



Wood Mackenzie Green House Gas Scenarios

Carbon Cost & LT Natural Gas Prices Relationship

2012-2021 CO2 & NG Prices

Carbon Impact to Natural Gas Conclusion

- Carbon Legislation will <u>increase</u> natural gas demand and price.
- To meet a national 1990 Carbon Emissions levels; gas prices could be 30% higher than without Carbon Legislation, <u>unless</u> new technology (Nuclear or Carbon Sequestration) is available in high supply.
- '09 IRP will use the discussed relationship to develop the Base Case natural gas price forecast, until 2025 (first year sequestration is available to the market), post 2025 prices differentials will flatten.
- Increases to natural gas prices will allow existing coal resources to compete with natural gas at higher Carbon cost levels (see Price Forecast Presentation)

Levelized Natural Gas Costs (\$/Dth)*

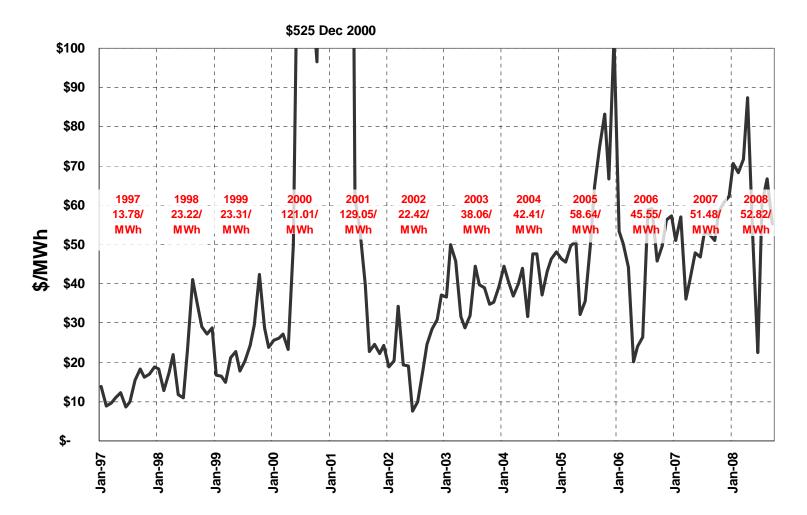
Location	Nominal		Real (2008\$)	
	WM	w/CO ₂	WM	w/CO ₂
Henry Hub	\$10.94	\$11.71	\$9.11	\$9.75
AECO	\$10.58	\$11.35	\$8.81	\$9.45
Sumas	\$10.76	\$11.53	\$8.96	\$9.60
Malin	\$10.79	\$11.56	\$8.98	\$9.62
Opal	\$9.72	\$10.49	\$8.10	\$8.74
San Juan	\$10.71	\$11.48	\$8.92	\$9.56
Southern Cal	\$11.02	\$11.80	\$9.18	\$9.82

* Levelized 20 Years (2010-2029)

Mid-Columbia Electric Market Forecast

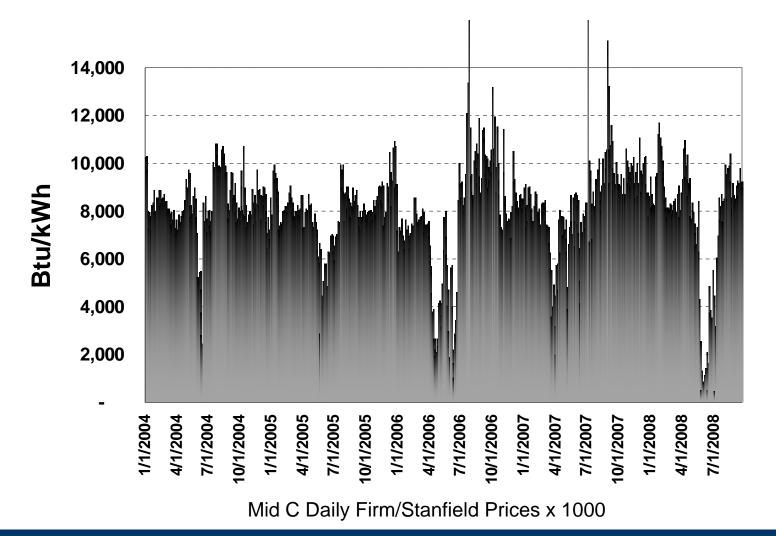
James Gall

2009 Electric Integrated Resource Plan Third Technical Advisory Committee Meeting October 22, 2008

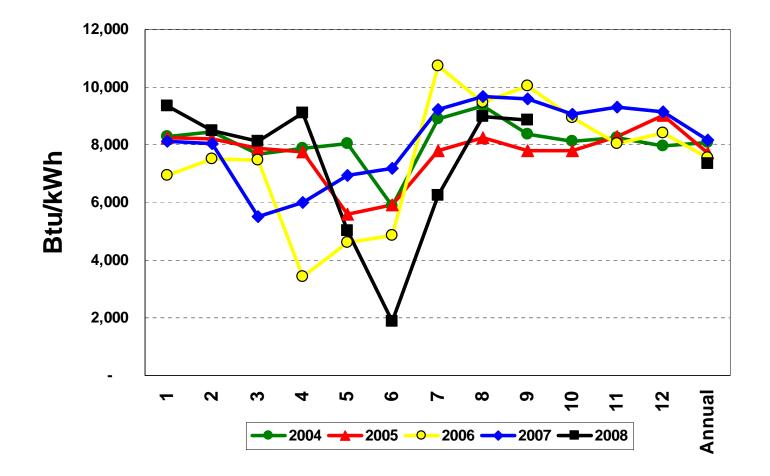


Why Is This Forecast Relevant?

- Used to value future energy costs
- Used to determine resources financial value given different market conditions
- Forecasts when and under what conditions a resource is likely to dispatch
- Test regional market conditions and policies
- Time for changes- recommendations are welcome!



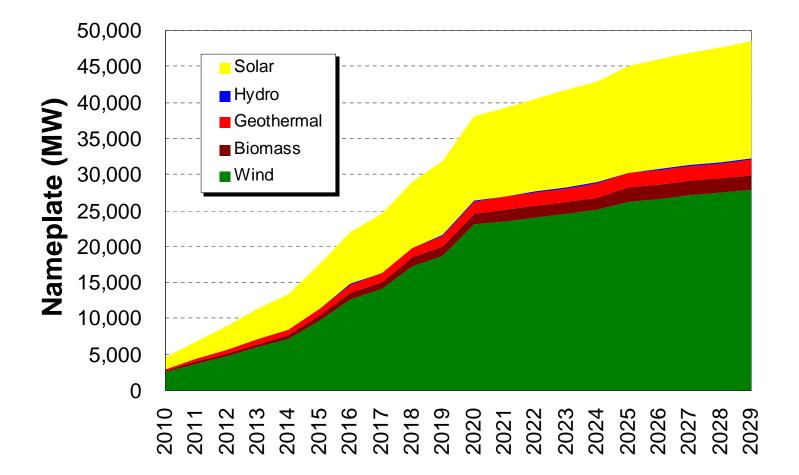
Historical Mid-Columbia Market Prices



Historical Market Implied Heat Rate

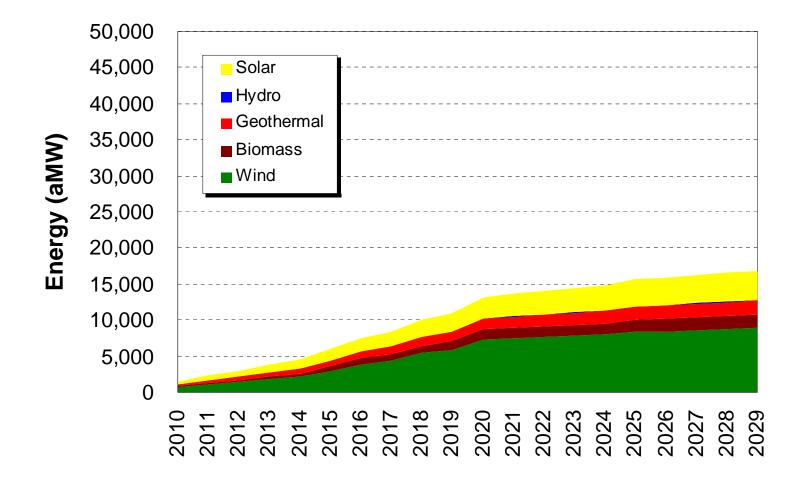
AVISTA

Historical Market Implied Heat Rate



Regional Demand (20 Year AAGR)

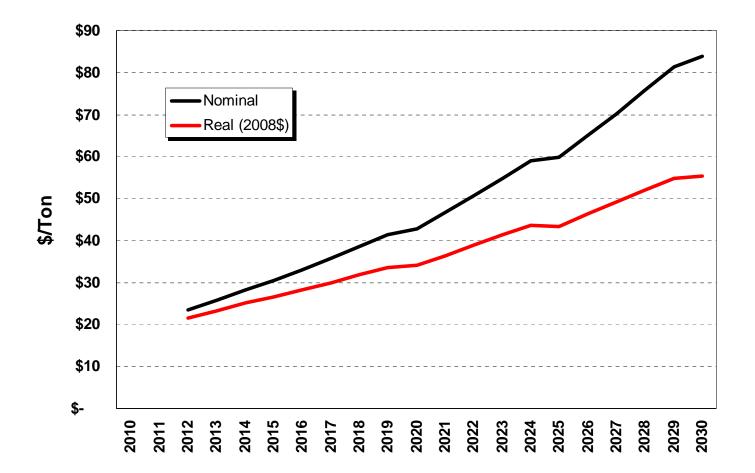
- Source: Wood Mackenzie
 - NW- 0.84%
 - DSW- 2.09%
 - CA- 1.61%
 - RM- 1.78%
 - UT- 2.19% (PAC IRP)
- Will evaluate using NPCC after GRAC meeting
- Evaluate NW IRP Forecasts



RPS Assumptions (Nameplate Capacity)

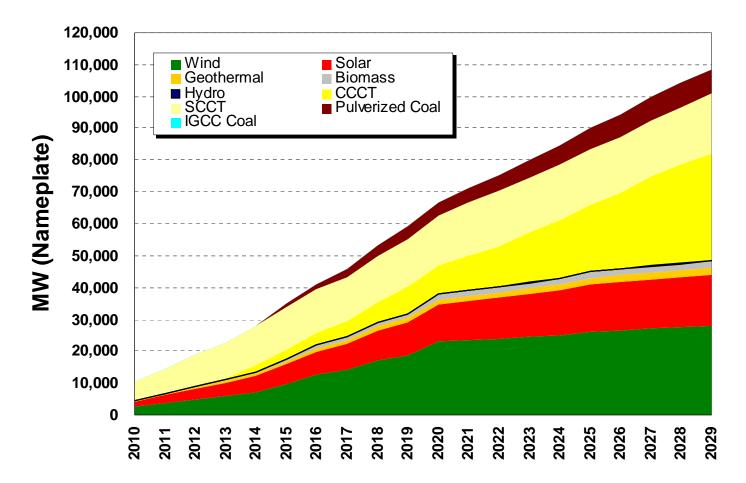
RPS Assumptions (Energy)

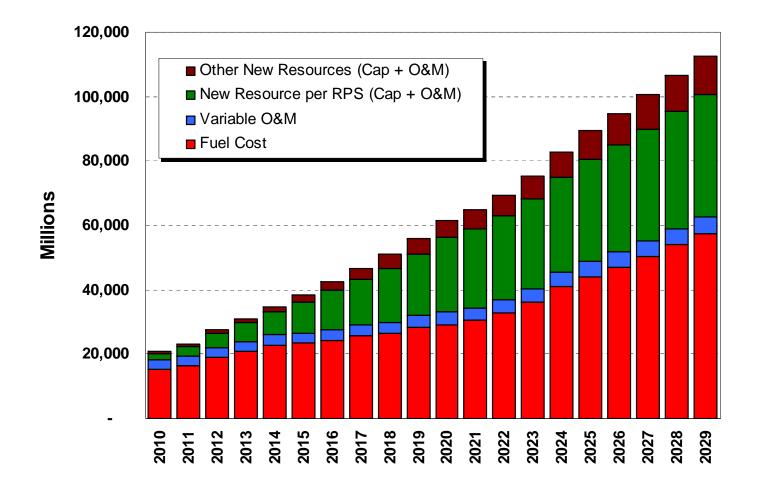
New Transmission Assumptions


Regional Resource Options

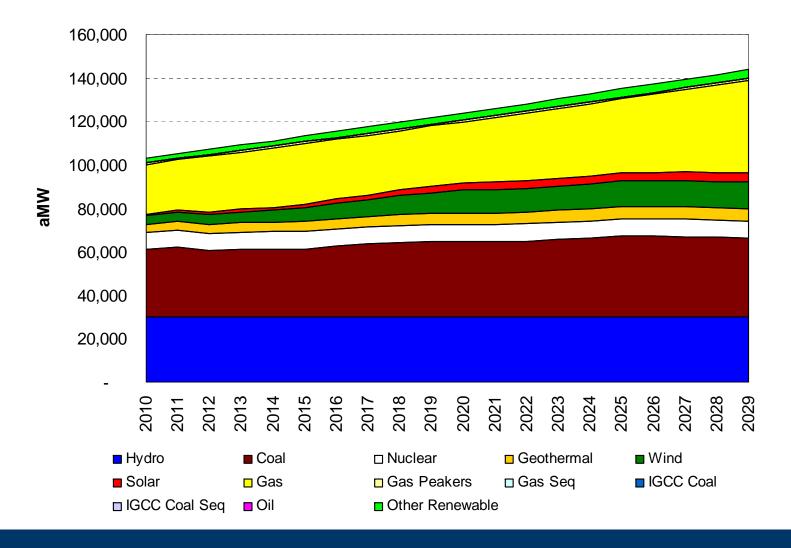
(First Year Available)

- Combined Cycle Combustion Turbine (2011)
- Single Cycle Combustion Turbine (2010)
- Wind (2010)
- Solar (2010)
- Pulverized Coal (2015)
- IGCC Coal (2015)
- IGCC Coal w/ Sequestration (2025)
- Combine Cycle Combustion Turbine w/ Sequestration (2025)
- Nuclear (2022)

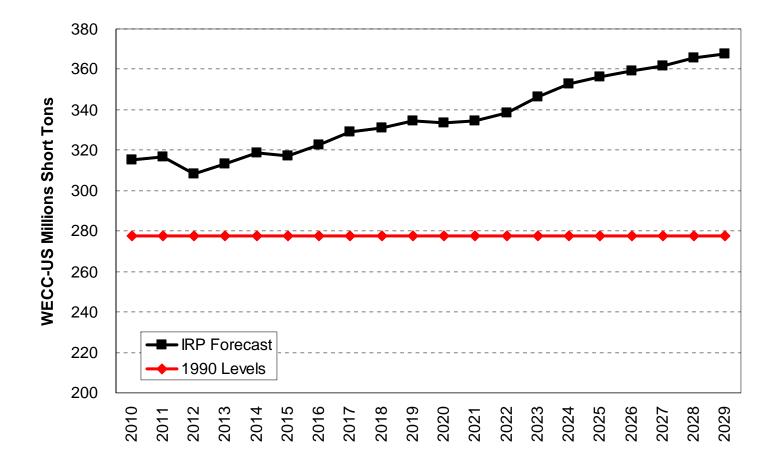



New Resources by Type in the WECC

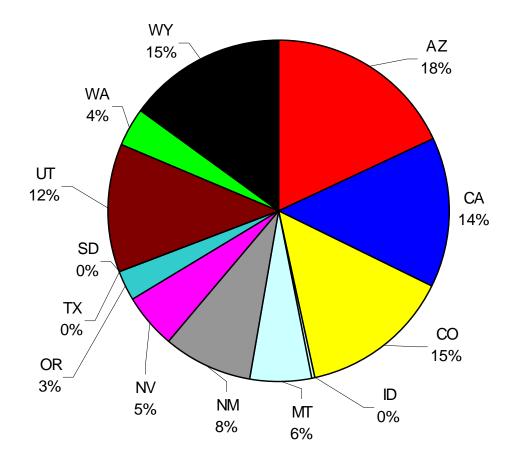
Retired 1,300 MW of High Heat Rate Natural Gas Plants between 2011-2013



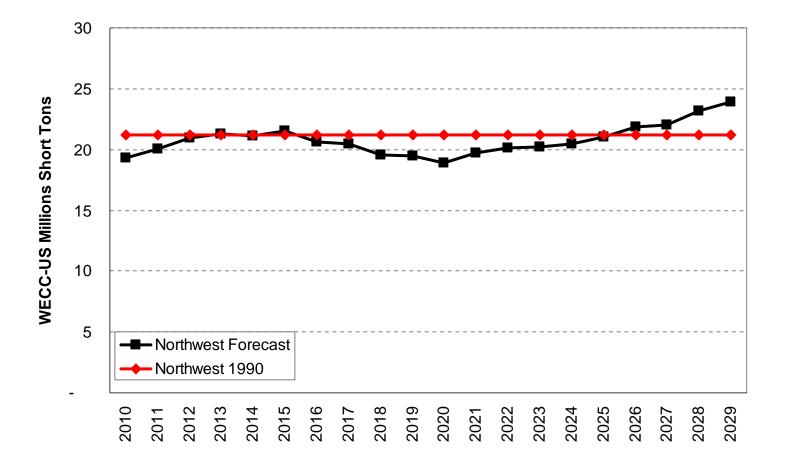
Western Interconnect System Costs (Nominal - Excludes Carbon Trading Costs)



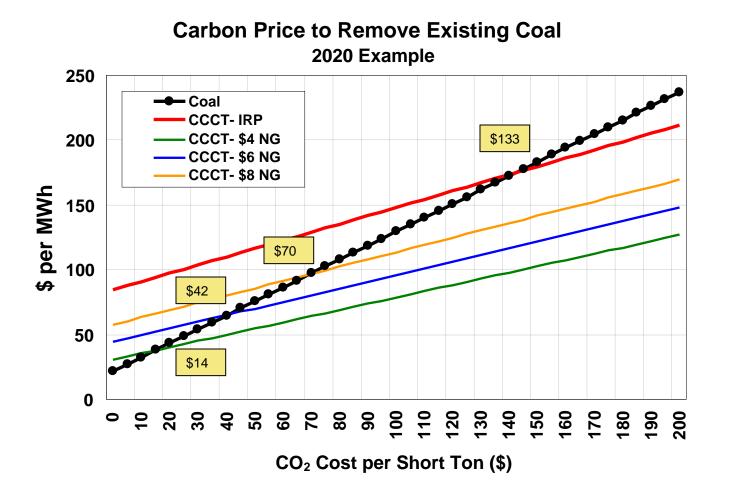
Resource Dispatch Contribution


Greenhouse Gas Forecast- US Western Interconnect

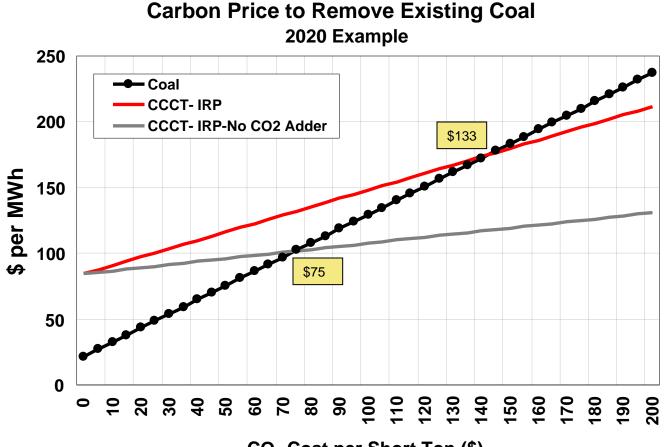
AVISTA


Greenhouse Gas Forecast

U.S. Western Interconnect

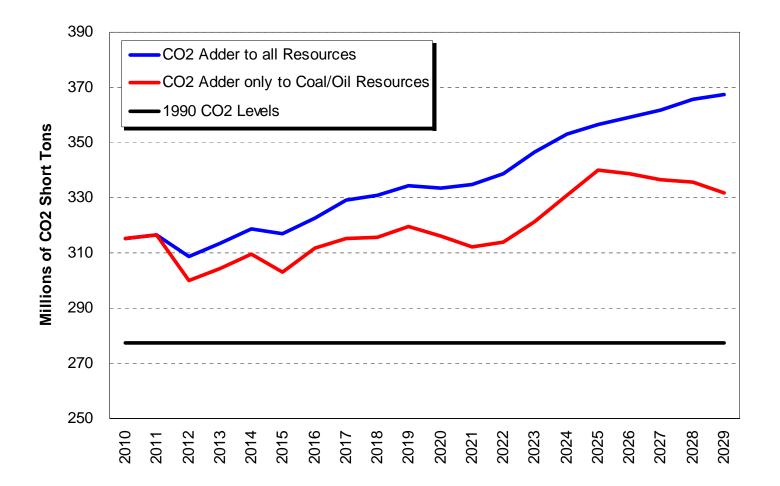


Greenhouse Gas Forecast- WA/OR/ID

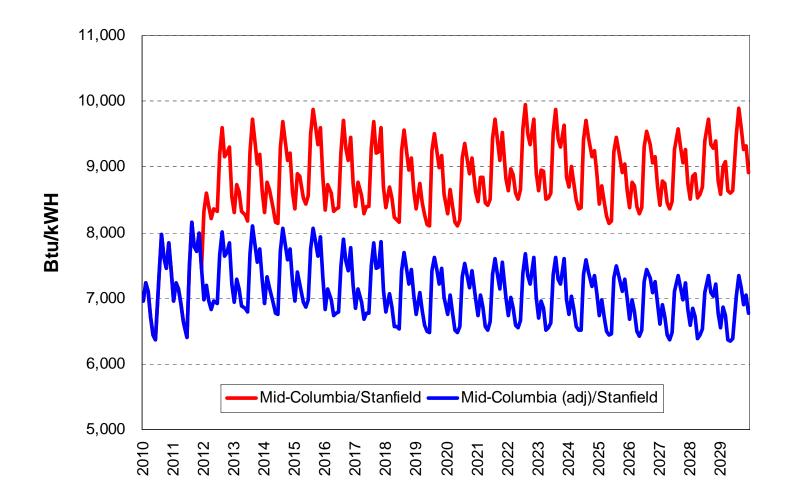


Carbon Adder High Enough, 2020 Example?

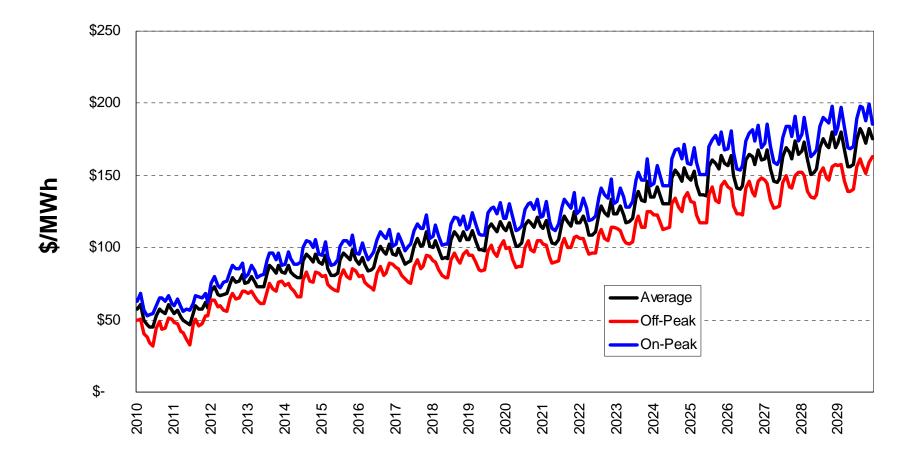
AVISTA


How about a Coal Carbon "adder" Instead

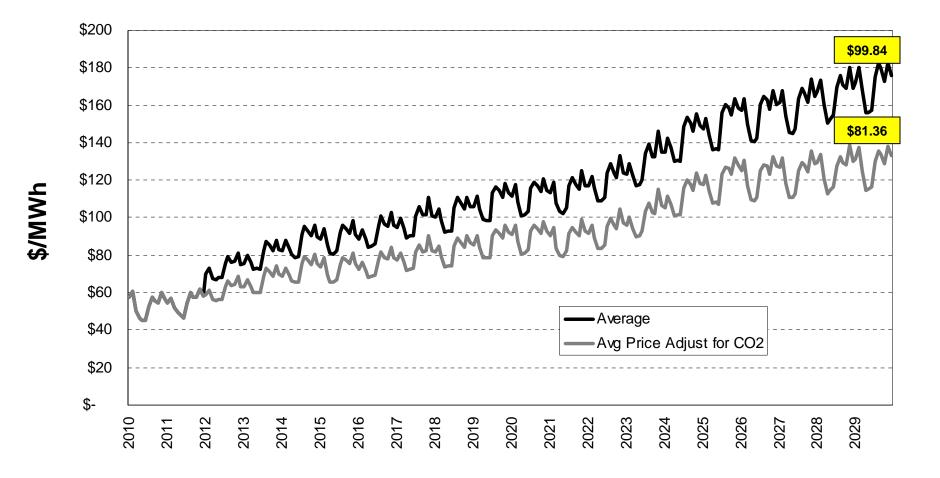
CO₂ Cost per Short Ton (\$)



Greenhouse Gas Forecast- US Western Interconnect



Market Implied Heat Rates (Mid-C/Stanfield)



Annual On-Off Peak Mid-Columbia Prices

Mid-Columbia Prices would be lower if not for Carbon Costs

AVISTA

Mid-Columbia Levelized Prices (\$/MWh) 2010-2029

	Average	On-Peak	Off-Peak
20-Year (Nominal)	99.84	109.77	86.60
20-Year (2008\$)	83.15	91.41	72.13

Legislative Update

Collins Sprague

2009 Electric Integrated Resource Plan Third Technical Advisory Committee Meeting October 22, 2007

Western Climate Initiative

- Regional cap and trade implementation
- Electricity sector obligations
- Cost containment mechanisms
- Allowances
- Market regulation and enforcement

Feed-In Tariff

- Solar Renewable Rate Recovery and Control Act
- Anaerobic Digester (\$0.12/kWh), landfill gas (\$0.08/kWh), and "organic" combined heat and power (\$0.09/kWh)
 - Will not qualify for utility compliance with I-937
- Renewable energy credit (public utility tax) for solar expanded to include other technologies
- Wheeling requirement for output from digesters
 - Transmission cost capped at 5%

Energy Efficiency

- Existing, new and renovated buildings
- Update Energy Code to achieve 30% reduction from current edition
- "State Building Efficiency and Carbon Reduction Strategy" – targets for building energy use intensity
- Energy benchmark disclosure requirement at time of structure sale
- Partial public utility credit for non-residential energy performance
- Expansion of Local Improvement Districts to finance energy efficiency and district heating/cooling

Other Topics

- Tax incentives
 - Broad tax incentives for combined heat and power, distributed generation, and water systems
 - Renewable energy tax incentives for large-scale generation
- "Product Stewardship" collection and recycling of incandescent lighting by manufacturers
- Vegetation Management
- Emissions Performance standard revisions

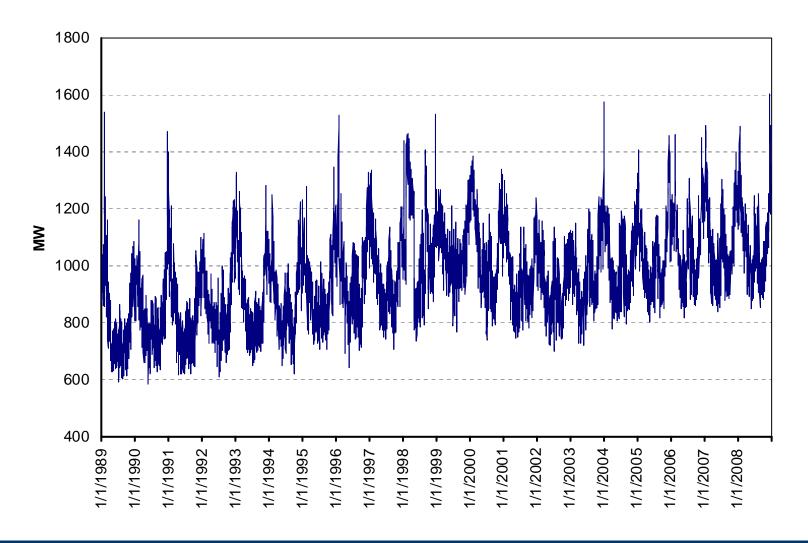
Avista's 2009 Electric Integrated Resource Plan Technical Advisory Committee Meeting No. 4 Agenda January 28, 2009

1.	Topic Introduction	Time 9:30	Staff Storro
2.	2008 Peak Load Event	9:35	Heath
3.	Natural Gas & Electric Price Update	10:00	Rahn / Gall
4.	Lunch	11:30	
5.	Resource Assumptions	12:30	Lyons
6.	Transmission	1:00	Gibson
7.	Draft Preferred Resource Strategy	2:00	Gall
8.	Adjourn	3:00	

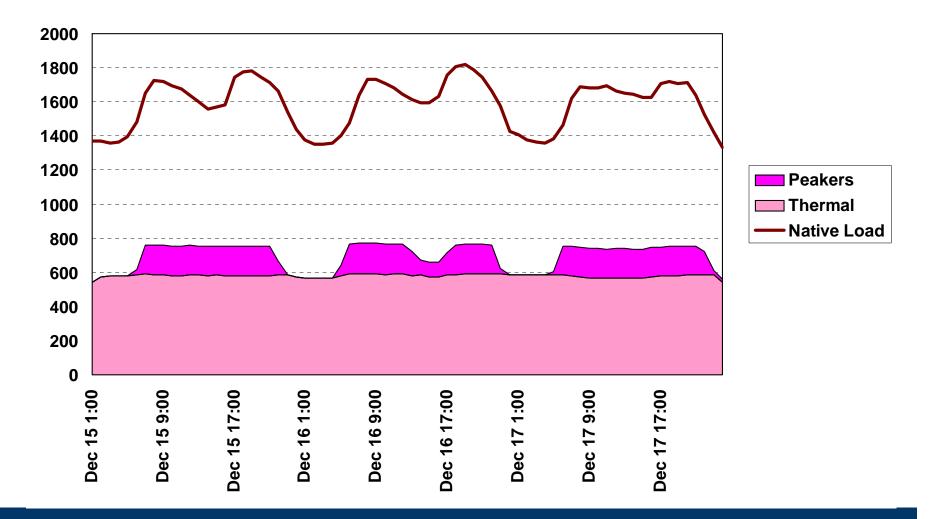
2008 Peak Load Event

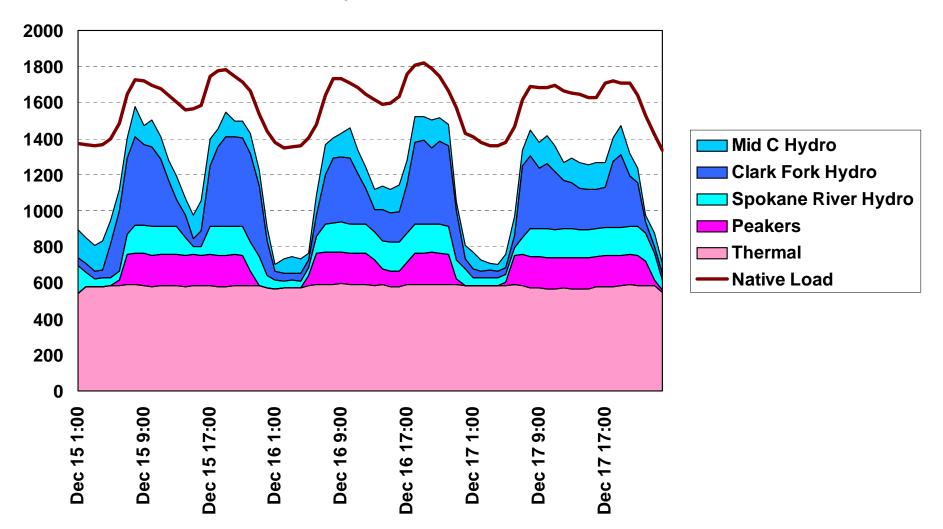
Heidi Heath

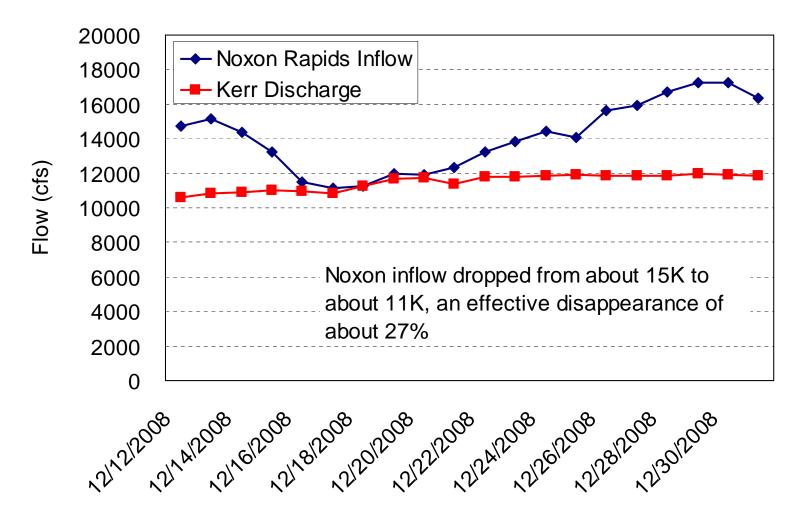
2009 Electric Integrated Resource Plan Fourth Technical Advisory Committee Meeting January 28, 2009



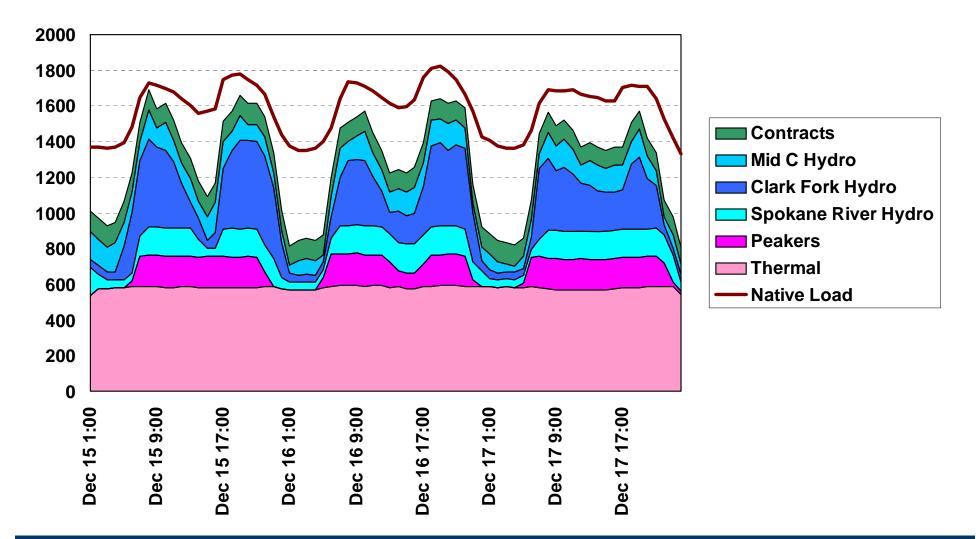
Top Ten Highest Hourly Loads


	Date	Load
1	12/16/2008	1821
2	12/16/2008	1809
3	12/16/2008	1791
4	2/1/1996	1796
5	12/15/2008	1781
6	12/15/2008	1776
7	2/2/1996	1770
8	1/5/2004	1766
9	12/16/2008	1759
10	12/14/2008	1752

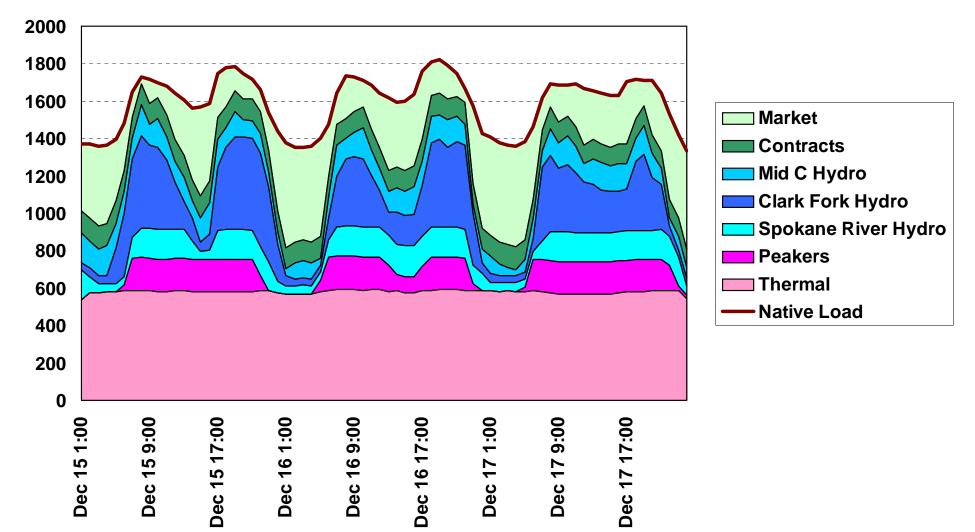

Daily Average Loads 1989-2008


Thermal Generation

Hydro Generation



River icing was a problem!



Contracts

Market Purchases

Natural Gas & Electric Price Forecast- Update

Greg Rahn & James Gall

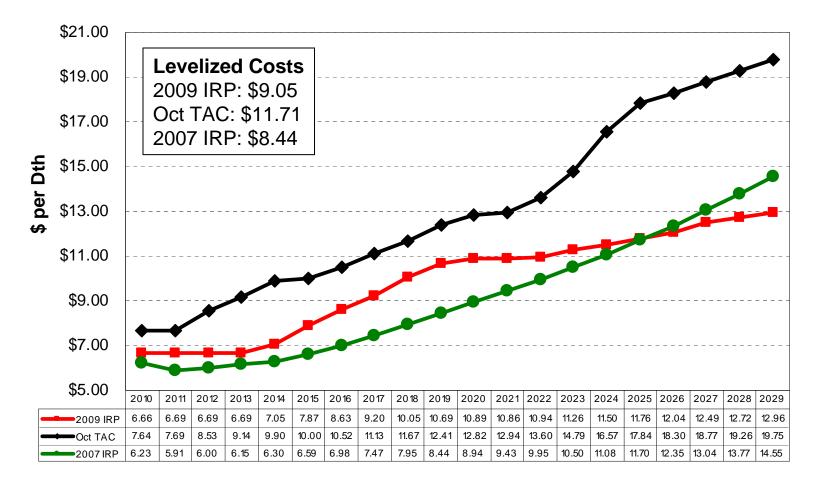
2009 Electric Integrated Resource Plan Fourth Technical Advisory Committee Meeting January 28, 2009

Study Changes Since Last TAC

- Wood Mackenzie released its "Carbon Case #3"
 - Mid-range greenhouse gas mitigation scenario
 - Natural gas price impact from greenhouse legislation
 - Demand reductions due to greenhouse gas legislation
- Updated Natural Gas Price Forecast
 - Integrates near term economy
 - Short-term price collapse
 - Credit markets

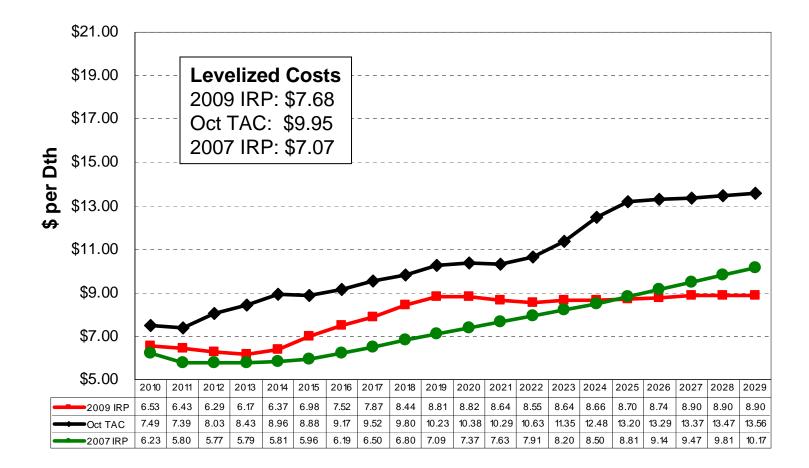
Natural Gas Price Forecast Update

Supply Increase to Soften Price of Natural Gas


- Edinburgh, Scotland-based energy consultancy Wood Mackenzie said it expects spot prices for natural gas between \$5 and \$6 per million British thermal units for the next few years, with periods when prices will slip even lower.
- "We are now in a position of significant potential oversupply brought about by the huge success experienced in the development of shale gas plays," says Jen Snyder, head of North American gas research at Wood Mackenzie.

- Russell Gold, The Wall Street Journal November 25, 2008

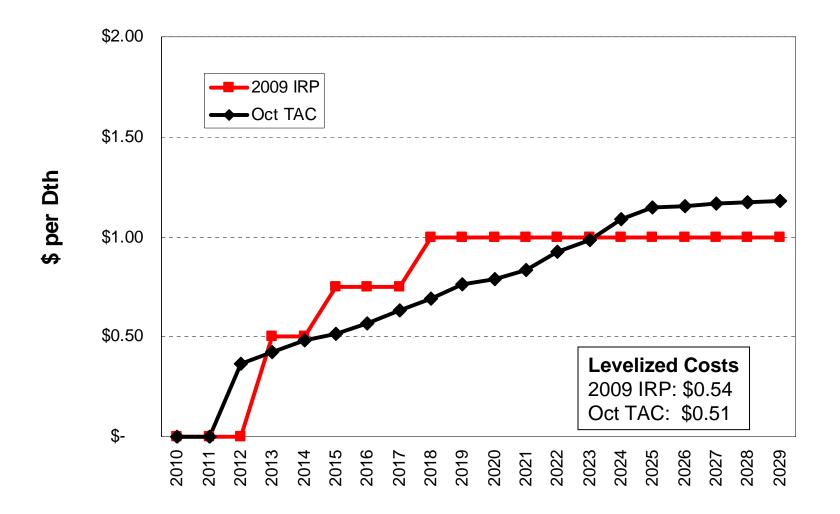
Annual Natural Gas Price Comparison


Henry Hub Nominal \$

2009 IRP: 2010-2013 Average Price of Consultants, EIA, and Forward Prices

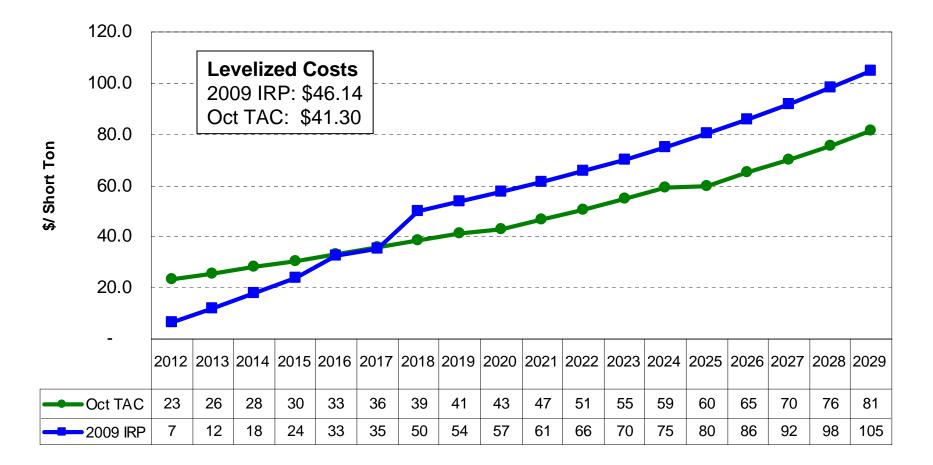
Annual Natural Gas Price Comparison Henry Hub 2009 \$

Greenhouse Gas Price Assumptions


- Based on the most recent 'discussion draft' proposal by Reps. Dingell and Boucher of the House Energy and Commerce Committee
- Wood Mackenzie made assumptions on the key components of the analysis such as caps on carbon prices, the allocation of carbon credits, the use of carbon offsets, and, nuclear and CCS technology availability.
- Wood Mackenzie's proprietary upstream oil, gas, and coal data and analysis are the cost and availability of fuel supplies, particularly to support an assumption to increase reliance on natural gas to meet near term emission reduction requirements.
- Carbon offsets/other industry represent difference between forecasted emissions and legislative goals

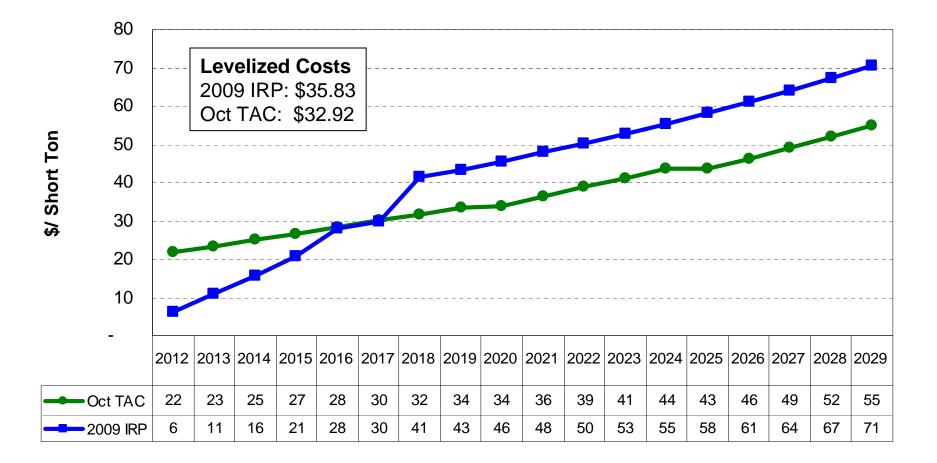
Source: Wood Mackenzie Carbon Case 3

6

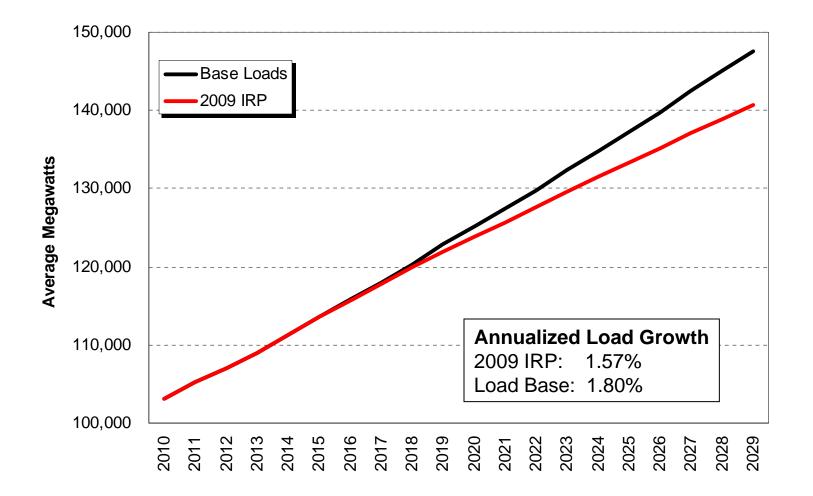

Annual GHG Adder to Natural Gas Prices

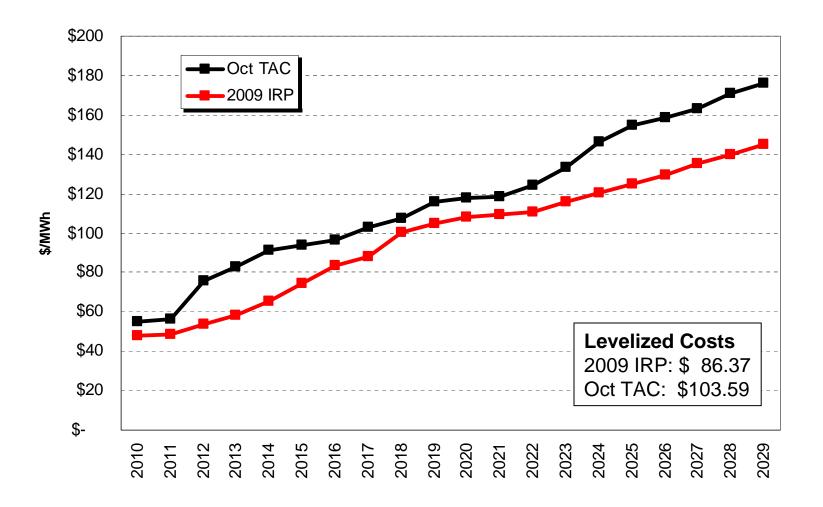
7

Annual GHG Adder per Ton of CO₂

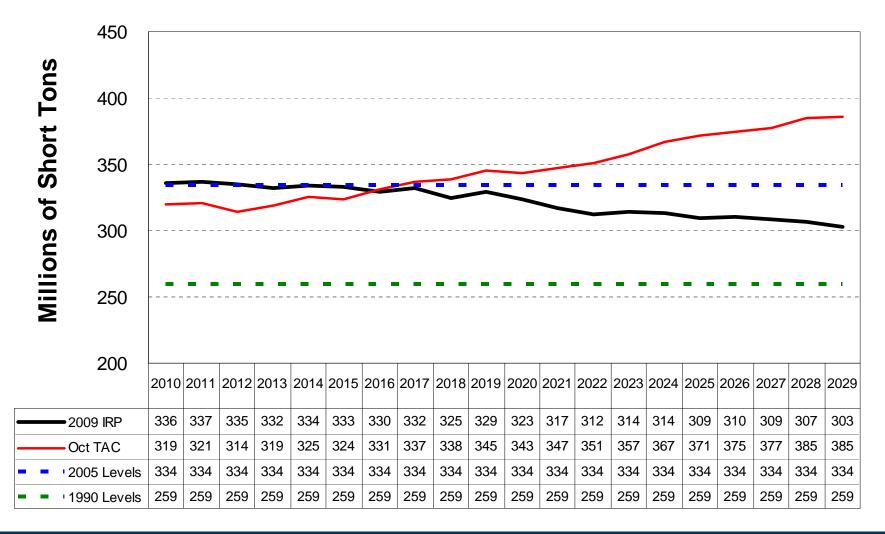

Nominal \$

Annual GHG Adder per Ton of CO₂

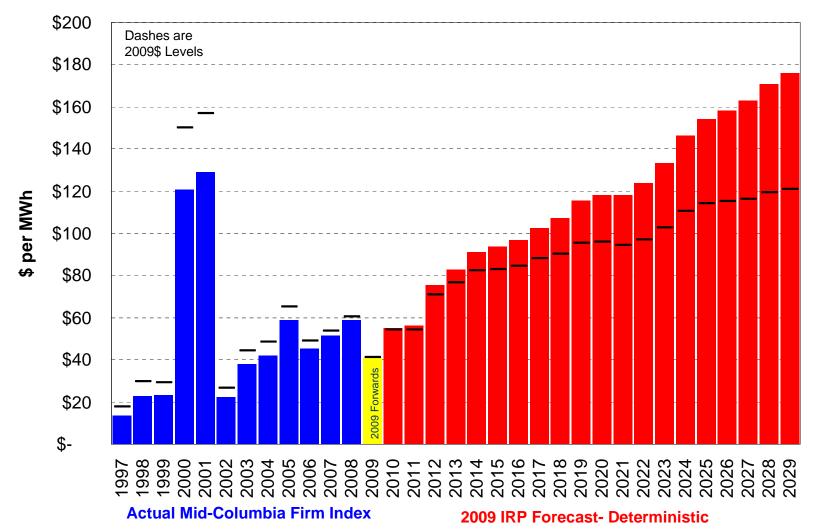

2009 \$



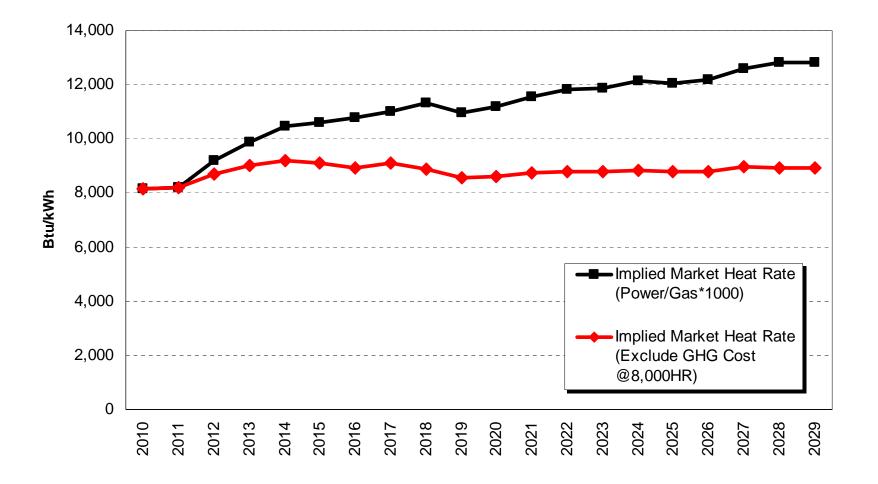
Western Interconnect Load Growth

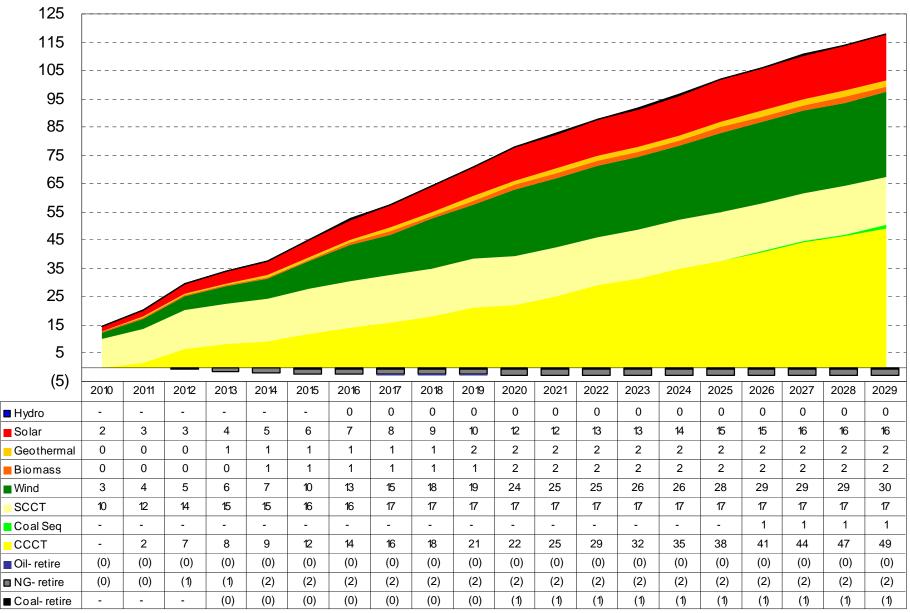

Change with Greenhouse Gas Legislation

Last TAC Price Forecast vs 2009 IRP



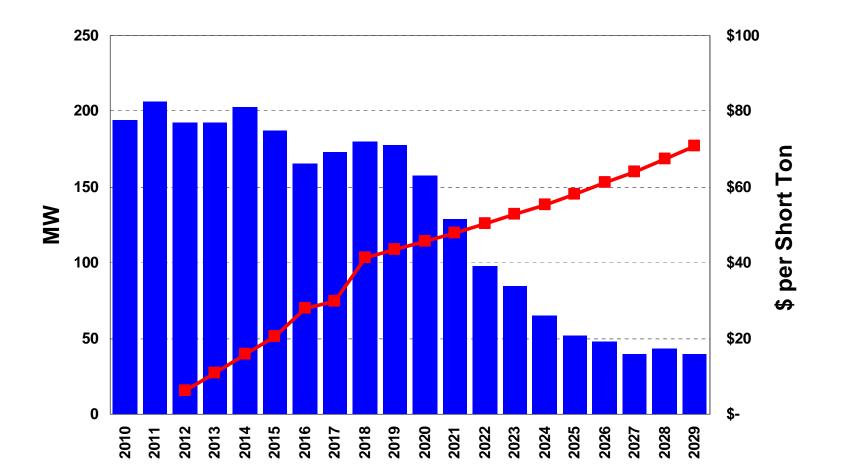
US Western Interconnect Greenhouse Gas Comparison




Mid-Columbia Actual & Forecast

Implied Market Heat Rate

(Mid-Columbia/Stanfield*1000)



Western Interconnect New Resources

AVISTA

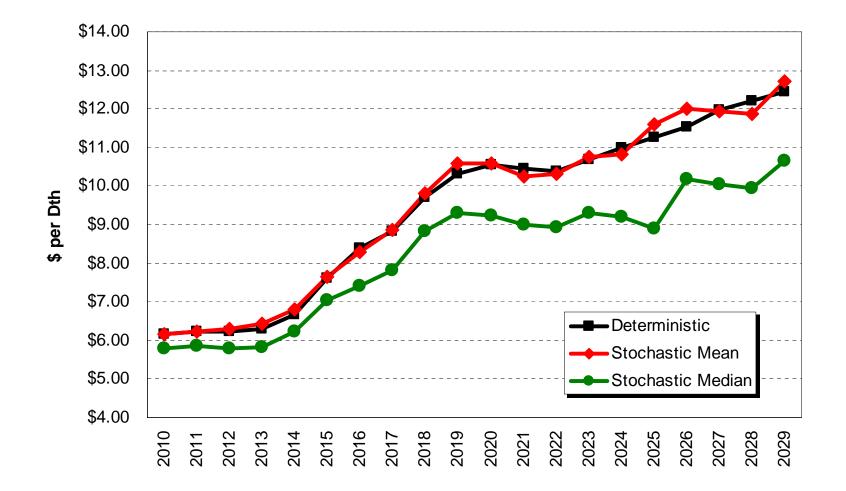
₹ S

Colstrip Generation & CO₂ Legislation

Stochastic Analysis

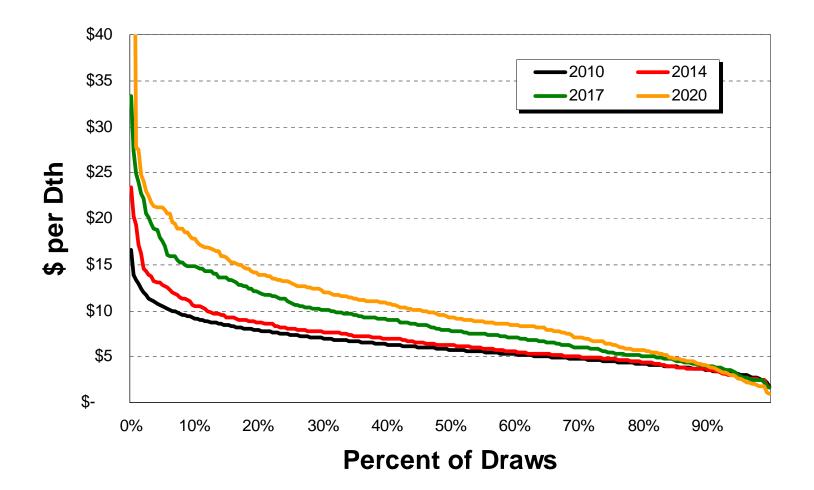
Stochastic Study CPU Requirements

- 20-year hourly simulations, 250 times (tested as high as 500)
- Uses 25 CPU and 1 data server
- 26.5 GB output database per study
- 6 hours per simulation, 1,500 hours of computing time
- 2.5 days to complete a study

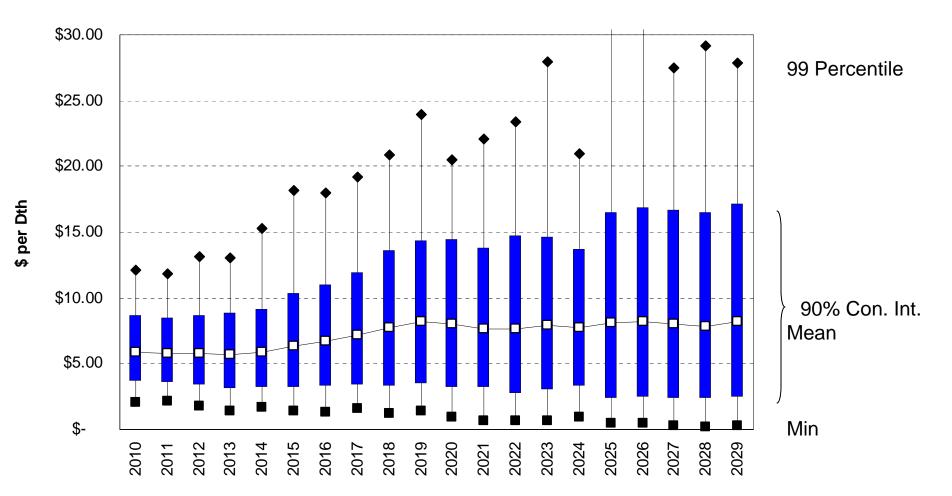


Long-Term Correlation Matrix

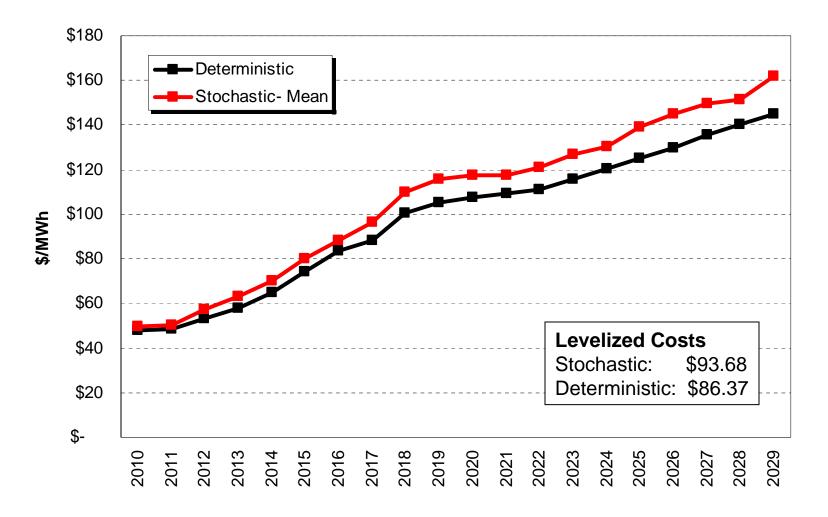
	Gas Prices	GHG Prices	NO _x Prices	SO ₂ Prices	New Coal Prices	Hog Fuel Prices	Load Growth
Gas Prices	1.00						
GHG Prices	0.50	1.00					
Hg Prices		-0.50	1.00				
NO _x Prices		0.75	1.00	1.00			
SO ₂ Prices		0.75	1.00	1.00	1.00		
New Coal Prices		-0.25	-0.25	-0.25	1.00	1.00	
Hog Fuel Prices	0.50	0.50				1.00	1.00



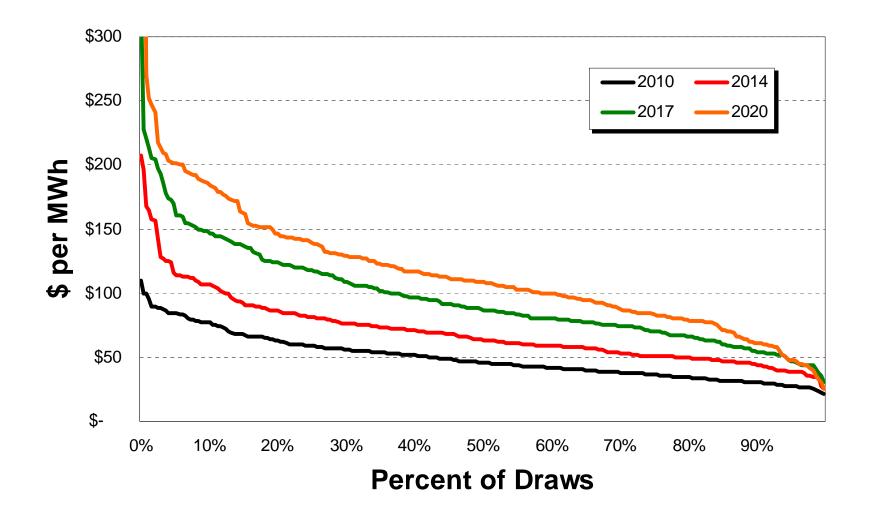
Annual Henry Hub Prices


Annual Henry Hub Prices

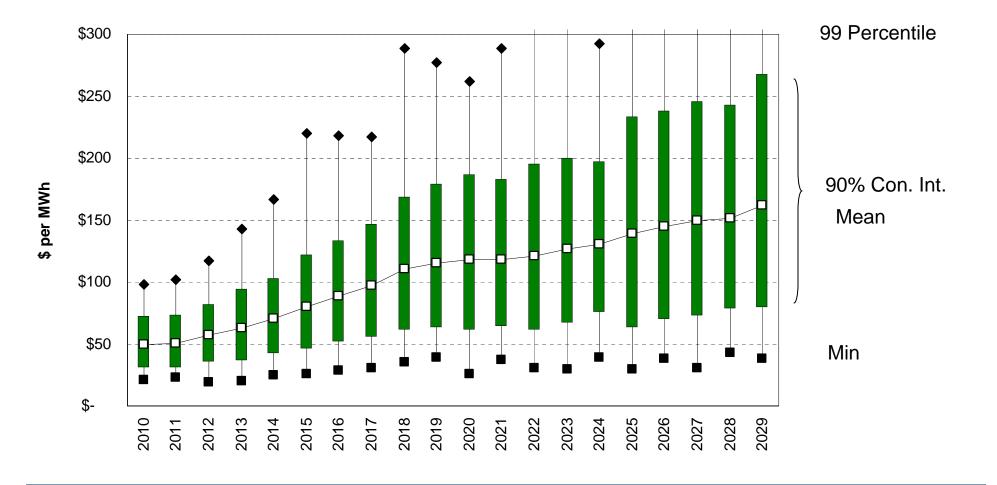
Select Years


Annual Henry Hub Stochastic Price Ranges

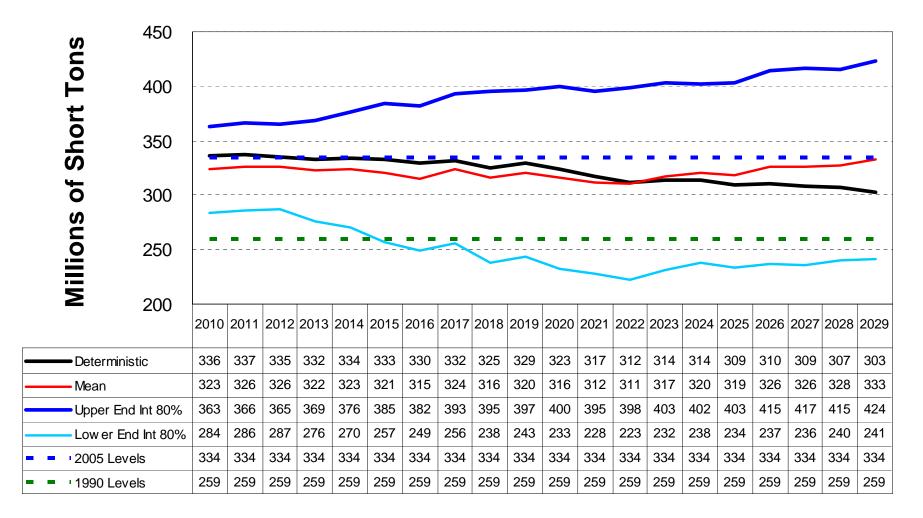
22


Annual Mid-Columbia Electric Prices

Deterministic vs. Stochastic Prices


Annual Avg Mid-Columbia Prices

Select Years



Annual Mid-Columbia Stochastic Price Results

US- Western Interconnect Greenhouse Gas Emissions By Year

2009 IRP Resource Assumptions

John Lyons, Ph.D.

2009 Electric Integrated Resource Plan Fourth Technical Advisory Committee Meeting January 28, 2009

Supply Side Resources

2

- Resource lists and data are developed from a variety of sources including: internal research, Power Council, consulting firms, published reports, and government studies
- Data is used to develop generic resource costs
- Fewer types of coal resources are included only ultra critical and IGCC plants are being modeled for the 2009 IRP
- Alberta oil sands are not included as a resource option
- Adding more specifics for the Other Renewable Resources category – various geothermal, biomass, and solar resource technologies are being modeled separately for the 2009 IRP
- Pipeline cogeneration has been dropped due to lack of sufficient data

Non-Renewable Supply Side Resources

- Natural Gas Combined Cycle (CCCT)
 - 2 x 1 and 1 x 1 with duct burner water cooled (1x1 for PRS)
 - 2 x 1 and 1 x 1 with duct burner air cooled
 - 600 MW with sequestration
- Natural Gas-Fired Simple Cycle Aero, Frame, and Hybrid
- Small cogeneration (< 5 MW)
- Coal: ultra critical, IGCC, and IGCC with sequestration
- Nuclear: only allowed in scenario studies

Renewable Supply Side Resources

- Geothermal
- Wind 100 MW, < 5 MW, and offshore
- CCCT Wood Boiler
- Wood Gasification Conversion
- Open Loop Biomass landfill gas, wood, waste, etc.
- Closed Loop Biomass
- Solar Photovoltaic
- Solar Thermal
- Roof Top Solar
- Tidal Power
- Hydrokinetics
- Run of River Hydro
- Pumped Storage

Avista Resources and Upgrades

Hydro resources included as resource options

- Little Falls Unit #1 4 Upgrades
- Post Falls Unit #6 Upgrade
- Upper Falls Upgrade

Hydro resources considered for further study

- Long Lake new unit and new powerhouse
- Cabinet Gorge #5

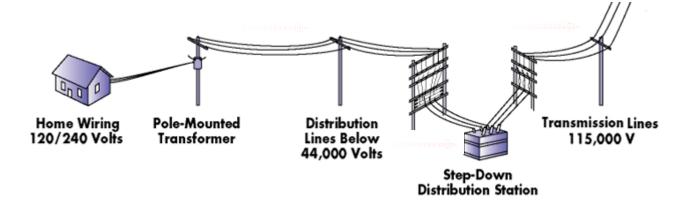
Scheduled upgrades and resources presently included in the L&R

- Noxon Rapids Units #1 4 Upgrades (2009 2012)
- Lancaster Generation Facility Tolling Agreement (2010)

Transmission & Distribution Efficiencies

John Gibson

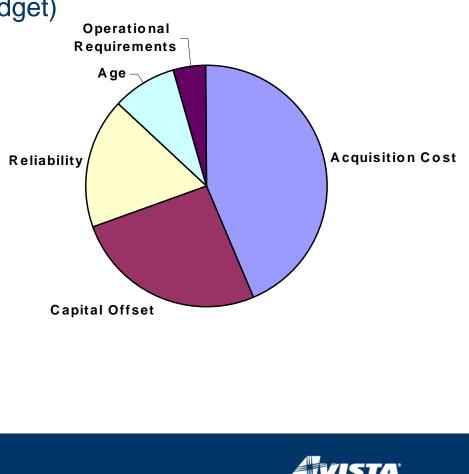
2009 Electric Integrated Resource Plan Fourth Technical Advisory Committee Meeting January 28, 2009


Introduction – System Efficiencies

- Distribution System
 - Analysis Methodology
 - Analysis Criteria
 - Prioritization Tabulation
 - Pilot Project: 9CE12F4
- Transmission System
 - Load Density
 - Grid Topology

Distribution Efficiency Programs

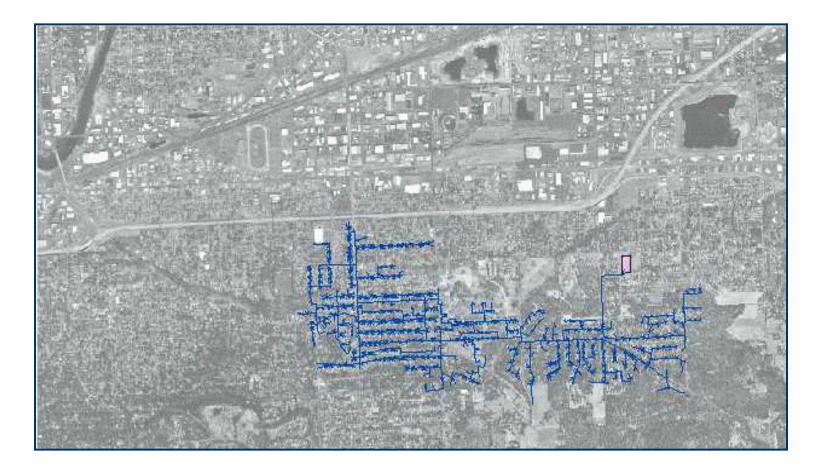
- Split feeders
- Distribution transformers efficiency no load loss
- Secondary districts
- Reconductoring
- Reactive loading
- Voltage regulation



Distribution Analysis Criteria

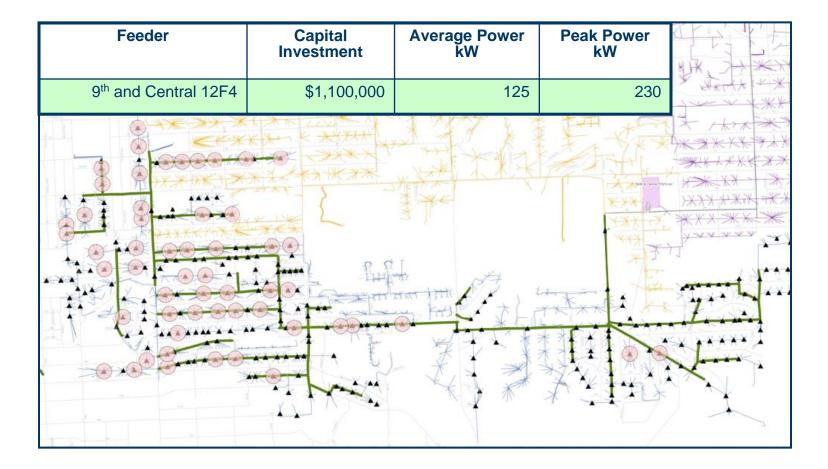
- Energy efficiency upgrades (acquisition cost)
- Capital offset (5year capital budget)
- Reliability Index

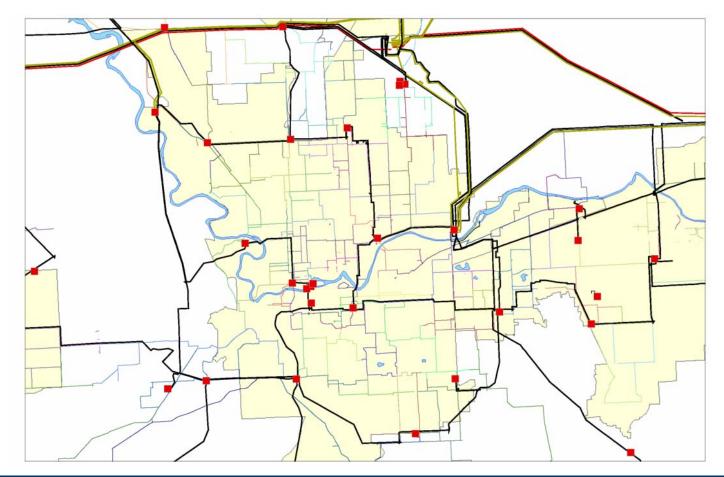
4


- Equipment age profile
- Operational requirements

Distribution Prioritization Tabulation

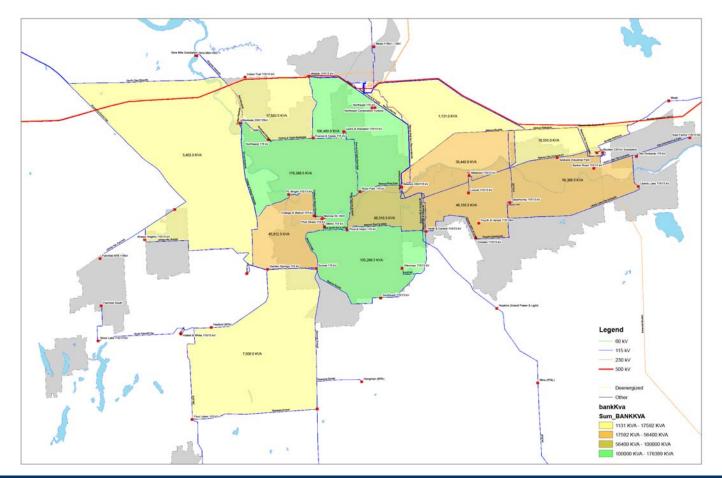
Feeder Project	Age	Reliability	Avoided Cost	Capital Offset	Operational Requirements	Overall Score	
KET12F2	25.32	328	\$85.07	\$400,000	Low	0.596	
ORI12F3	27.44	285	\$73.30	\$0	Low	0.591	
SPI12F1	27.57	310	\$90.76	\$220,000	Low	0.558	
PRV4S40	23.34	331	\$94.10	\$0	Low	0.544	
ORO1281	30.33	197	\$78.97	\$0	Low	0.533	
SUN12F3	25.20	312	\$112.78	\$0	High	0.522	
COB12F2	27.32	283	\$94.81	\$0	Low	0.519	
LAT421	27.39	309	\$102.59	\$0	Low	0.508	
COB12F1	30.44	303	\$108.77	\$250,000	Low	0.502	
CLV12F4	30.43	323	\$108.47	\$28,333	Low	0.502	
LF34F1	21.71	299	\$102.91	\$0	Low	0.499	
STM631	23.29	317	\$109.19	\$0	Low	0.490	
SUN12F1	31.73	291	\$125.03	\$0	High	0.483	
CLV12F2	30.06	298	\$125.81	\$780,833	Low	0.481	



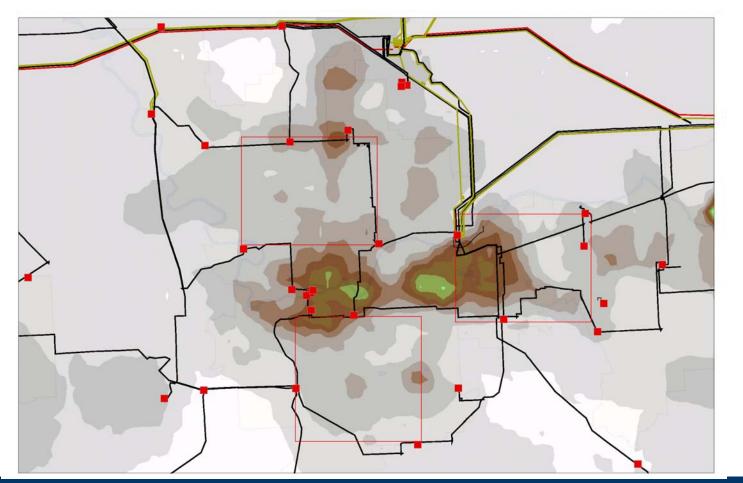




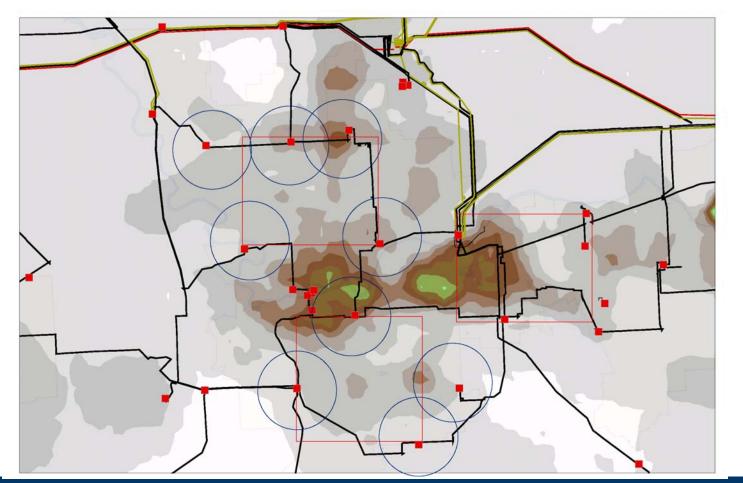
Load density and forecasted load growth



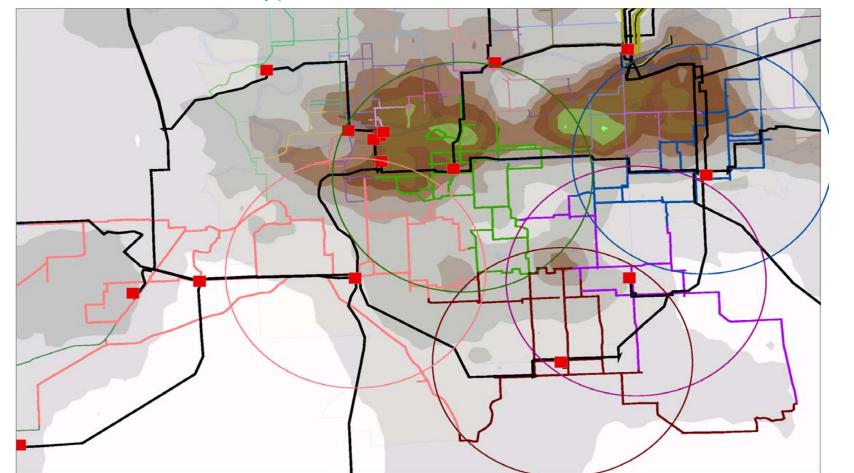
Load density and forecasted load growth



Load density and forecasted load growth

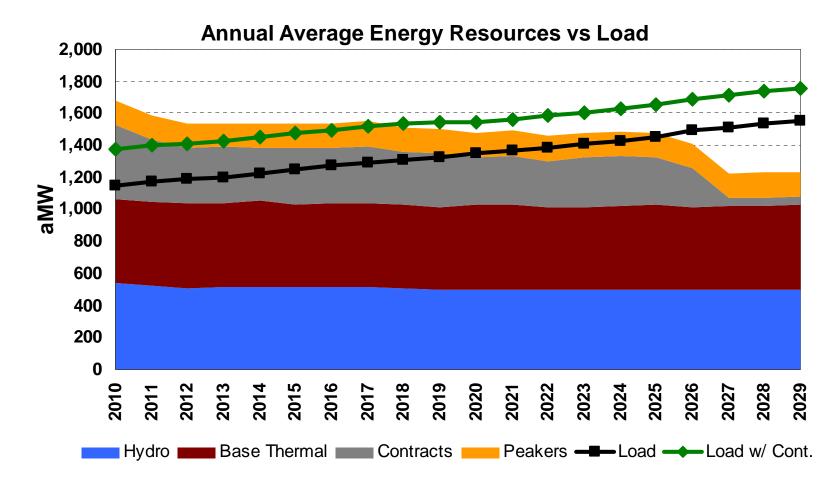


- Transmission topology
- Transmission archetypes



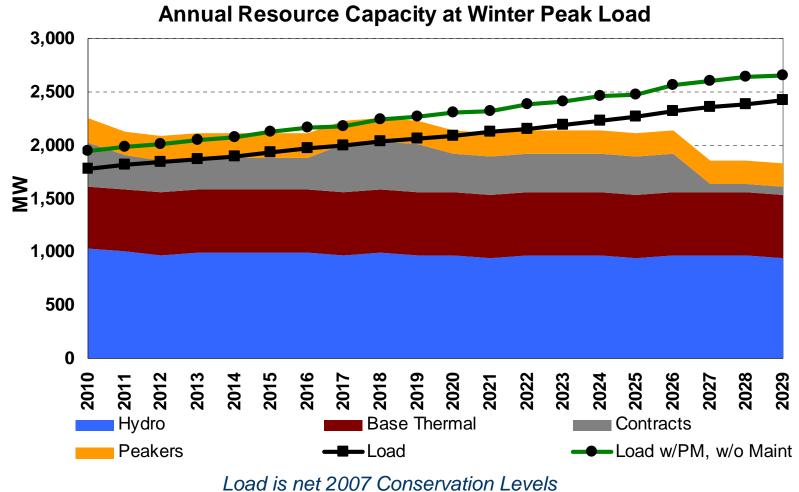
- Transmission topology
- Transmission archetypes

- Transmission topology
- Transmission archetypes

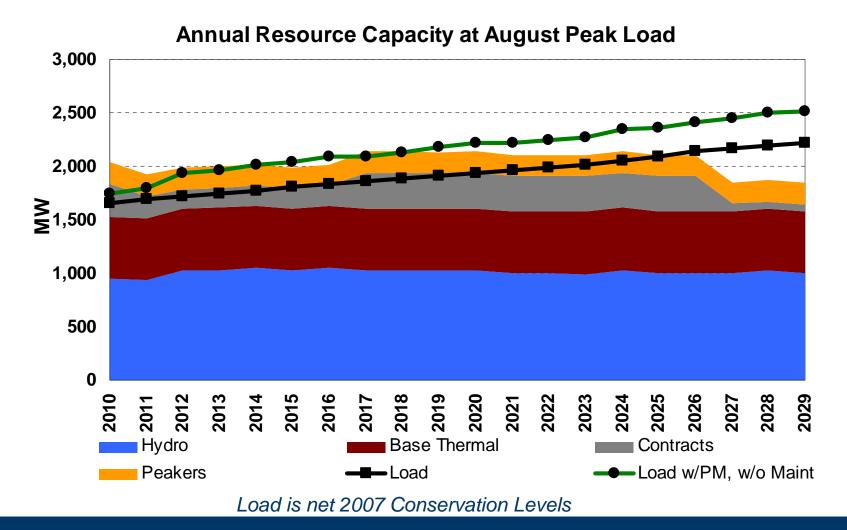

Preferred Resource Strategy-DRAFT

James Gall

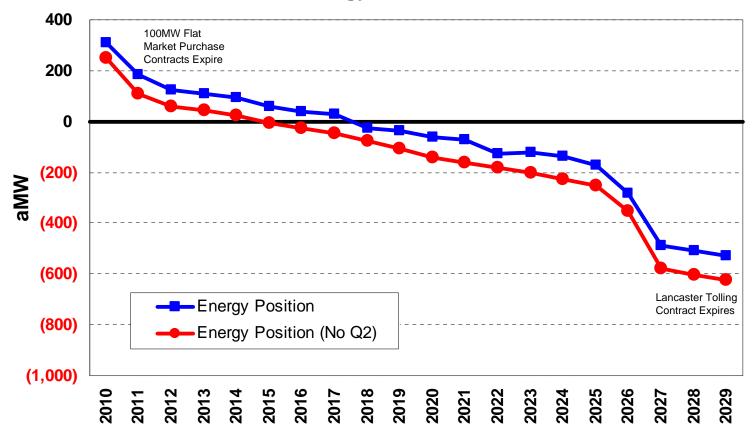
2009 Electric Integrated Resource Plan Fourth Technical Advisory Committee Meeting January 28, 2009


Resource Needs (Energy)

Load is net 2007 Conservation Levels

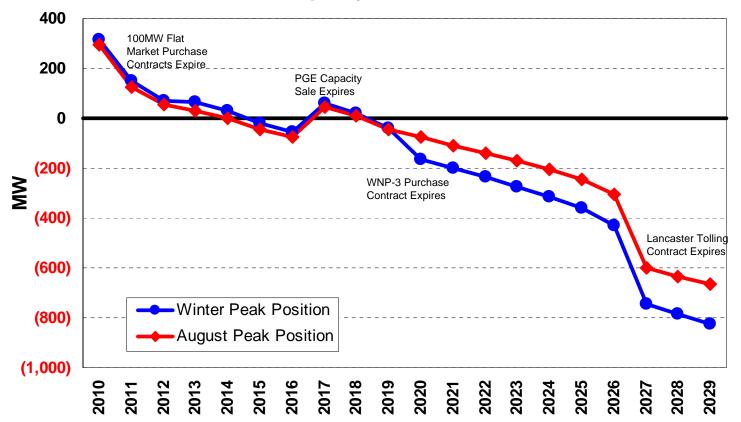


Resource Needs (Winter Capacity)


Resource Needs (Summer Capacity)

Resource Needs (Energy)

Energy Positions



Net 2007 Conservation Levels

Resource Needs (Capacity)

Capacity Positions

Net 2007 Conservation Levels

PRiSM Objective Function

- Linear program solving for the optimal resource strategy to meet resource deficits over planning horizon.
- Model selects its resources to reduce cost, risk, or both.

Minimize: Total Power Supply Cost on NPV basis (2010-2050 with emphasis on first 11 years of the plan

Subject to:

7

- Risk Level
- Capacity Need +/- deviation
- Energy Need +/- deviation
- Renewable Portfolio Standards
- Resource Limitations and Timing
- Greenhouse Gas Limits

PRiSM Data Requirements

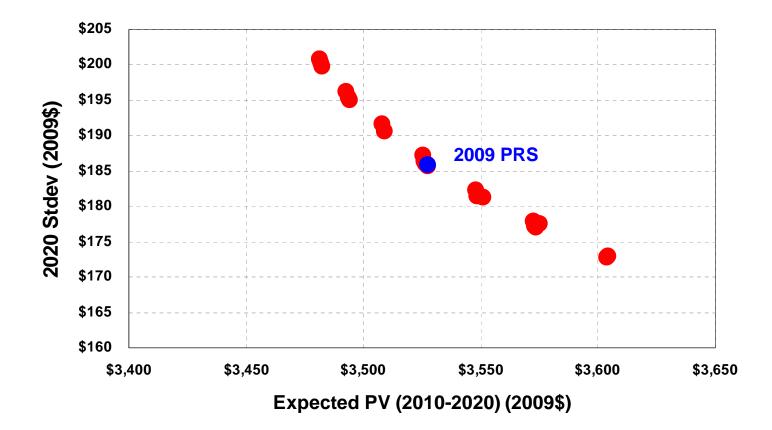
- Expected load & resource balance for next 20 years
- 20 year by 250 iteration matrix of resource values
 - Avista's current resource portfolio cost
 - Each new resource alternatives market value (electric price less fuel costs, variable O&M, and emissions costs)
 - Existing resource market value
- Conservation estimates
- Generation capital costs, fixed operating costs, transmission costs, revenue requirements
- Availability assumptions (size, when, where)

PRiSM New Enhancements

- Resources selections must be blocks of resources such as 50 MW wind, 75 MW SCCT, 125 MW CCCT (half unit)
- Use more precise method to estimate frontier curve
- Meets both summer & winter capacity requirements
- Ability to account for greenhouse gas levels
- More accurate ability to take into account post IRP time period
- Ability to retire resources (used for sensitivity analysis only)
- Higher cost conservation measures can be selected by the model (available for final draft)

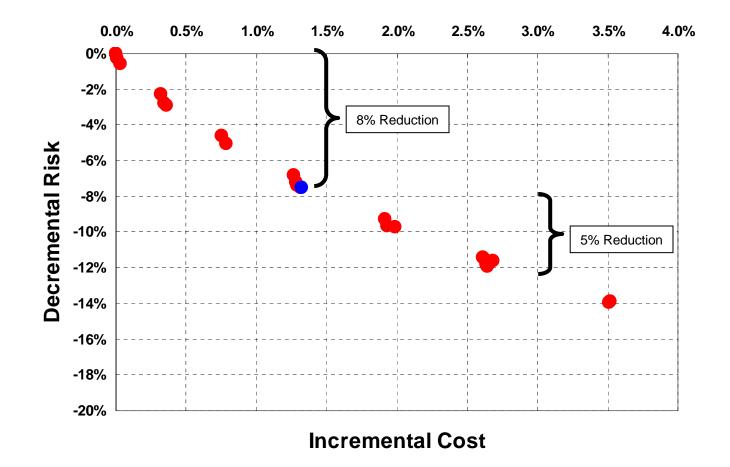
Efficient Frontier

- Demonstrates the trade off of cost and risk
- Avoided Cost Method



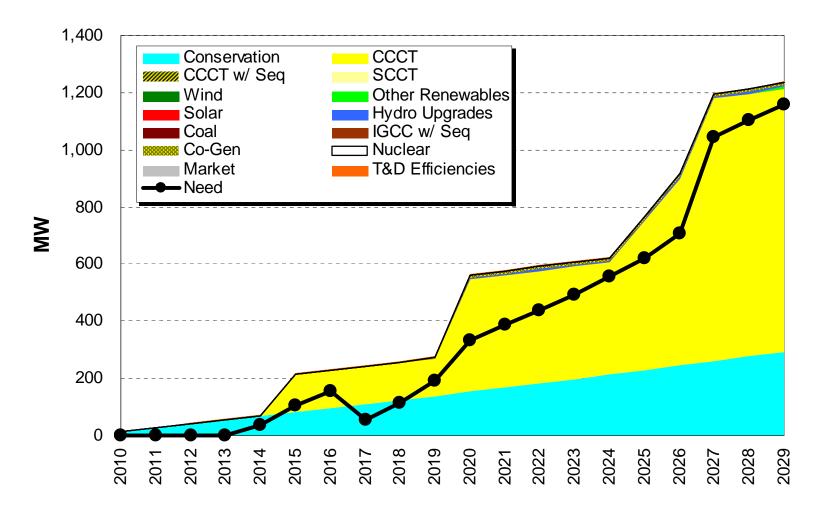
Portfolio Scenarios

- 1) Base Case
- 2) Case 1 + Small Renewable as Options
- 3) Case 2 + Large Hydro Upgrades as Options

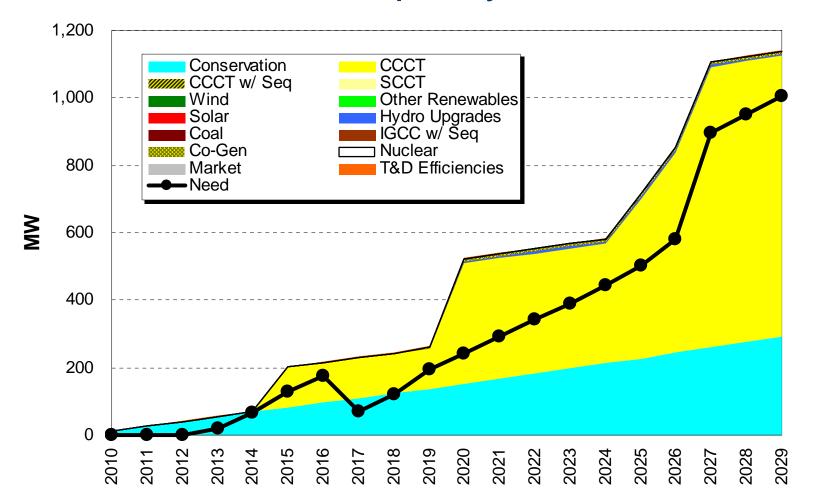


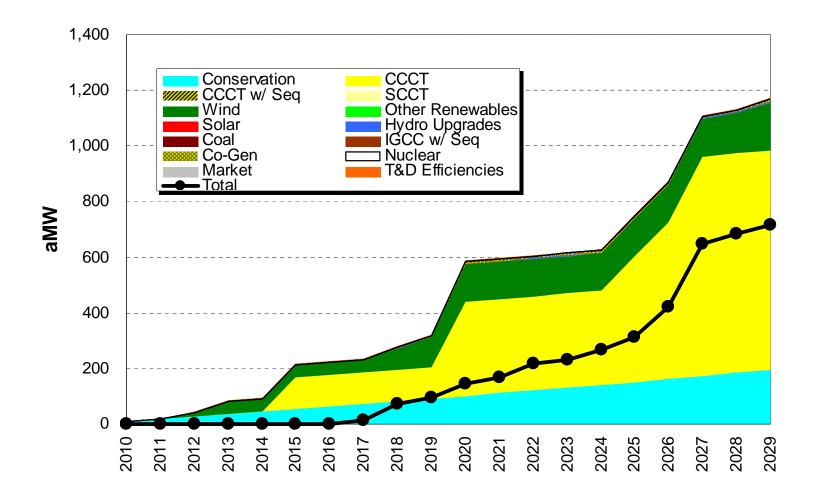
Efficient Frontier (millions)

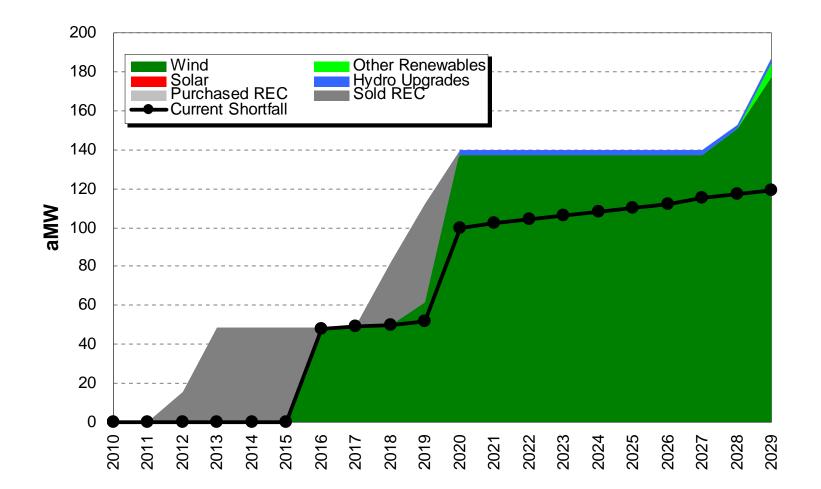
Change From Least Cost Portfolio


Preferred Resource Strategy (2020-2029 DRAFT- Base Case

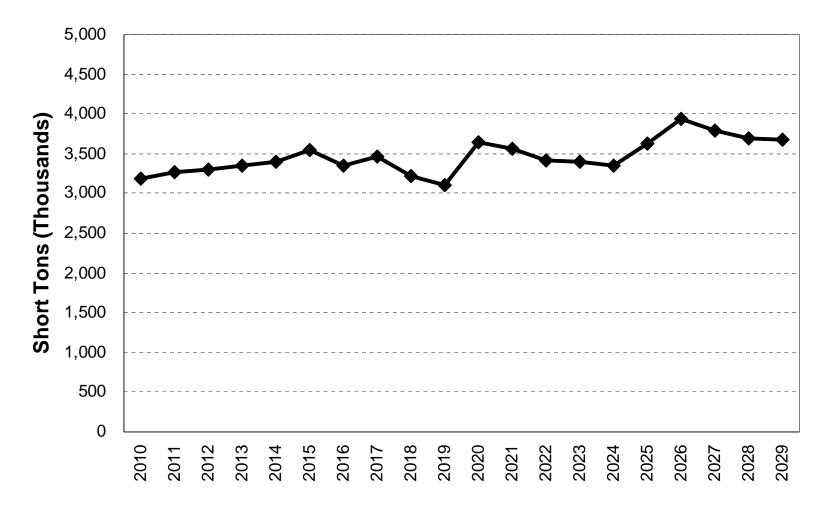
					Other		Hydro		IGCC					
Year	CCCT	SCCT	Reardan	Wind	Renew	Solar	Upgrades	Coal	w/ Seq	Co-Gen	DSM	T&D	Total	Cumulative
2010											7.8	1.0	8.8	8.8
2011											7.9	1.0	8.9	17.6
2012			50.0								8.0	1.0	59.0	76.6
2013				100.0							8.2	1.0	109.2	185.8
2014											8.3	1.0	9.3	195.1
2015	125.0						1.0				8.4	1.0	135.4	330.5
2016											8.6		8.6	339.1
2017							1.0				8.7		9.7	348.8
2018				100.0							8.9		108.9	457.7
2019				100.0						2.5	9.0		111.5	569.2
2020	250.0			100.0			4.0			5.0	9.2		368.2	937.3
2021											9.3		9.3	946.7
2022											9.5		9.5	956.1
2023											9.6		9.6	965.8
2024											9.8		9.8	975.6
2025	125.0										10.0		135.0	1,110.6
2026	125.0										10.1		135.1	1,245.7
2027	250.0										10.3		260.3	1,506.0
2028				50.0							10.5		60.5	1,566.5
2029				100.0	7.0						10.7		117.7	1,684.2
2010-2019	125.0	-	50.0	300.0	-	-	2.0	-	-	2.5	83.7	6.0	569.2	
2010-2029	875.0	-	50.0	550.0	7.0	-	6.0	-	-	7.5	182.7	6.0	1,684.2	


"Yellow Light" conservation not modeled yet

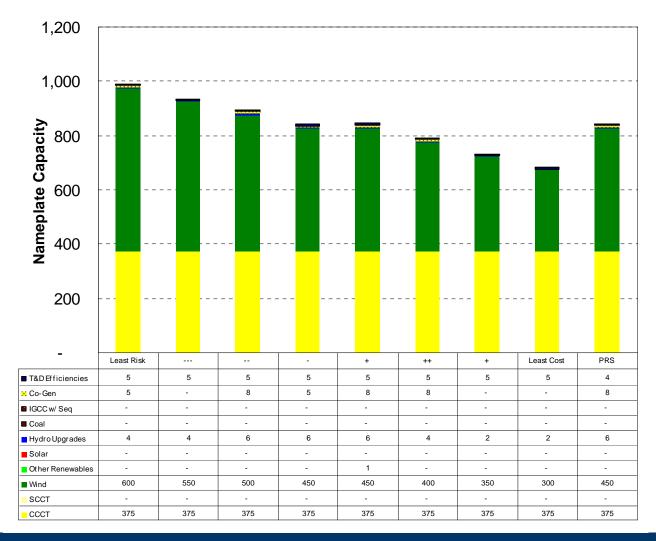

PRS: Winter Capacity

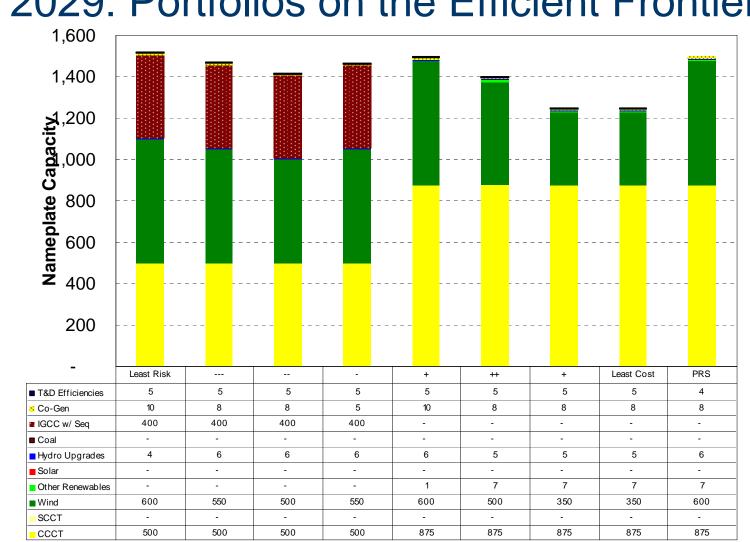

PRS: Summer Capacity

PRS: Annual Average Energy

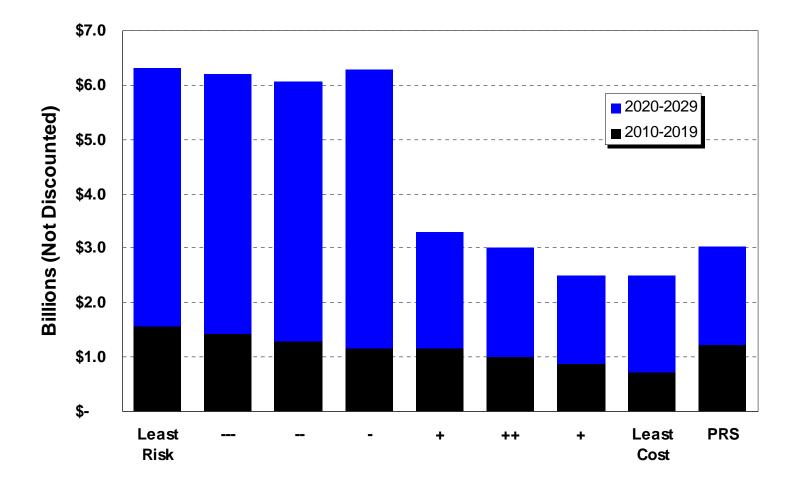


PRS: WA RPS Requirement

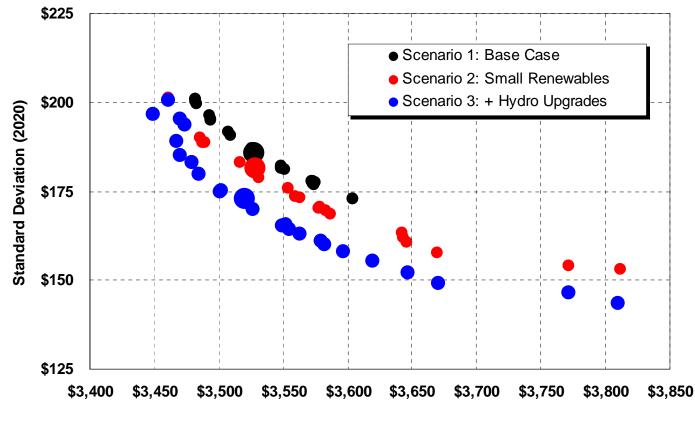



PRS: Greenhouse Gas Emissions

2020: Portfolios on the Efficient Frontier



2029: Portfolios on the Efficient Frontier



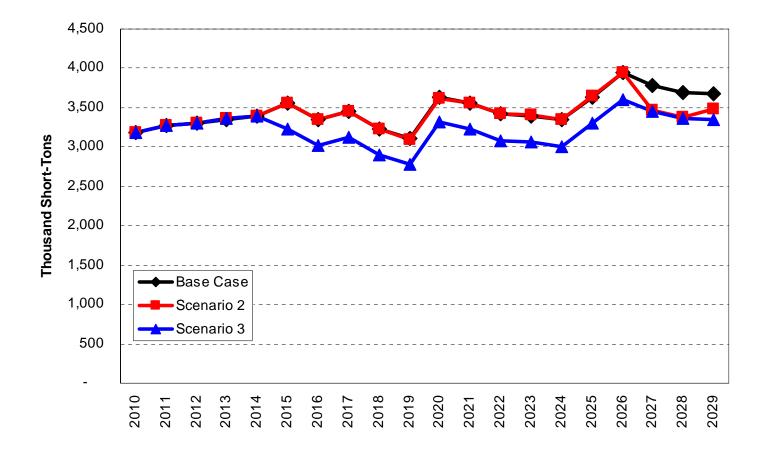
Efficient Frontier: Capital Requirements

Efficient Frontier Scenario Analysis

Expected PV (2010-2020)

Scenario 2- Resource Selection Small Renewables an Option

					Other		Hydro		IGCC					
Year	СССТ	SCCT	Reardan	Wind	Renew	Solar	Upgrades	Coal	w/ Seq	Co-Gen	DSM	T&D	Total	Cumulative
2010											7.8	1.0	8.8	8.8
2011											7.9	1.0	8.9	17.6
2012					10.0						8.0	1.0	19.0	36.6
2013			50.0	50.0	5.0						8.2	1.0	114.2	150.8
2014											8.3	1.0	9.3	160.1
2015	125.0						1.0				8.4	1.0	135.4	295.5
2016					10.0						8.6		18.6	314.1
2017											8.7		8.7	322.8
2018				100.0	5.0						8.9		113.9	436.7
2019				100.0							9.0		109.0	545.7
2020	250.0			100.0		4.0	1.0				9.2		364.2	909.8
2021										5.0	9.3		14.3	924.2
2022							1.0			5.0	9.5		15.5	939.6
2023											9.6		9.6	949.3
2024											9.8		9.8	959.1
2025	125.0										10.0		135.0	1,094.1
2026	125.0										10.1		135.1	1,229.2
2027	125.0										10.3		135.3	1,364.5
2028											10.5		10.5	1,375.0
2029		100.0		100.0							10.7		210.7	1,585.7
2010-2019	125.0	-	50.0	250.0	30.0	-	1.0	-	-	-	83.7	6.0	545.7	
2010-2029	750.0	100.0	50.0	450.0	30.0	4.0	3.0	-	-	10.0	182.7	6.0	1,585.7	
2010-2019 (Delta)	-	-	-	(50.0)	30.0	-	(1.0)	-	-	(2.5)	-	-	(23.5)	
2010-2029 (Delta)	(125.0)	100.0	-	(100.0)	23.0	4.0	(3.0)	-	-	2.5	-	-	(98.5)	


Scenario 3- Resource Selection

Scenario 2 + Hydro Upgrades an Option

					Other		Hydro		IGCC					
Year	CCCT	SCCT	Reardan	Wind	Renew	Solar	Upgrades	Coal	w/ Seq	Co-Gen	DSM	T&D	Total	Cumulative
2010											7.8	1.0	8.8	8.8
2011											7.9	1.0	8.9	17.6
2012					10.0						8.0	1.0	19.0	36.6
2013			50.0	50.0		4.0					8.2	1.0	113.2	149.8
2014						4.0					8.3	1.0	13.3	163.1
2015						4.0	60.0				8.4	1.0	73.4	236.5
2016					5.0		1.0				8.6		14.6	251.1
2017							1.0				8.7		9.7	260.8
2018				100.0							8.9		108.9	369.7
2019				100.0		4.0					9.0		113.0	482.7
2020	250.0			100.0		4.0	64.0			5.0	9.2		432.2	914.8
2021											9.3		9.3	924.2
2022											9.5		9.5	933.6
2023											9.6		9.6	943.3
2024											9.8		9.8	953.1
2025	125.0										10.0		135.0	1,088.1
2026	125.0										10.1		135.1	1,223.2
2027	250.0				5.0						10.3		265.3	1,488.5
2028				100.0							10.5		110.5	1,599.0
2029				100.0							10.7		110.7	1,709.7
2010-2019	-	-	50.0	250.0	15.0	16.0	126.0	-	-	-	83.7	6.0	482.7	
2010-2029	750.0	-	50.0	550.0	20.0	20.0	126.0	-	-	5.0	182.7	6.0	1,709.7	
2010-2019 (Delta)	(125.0)	-	-	(50.0)	15.0	16.0	124.0	-	-	(2.5)	-	-	(86.5)	
2010-2029 (Delta)	(125.0)	-	-	-	13.0	20.0	120.0	-	-	(2.5)	-	-	25.5	

Greenhouse Gas Scenario Comparison

Next Steps

- Add "Yellow Light" conservation projects as resource options
- Perform capital cost sensitivity analysis
- Study portfolios with renewable requirement changes
 - Resource Availability
 - National RPS
 - Higher WA state RPS target
- Study portfolio options with alternative market futures
- Test "Preferred Resource Strategies" against market scenarios
- Further evaluate large hydro upgrades

Avista's 2009 Electric Integrated Resource Plan Technical Advisory Committee Meeting No. 5 Agenda March 25, 2009

1.	Topic Introduction	Time 9:30	Staff Storro
2.	Conservation	9:35	Hermanson
3.	Lunch	11:30	
4.	Preferred Resource Strategy	12:30	Gall
5.	Scenarios and Futures	1:30	Gall/Lyons
6.	2009 IRP Topics	2:30	Lyons
7.	Adjourn	3:00	

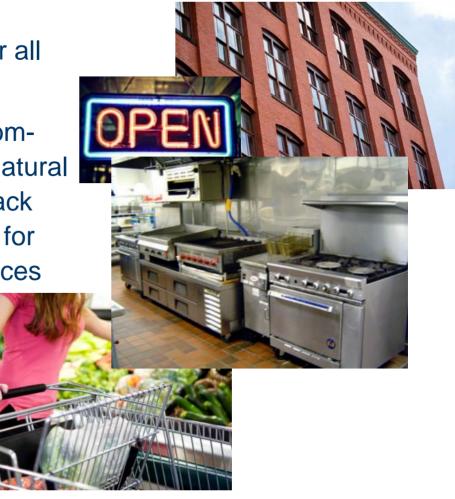
DSM in the 2009 Electric IRP Technical Advisory Committee Meeting

Lori Hermanson

March 25, 2009

Presentation Highlights

- DSM History
- Overview of DSM
 - What, why, how and who of DSM
- Customer segments reached and offerings
- Messaging and outreach through EveryLittleBit and Website
- Tariff Rider Funding
- Metrics
- Stakeholders
- 2008 Results and 2009 Focus
- Integration of DSM into IRP
- Business planning to program development


Brief DSM History

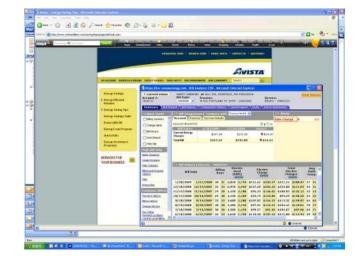
- Offered DSM since 1978
 - Energy exchanger converted over 20,000 homes from electric to natural gas for space and water
 - Pioneered the country's first system benefit charge for energy efficiency in 1995
 - Immediate conservation response to 2001 Western energy crisis through expanded programs and enhanced incentives
 - Tripled annual savings at twice the cost
 - During the past 30 years, we acquired 138.5 aMW of energy savings
 - 109 aMW still online

What We Do

- Deep and broad energy efficiency programs with strong messaging for all customers.
- We provide financial rebates for all commercial and industrial electric and natural gas savings measures with a payback over one year and we offer rebates for weatherization and efficient appliances as well as low-cost/no-cost
 - tips.
- We provide renewable options and are testing end-use demand response pilots.

Why We Do It

Acquire lower cost resources to benefit all customers (IRP implementation)


Customer assistance

- Reduction in customers' bills
- Gives customers some control in a higher energy cost environment

Regulatory obligation and sensibility

Reduced pressure on, or alternatives for, the capital budget

Carbon reduction and environmental focus

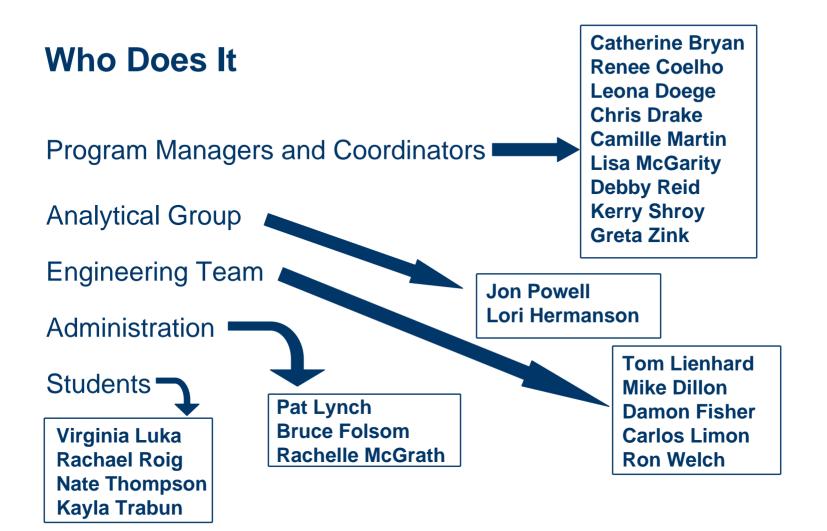
How We Do It

Pursue the Best Delivery Mechanisms for the Targeted Market

Standard Offers ("Prescriptive") for residential & small commercial customers through mass marketing

Custom ("Site Specific") for C&I customers with one point of contact through our Account Executive Team

Low Income through community action agencies


- Regional through the NW Energy Efficiency Alliance
- ≻Special projects—RFPs, Pilot Programs, etc.
- ➢ Promotion of Codes and Standards

Who Does It (cont.)

<<<Site Specific: Account Executive Team

Prescriptive: Marketing Team>>>

Contact Center assists customers with energy efficiency information

Corporate Communications provides earned media expertise

Community Relations partners with education and community involvement

State and Federal Regulation Department assists with PUC filings and communications

C/I Energy Efficiency Site Specific

Avista Customer Summary of Proposed Energy Efficiency Measures Listed in order of Simple Payback

- Custom Projects
- Technical Assistance
- Free Energy Audits and Analysis
- Design Review
- Cash Incentives

Option No.	Brief EEM Descripti on	EEM Cost	Ele ctri c kW h Sav ings	Dema nd kW Savin gs	Nat. Gas Ther m Savin gs	Energy Cost Saving s	Simple Payba ck before incenti ve	Potenti al Incenti ve	Simple Payback After Incentive
1	Site Lighting Retrofit	\$179, 335	519 ,44 1	76	(4,01 4)	\$33,20 6	5.4 yrs	\$ 62,333	3.5 Years
2	Warehou se Heater replacem ent	\$53,3 95	-	-	2,665	\$2,804	19.0 yrs	\$ 7,995	16.2 yrs
3	Roof insulatio n	\$180, 000	-	-	7,742	\$8,146	22.1 yrs	\$ 23,226	19.2 yrs
4	Office HVAC retrofits	\$404, 240	93, 842	-	6,069	\$11,89 3	34.0 yrs	\$ 21,961	32.1 yrs

Scope of Work:

- •The above incentives are based on information provided by vendor. The costs for the insulation were based on \$1.50 per square foot. Any higher costs will need verification, but may increase the incentive.
- •The warehouse HVAC system change is based on a building model using a warehouse setting and the insulation having already been complete.
- •The office HVAC changes are based on the complete sq.ft. of the office space increasing SEER/EER values to new construction standards and a slight increase in AFUE for heating.
- •All reports are attached.

C/I Energy Efficiency Prescriptive

Standard Offer Programs

- Measures that have relatively uniform savings
- Pre-determined amount
- Streamlined approach
- Marketability
- Ease of understanding for customers and contractors

Avista Utilities Commercial Lighting Table

Please complete this Lighten Table and submit with Incertive Agreement and conies of invoices. The incentive will be applied to the installed fature Place complete this capture rate statistic and increase the prior foture count will be the basis for calculation the elicible incentive

2.foot Planerscent Futures 2.loop 170 Uamp	fatures fatures fatures fatures fatures fatures fatures fatures fatures	18 U-Lamp of 2 Lamp Fr7 18 FinbureRototik 4 Lamp 18 FinbureRototik 2 Lamp 18 FinbureRototik 3 Lamp 18 FinbureRototik 3 Lamp 18 FinbureRototik 2 Lamp 18 FinbureRototik 4 Lamp 18 FinbureRototik 4 Lamp 18 FinbureRototik 4 Lamp 19 FinbureRototik	Totures fotures fotures fotures fotures fotures fotures fotures fotures	\$15 \$40 \$35 \$35 \$35 \$35 \$35 \$15 \$15 \$20 \$15	\$\$ \$\$ \$\$ \$\$ \$\$
Foot Flaverescent Flatures 4Lang 112 Fature 4Lang 112 Fature 4Lang 112 Fature 4Lang 112 Fature 3Lang 112 Fature 3Lang 112 Fature 3Lang 112 Fature 4Lang 112 Fature	fatures fatures fatures fatures fatures fatures fatures fatures fatures fatures	4 Lamp 18 FatureReitoff 2 Lamp 18 FatureReitoff 3 Lamp 18 FatureReitoff 3 Lamp 18 FatureReitoff 2 Lamp 18 FatureReitoff 1 Lamp 18 FatureReitoff 1 Lamp 18 FatureReitoff	fatures fatures fatures fatures fatures fatures fatures fatures	\$25 \$40 \$35 \$35 \$30 \$15 \$30 \$15	\$\$ \$\$ \$\$
4 Lang T12 Findue 4 Lang T12 Findue 4 Lang T12 Findue 3 Lang T12 Findue 3 Lang T12 Findue 3 Lang T12 Findue 4 Lang T12 Findue 3 Lang T12 Findue	Tabures Fabures Fabures Fabures Fabures Fabures Fabures Fabures	S Larp 17 Science / Retords 2 Larp 17 Science / Retords 3 Larp 17 B Anae Retords 3 Larp 17 B Anae Retords 4 Larp 17 B Finance Retords 1-Larp 18 Finance / Retords 1-Larp 18 Finance Retords	fatures fatures fatures fatures fatures fatures	\$40 \$25 \$25 \$30 \$15 \$20	\$\$ \$\$
4 Lang T12 Findue 4 Lang T12 Findue 4 Lang T12 Findue 3 Lang T12 Findue 3 Lang T12 Findue 3 Lang T12 Findue 4 Lang T12 Findue 3 Lang T12 Findue	Tabures Fabures Fabures Fabures Fabures Fabures Fabures Fabures	S Larp 17 Science / Retords 2 Larp 17 Science / Retords 3 Larp 17 B Anae Retords 3 Larp 17 B Anae Retords 4 Larp 17 B Finance Retords 1-Larp 18 Finance / Retords 1-Larp 18 Finance Retords	fatures fatures fatures fatures fatures fatures	\$40 \$25 \$25 \$30 \$15 \$20	\$\$ \$\$
Lang 112 Falue	fabures fabures fabures fabures fabures fabures fabures	2 Lamp 19 Entury Retroft 3 Lamp 19 Entury Retroft 2 Lamp 19 Entury Retroft 2 Lamp 19 Entury Retroft 1-Lamp 19 Entury Retroft 1-Lamp 18 Entury Retroft	føtures Fabres føtures føtures føtures	\$25 \$25 \$30 \$15 \$20	\$
Lang 112 Falue	fabores fatores fatores fatores fatores fatores fatores	2 Lamp 19 Entury Retroft 3 Lamp 19 Entury Retroft 2 Lamp 19 Entury Retroft 2 Lamp 19 Entury Retroft 1-Lamp 19 Entury Retroft 1-Lamp 18 Entury Retroft	fatures fatures fatures fatures fatures	\$25 \$30 \$15 \$20	\$
SLamp T12 Finiture SLamp T12 Finiture SLamp T12 Finiture SLamp T12 Finiture Lamp T12 Finiture Lamp T12 (Finiture SLamp T12 Finiture SLamp T12 Finiture SLamp T12 Finiture SLamp T12 HOJ or VHO Finiture	fatures fatures fatures fatures fatures fatures	3 Lamp TB Forure /Retroft 3-Lamp TB Forure/Retroft 1-Lamp TB Forure/Retroft 1-Lamp TB Forure/Retroft	fatures fatures fatures	\$30 \$15 \$20	\$
Lamp T12 Foture Jamp T12 Foture Lamp T12 Foture Effort Floorescent Flotures Lamp T12 Foture Lamp T12 Houre Lamp T12 Houre	fatures fatures fatures fatures fatures	2-Lamp TB Findure/Retroft 1-Lamp TB Findure/Retroft 1-Lamp TB Findure/Retroft	fotures	\$15 \$20	\$ \$ \$
Lamp T12 Foture Lamp T12 Foture SFoot Receive Entrume Lamp T12 Foture Lamp T12 (or 2-Lamp H0) Foture Lamp T12 Foture Lamp T12 Foture Lamp T12 H0 or VH0 Foture	fadures fadures fadures fadures	2-Lamp TB Findure/Retroft 1-Lamp TB Findure/Retroft 1-Lamp TB Findure/Retroft	fadures	\$20	s
Lamp T12 Foture Lamp T12 Foture SFoot Receive Entrume Lamp T12 Foture Lamp T12 (or 2-Lamp H0) Foture Lamp T12 Foture Lamp T12 Foture Lamp T12 H0 or VH0 Foture	fadures fadures fadures fadures	1-Lamp TB Foture'/Retrofit 1-Lamp TB Foture/Retrofit	fadures	\$20	\$
Lamp T12 Fisture Broot Fluorescent Flutures 4 Lamp T12 (or 2-Lamp H0) Fisture Juny T12 Fisture Juny T12 Fisture Juny T12 Fisture Juny T12 H0 or VH0 Fisture	fatures fatures fatures	1-Lamp T8 Feture/Retrolit			
4 Lamp T12 (or 2-Lamp HO) Finture 2-Lamp T12 Finture 1-Lamp T12 Finture 2-Lamp T12 HO or VHO Finture	fatures	4-Lamp (or 2-Lamp HO) T8 Foture/Retroft			\$
4 Lamp T12 (or 2-Lamp HO) Finture 2-Lamp T12 Finture 1-Lamp T12 Finture 2-Lamp T12 HO or VHO Finture	fatures	4-Lamp (or 2-Lamp HO) T8 Fixtura/Retrofit			
2-Lamp T12 Foture 1-Lamp T12 Foture 2-Lamp T12 HO or VHO Foture	fatures		factures	\$50	\$
1-Lamp T12 Foture 3-Lamp T12 HO or VHO Foture		2-Lamp T8 Fecture/Retrofit (8' or 4' Lamps)	fatures	\$30	5
2-Lamp T12 HO or VHO Fixture		1-Lamp T8 Foture/Retrofit (8 or 4 Lamps)	fatures	\$20	5
HID Lighting (Metal Halide, High Pressure)	fatures	4 Lamp T5 High-Output Fixture/Retrolit	fetures	\$85	\$
	Sodium Merry	ry Vaport		2003	
400 wait HID Fixture	fatures	4 Lamp TS High-Output Fidure	fatures	\$125	\$
400 watt HID Fixture	fatures	6 Lamp T5 High-Output Fisture	fatures	590	
400 watt HID Foture	fatures	6-Lamp T8 Fixture (4-Foot Lamps)	fatures	\$125	
400 watt HID Finture	fatures	8 Lamp T8 Fixture (4-Foot Lamps)	fatures	\$110	5
400 watt HID Ficture	fatures	200 White Induction Fluorescent Future	fotures	\$220	
1000 watt HID Fixture	fatures	(2) 6-Lamp T-5 High-Output Fixtures	Fatures	\$320	\$
1000 wait HID Fixture	fatures	400 Watt Induction Fluorescent Future	fatures	\$400	\$
Incandescents					-
100 watt or less incandescent		Connected Florence and Lenne Channelling and and Second Ind		\$3	
Over 100 watt to 200 watt Incandescent	lamps	Compact Fluorescent Lamp (23 watt or Less Screw-In)		\$15	s
Over 200 watt incandescent	lamps	Compact Fluorescent Lamp or Foture (45 watt) Compact Fluorescent Lamp or Future (55-65 watt)	lamps	\$25	:
	lemps		lamps	\$25	<u>;</u>
60 wait or greater incandescent 100 wait or greater incandescent flood	lamps fatures	Dimmable Compact Fluorescent or Cold Cathode** Ceramic Metal Halide (25 watt)	lamps fotures/lamos	\$15 \$35	5
150 watt or greater incandescent nood	fatures	New Linear TB Fluorescent Future	fatures	\$35	:
			Tatures	2/20	»
Sign Lighting or Low Wattage Applications				202	
20-30 watt Incandescent		LED or Low Wattage Equivalent	lamps***	\$15	s
20-80 watt Incandescent	lamps	Cold Cathode	lampsfodures	\$10	\$
Exit Signs		1999 Barris 19		0.0	15.
Incandescent Exit Sign	ext sign	New LED Exit Sign	ext sign	\$25	\$
Occupancy Sensors			0000000000	2015-1	
Manual Light Switch	sensors	Occupancy Sensor Controlling Less than 200-watts	sensors	\$25	5
Manual Light Switch	sensors	Occupancy Sensor Controlling Greater than 200-watts	sensors	\$50	\$
Daylight Dimming (Applicable for lights th	are no more	than 20 feet from a window or skylight	515550	12 a berrin	
No prior dimming control	fetures	Individually Controlled Fortures	fatures	\$25	\$
				Total Incentive	s

Page 3 of 4

C/I Prescriptive (Standard Offer) Programs

- ➤ Lighting
- Food Service Equipment
- PC Network Controls
- Premium Efficiency Motors
- Steam Trap Repair/ Replacement
- Demand Controlled Ventilation
- Side Stream Filtration
- ➢ Retro-Commissioning

- LEED Certification
- Vending Machine Controllers
- Refrigerated Warehouse
- Electric to Gas Water Heater
 Conversions
- Variable Frequency Drives
- Commercial Clothes
 Washers
- Energy Smart Grocer

Residential Prescriptive Offerings

- •High efficiency equipment
- •CFL lighting
- •Refrigerator recycling
- •Conversions from Straight Resistance
- Weatherization
- Rooftop dampers
- •Ductless heat pump pilot
- •UCONS Multi-family direct install
- •<u>www.everylittlebit.com</u> (visit our house of rebates)

every little bit

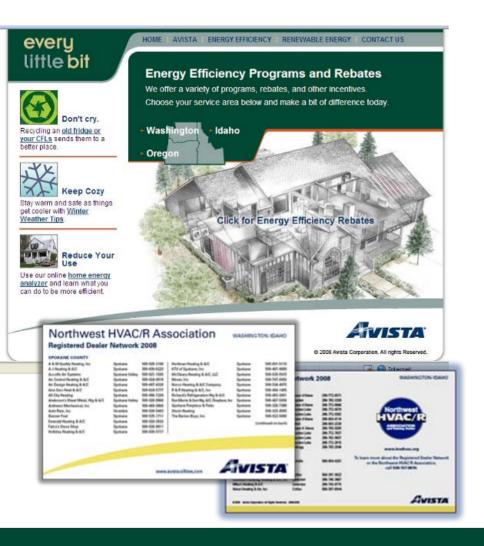
Limited Income Offerings

- Weatherization
- Windows/Doors
- Conversions
- Equipment Upgrades
- Health & Human Safety

Regional Programs (NEEA)

- Acquisition of electric efficiency through market transformation
- Funded by 5 IOUs, ETO, generating publics and BPA
 - Avista's portion 3.94%
- Regional leaders are discussing expansion of efforts
 - Avista's portion will increase to 5.6%
 - Savings acquisition increase from 1.5 aMW to 2.94 aMW
- Historically been a cost-effective option to acquire resources
 - Levelized TRC cost of about 10 mills
 - Not necessarily representative of future costs

Messaging and Outreach: Every Little Bit


Market research done in 2007 found that Avista's customers believed they "were already efficiency, that energy efficiency is too expensive, and it doesn't make much difference."

In response, the EveryLittleBit campaign was launched with a website, broadcast and print media, and collateral materials in a multi-channel, multi-year approach.

Messaging and Outreach: Online Resources

- •<u>www.everylittlebit.com</u>
- •www.avistautilities.com
- •Energy Saving Tips
- •House of Rebates
- Downloadable Forms
- •Energy Audit
- •Bill Analyzer
- •RDN Dealer List
- Efficiency Ave for Business
 - in process

Funding of Energy Efficiency Programs

DSM Tariff Rider

- A percentage of every dollar paid goes to energy efficiency
- Has multiple regulatory requirements for implementation
- Provides for \$23 million annual budget
- Moving towards an annual "true-up"
- First "System Benefit Charge" in North America in 1995
- Continue to evaluate its efficacy and options

Potential Stimulus Funding

- Funding available for energy conservation and smart grid development
- Avista is currently evaluating possible programs that could be offered with additional funding from the stimulus bill
 - One possible project regional smart grid pilot
 - Utility and non-utility sponsors
 - Scope includes everything from Advanced Metering Infrastructure (AMI), software and support, to demand response
 - Avista still considering participation but still has not committed to participation

Resource Portfolio Standards (RPS)

- Previously I-937, requires large utilities to obtain a fixed percentage of their electricity from qualifying renewable resources in addition to all cost-effective and acquirable energy conservation
 - 3% by 2012
 - 9% by 2016
 - 15% by 2020
- Avista is working with others to change this legislation to allow utilities to use energy conservation acquisition above the costeffective levels in lieu of renewables
 - Benefits the customer
 - Truly lower cost resource

Metrics

Table 15EG

Cost-Effectiveness, Measurement and Evaluation, Post-Verification, Triple E Reports, Prudence Findings in General Rate Cases

Calculation of Energy Savings vs. Utility Expenditure Proportionality

	Adjusted Proportionality Calculation			L	Inadjusted Proport	ional	ity Calculation	
		Electric		Gas		Electric		Gas
Actual 1/1/08 to 12/31/08 cash expenditures	\$	14,553,058	\$	6,288,949	\$	14,553,058	\$	6,288,949
Less cash incentives	\$	(9,918,978)	\$	(5,085,264)	\$		\$	2.00 (B) (1.00 (B)
Add in derated incentives	\$	9,395,623	\$	5,404,090	\$	-	\$	(- (
Adjusted (for incentives) utility expenditures	\$	14,029,702	\$	6,607,775	\$	14,553,058	\$	6,288,949
Normalize NEEA expenditures	\$	61,379	\$		\$		\$	
Total adjusted utility expenditures	\$	14,091,081	\$	6,607,775	\$	14,553,058	\$	6,288,949
DSM revenues 1/1/08 to 12/31/08	\$	11,558,429	\$	4,433,213	\$	11,558,429	\$	4,433,213
Adjusted utility expenditures divided by actual revenues		122%		149%		126%		142%
Energy savings from Triple-E Report		74,861,160		1,888,061		74,861,160		1,888,061
IRP Goal		52,966,689		1,425,070		52,966,689		1,425,070
% of goal achieved		141%		132%		141%		132%
Proportionality (kWh and therm) Proportionality (mmbtu)		116% 103%		89%		112% 103%		93%

NOTES:

(1) Adjustments for the difference between cash incentives and those accrued as projects move through the "pipeline" (contracted to construction to completed) remove the effect of scheduling cash payment of incentives to future dates.

(2) NEEA revenues have been adjusted to equal our annual maximum contractual obligation. Regional energy savings are not reflected in this calculation.

Stakeholder Involvement

External Energy Efficiency Board (Triple E)

Non-binding oversight, technical advisory committee

Meets twice a year

Regular reporting

Periodic Newsletters

Avista External Energy Efficiency Board

I vnn Anderson – Idaho Public Utilities Commission Nick Beamer – Aging and Long-Term Care of Eastern Washington Shervl Carter - Natural Resource Defense Council Chris Davis – Spokane Neighborhood Action Programs Carrie Dolwick - Northwest Energy Coalition Michael Early – Industrial Customers of Northwest Utilities Chuck Eberdt – The Energy Project Tom Eckman – Northwest Power Planning Council Donn English - Idaho Public Utilities Commission Claire Fulenwider - Northwest Energy Efficiency Alliance Stefanie Johnson – Washington Public Counsel Steven Johnson – Washington Utilities and Transportation Commission Lisa LaBolle - Idaho Office of Energy Resources John Kaufman - Oregon Department of Energy Mary Kimball - Washington Public Council Lynn Kittilson – Oregon Public Utility Commission Phil Kercher – Sacred Heart Medical Center Ron Oscarson - Spokane County Paula Pyron – Northwest Industrial Gas Users Deborah Reynolds - Washington Utilities and Transportation Commission Michael Shepard - E-Source

Incentives/Rebates Paid in 2008

- Slightly over \$15 million paid to Avista customers.
 - \$7.65 million to commercial/industrial customers
 - 768 projects received an incentive
 - \$6.1 million to residential customers
 - 12,890 residential customers received incentives
 - \$1.2 million to limited income customers
 - More than 450 households assisted

Avista's 2008 Energy Efficiency Results

- Exceeded electric IRP goal by 41% and natural gas IRP goal by 32%
- Total electric savings over 74.8 million kilowatt h
 - Commercial/Industrial over 41.8 million kwh
 - Residential over 31.1 million kwh
 - Limited Income over 1.8 million kwh
- Total natural gas savings over 1.8 million therms
 - Commercial/Industrial over 1.0 million therms
 - Residential 749,199 therms
 - Limited Income 102,438 therms

ome Prolite My Appliance	s MyE	nergy Bills	My Repo
iome Profile Results Ihank you for entering your Home atimated how your energy use co appliances use. <u>Analyze my applia</u>	mpares with sim		
Home Profile	Appliance An	alysis 3	Find Savings
	ormation for more	pliances and find out how much t	they cost to run. Enter
What are my top ways to s	2140?	- How does my home o	ompare?
Savings Opportunities	Annual Savings	Annual Total Energy Use \$1,470 Avg. Hor	
Control air leakape	\$40 - \$82	Uses V	Uses
	949 - 902	Least Energy	Most
Water Heating		\$1.127	
Install efficient showerheads	\$27 - \$44	My Home	
Insulate water heater tank.	\$4 - \$6	S Total C Elect	ricity C Gas
Lighting		My Energy Bills	
Use compact fluorescent bulbs in receased fixtures	\$21 - \$28	Congratulational Your home most of the similar homes in	
Use compact fluorescent bulbs in high-use lamps	\$17 - \$21		
Replace halogen torchieres	\$10 - \$12	How does my home u	se enemy?
Heating and Cooling			
Install a programmable thermostat	\$13 - \$21	Annual Total Er	
Seal leaks in ducts	\$31 - \$52		Heating Hot Water
			Cooking

2009 Focus

Increasing electric and natural gas savings targets

Continued personalization, presence, and participation for and by customers

New Programs Under Consideration: Small Commercial Initiative, Energy Champion, Energy Coaching, Behavioral Programs, Bundling

Potential changes in Resource Portfolio Standards in Washington, Energy Trust of Oregon, Decoupling in all states

Earnings opportunities and potential for expansion

"Didn't ya hear? To save energy we have to keep the thermostat at 1,100 degrees instead of 1,200 degrees!"

From Planning to Customer Programs

Total Company Planning with >3000 DSM measures considered

From Planning to Tariffs and Programs >30 Programs and >300 measures offered

Chris Draka Damon Fisher Bruce Folsom Lori Hermanson Tom Lienhard Carlos Limon-Granados Camille Martin Rachelle McGrath Jon Powell Ron Welch Greta Zink Avista External Energy Efficiency Board Lynn Anderson – Idaho Public Utilities Commis Nick Beamer – Aging and Long-Term Care of E Sheryl Carter – Natural Resource Defense Co Chris Davis – Spokane Neighborhood Action F Carrie Dolwick – Northwest Energy Coalition Michael Early – Industrial Customers of Northw Chuck Eberdt – The Energy Planning Co

Avista Washington / Idaho DSM staff

Catherine Bryan Renee Coelho Mike Dillon Leona Doege

Lynn Anderson - Idaho Public Utilities Commission Nick Beamer – Aging and Long-Term Care of Eastern Washington Shervl Carter – Natural Resource Defense Council Chris Davis - Spokane Neighborhood Action Programs Michael Early – Industrial Customers of Northwest Utilities Tom Eckman – Northwest Power Planning Council Donn English - Idaho Public Utilities Commission Claire Fulenwider - Northwest Energy Efficiency Alliance Stefanie Johnson - Washington Public Counsel Steven Johnson – Washington Utilities and Transportation Commission Lisa LaBolle – Idaho Office of Energy Resources John Kaufman - Oregon Department of Energy Mary Kimball - Washington Public Council Lynn Kittilson – Oregon Public Utility Commission Phil Kercher - Sacred Heart Medical Center Ron Oscarson - Spokane County Paula Pyron - Northwest Industrial Gas Users Deborah Reynolds - Washington Utilities and Transportation Commission Michael Shepard – E-Source

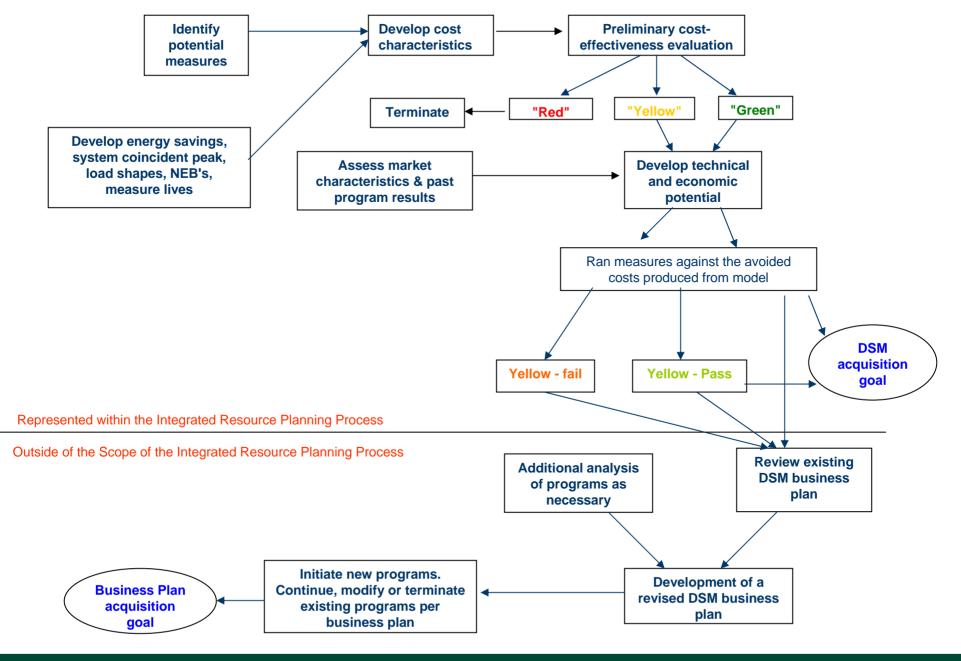
2009 Washington / Idaho DSM Business Plan A Working Document to Plan and Guide our 2009 Strategy and Operations

Be the first to try new energy technology When it comes to saving energy, every little bit counts

AVISTA

PRESENTING AN

Integration of DSM into the 2009 Electric IRP

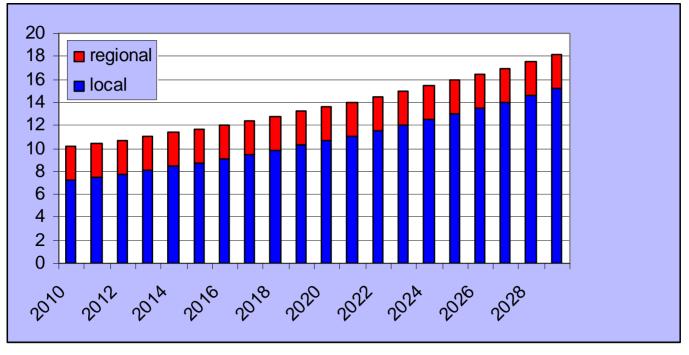

- Interactive process that meets regulatory requirements and produces results for the business planning process
 - Identify all commercially available technologies or measures
 - "Acceptance" or "rejection" within the IRP will not remove any technology or application from potentially being included
 - Nearly 2,500 measures were evaluated for this IRP
 - Re-evaluate existing residential measures and evaluate the inclusion of addition measures
 - May change the menu of residential offerings
 - Nearly 800 measures were evaluated for this IRP

Integration of DSM into the 2009 Electric IRP (cont.)

- Inclusion of limited income and non-residential site specific programs are done by modifying the historical baseline
 - Not necessarily limited to modifying baseline for price elasticity and load growth
 - Site specific measures that fit into the 3,000+ measures evaluated are evaluated through the normal IRP process outside of this modified historical baseline approach

Evaluation of Measures

- Based on levelized TRC, measures are categorized into "greens", "yellows" and "reds"
 - "Greens" automatically selected and entered into model
 - "Yellows" are tested range ended up being \$90-\$140/MWh
 - "Reds" no further testing
- IRP process results in DSM goal and updated avoided costs
 - 63,119,081 kWh for 2010
 - 65,643,844 kWh for 2011
 - Avoided costs are used to evaluate new measures or technologies that may arise between IRPs


Business Planning Process

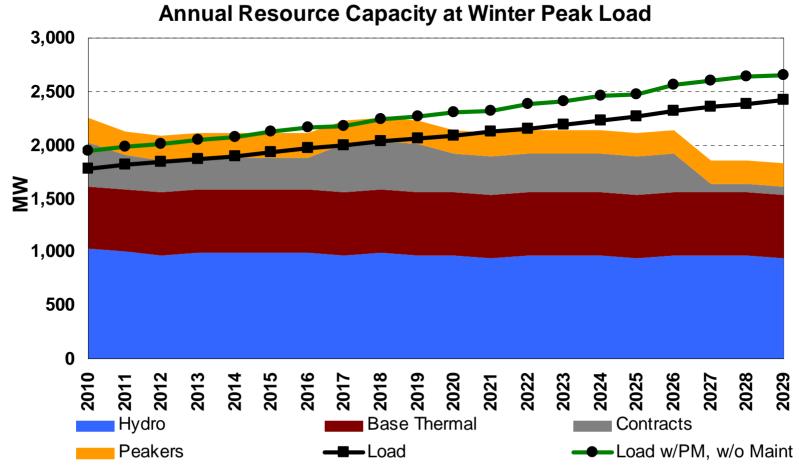
- Selected measures are further evaluated by program managers
 - Market research
 - Program bundling
 - Program development
- Budgets is prepared for individual programs
 - Update economic potential savings acquisition
 - Projection of FTE
 - Estimate of participation levels, incentives, and other expenses
- Business plan goal
 - Historically, has been at or above IRP goal

Where Are We At in the IRP Process?

- Goals complete for 2010/2011
- Projection of 20 year DSM acquisition complete

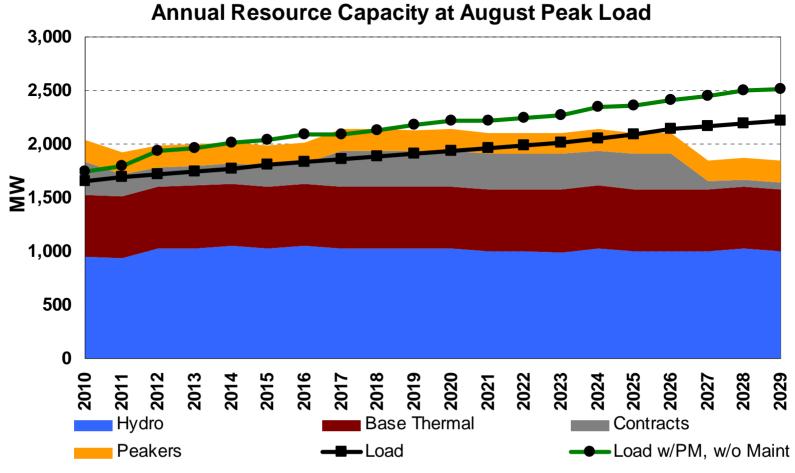
Where Are We At in the IRP Process? (cont.)

- Written contribution for the IRP document
 - Drafts to J. Powell and B. Folsom for review and edits
 - Insert final numbers and changes
 - Final document due end of March

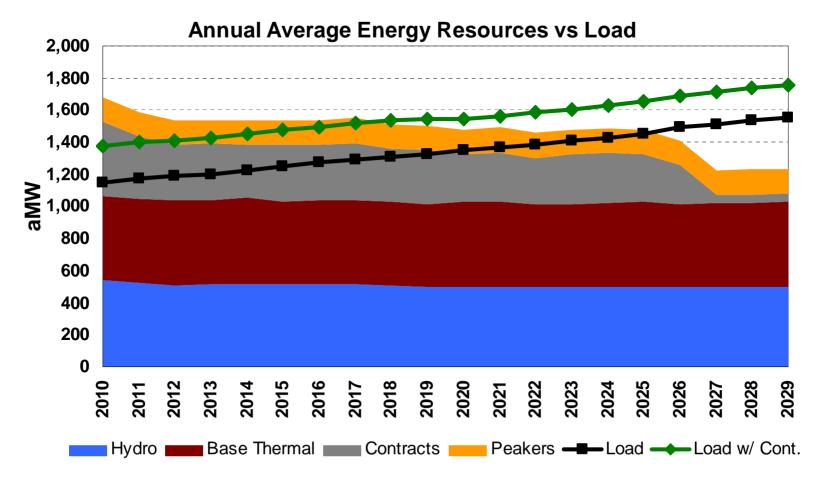

2009 Preferred Resource Strategy

James Gall

2009 Electric Integrated Resource Plan Fifth Technical Advisory Committee Meeting March 25, 2009


January Capacity L&R Balance

Load is net 2007 Conservation Levels


August Capacity L&R Balance

Load is net 2007 Conservation Levels

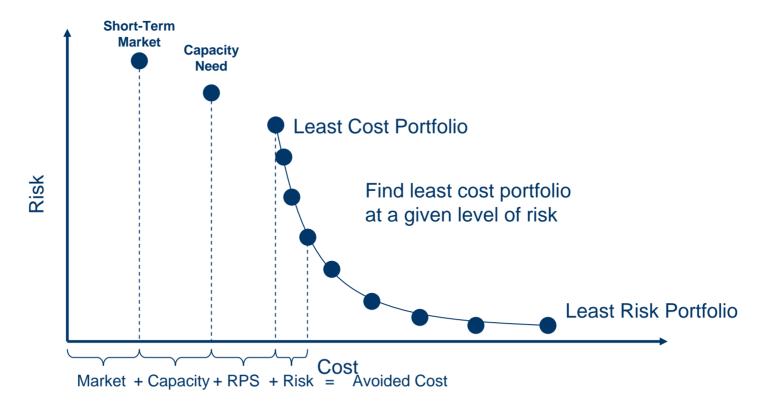
Annual Energy L&R Balance

Load is net 2007 Conservation Levels

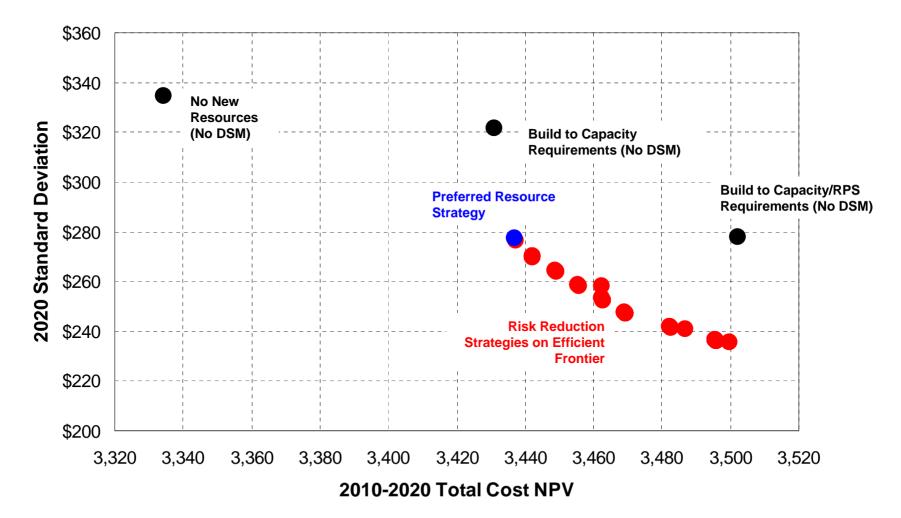
PRiSM Objective Function

- Linear program solving for the optimal resource strategy to meet resource deficits over planning horizon.
- Model selects its resources to reduce cost, risk, or both.

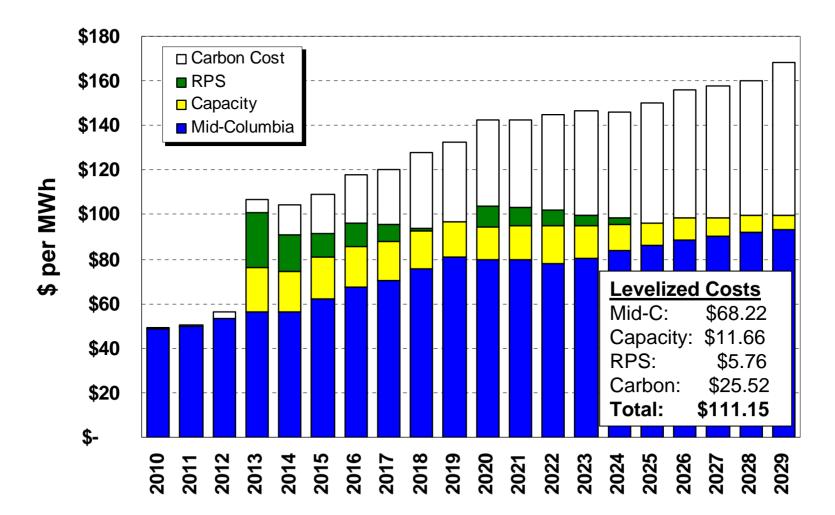
Minimize: Total Power Supply Cost on NPV basis (2010-2050 with emphasis on first 11 years of the plan)


Subject to:

- Risk Level
- Capacity Need +/- deviation
- Energy Need +/- deviation
- Renewable Portfolio Standards
- Resource Limitations and Timing
- Greenhouse Gas Limits


Efficient Frontier

- Demonstrates the trade off of cost and risk
- Avoided Cost Calculation



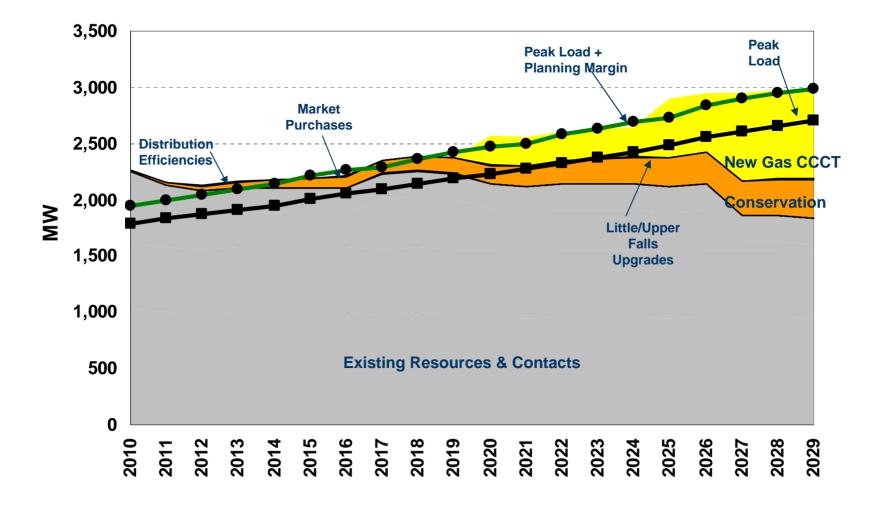
Efficient Frontier

Avoided Resource Cost

2007 Preferred Resource Strategy

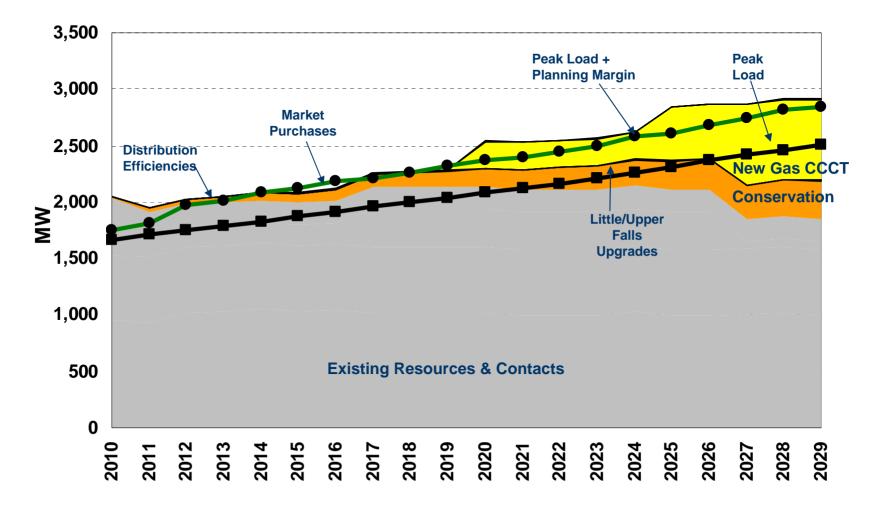
(Capacity MW)

Year	СССТ	SCCT	Wind	<u>Hydro</u> Upgrades	<u>Non-Wind</u> Renewables	<u>Low</u> <u>Carbon</u> Baseload	DSM	<u>T&D</u> Efficiency
2008	-	-	-	-	-	-	9	-
2009	-	-	-	-	-	-	10	-
2010	275	-	-	-	-	-	11	-
2011	-	-	-	-	20	-	12	-
2012	-	-	-	-	10	-	13	-
2013	-	-	-	-	-	-	14	-
2014	-	-	100	-	5	-	15	-
2015	-	-	-	-	-	-	15	-
2016	-	-	100	-	-	-	16	-
2017	-	-	100	-	-	-	16	-
2018	-	-	-	-	-	-	16	-
2019	-	-	-	-	-	-	16	-
2020	81	-	-	-	10	-	17	-
2021	32	-	-	-	10	-	17	-
2022	38	-	-	-	5	-	17	-
2023	15	-	-	-	-	-	18	-
2024	58	-	-	-	-	-	18	-
2025	38	-	-	-	-	-	18	-
2026	35	-	-	-	-	-	19	-
2027	305	-	-	-	-	-	19	-
2008-2017	275	-	300	-	35	-	130	-
2008-2027	877	-	300	-	60	-	304	-

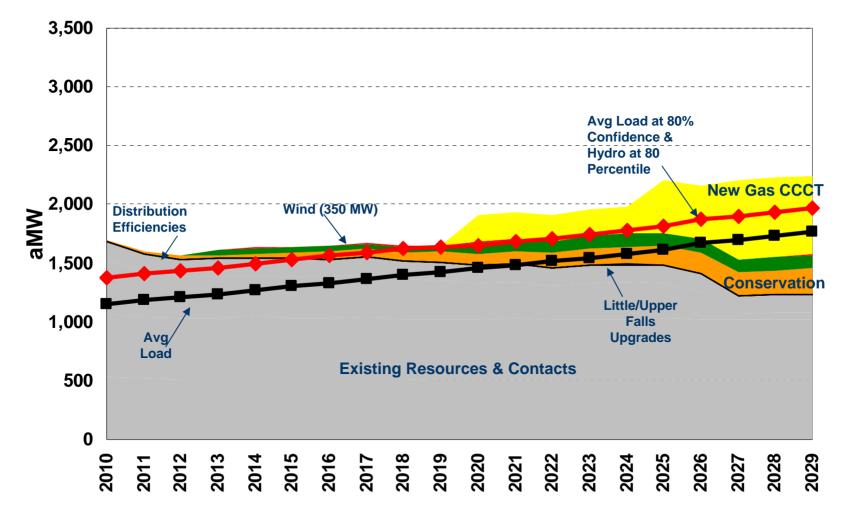

Preferred Resource Strategy

(Capacity MW)

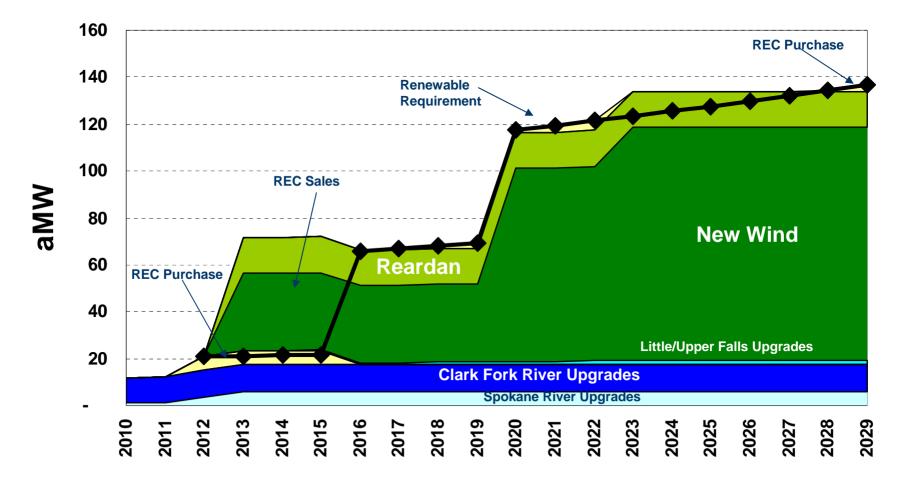
					Low		
				Hydro			
Year	ссст	SCCT	Wind	Upgrades		DSM	T&D Effic.
2010	-	-	-	-	-	12	1
2011	-	-	-	-	-	12	1
2012	-	-	-	-	-	12	1
2013	-	-	150	-	-	12	1
2014	-	-	-	1	-	14	1
2015	-	-	-	1	-	14	-
2016	-	-	-	-	-	15	-
2017	-	-	-	1	-	15	-
2018	-	-	-	-	-	15	-
2019	-	-	-	-	-	17	-
2020	250	-	150	-	-	17	-
2021	-	-	-	2	-	18	-
2022	-	-	-	-	-	18	-
2023	-	-	50	-	-	20	-
2024	-	-	-	-	-	20	-
2025	250	-	-	-	-	21	-
2026	-	-	-	-	-	21	-
2027	250	-	-	-	-	23	-
2028	-	-	-	-	-	23	-
2029	-	-	-	-	-	24	-
2010-2019	-	-	150	3	-	137	5
2010-2029	750	-	350	5	-	339	5



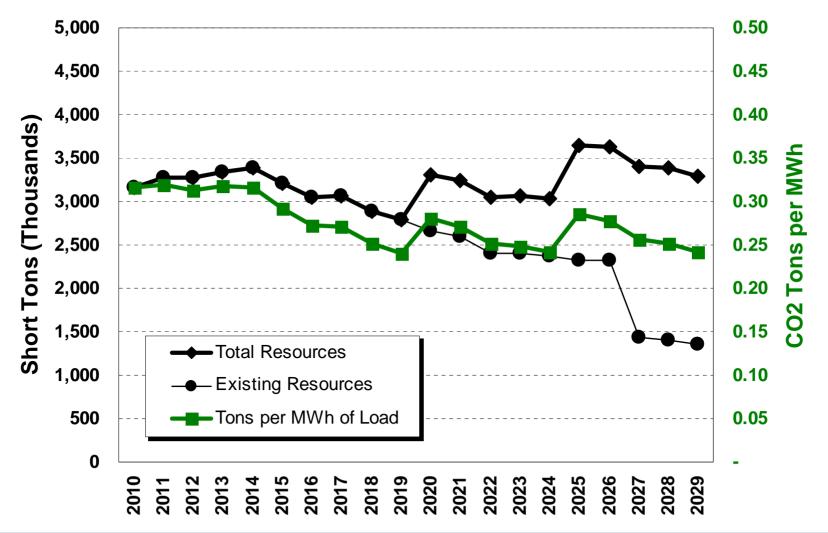
January Capacity L&R w/ New Resources



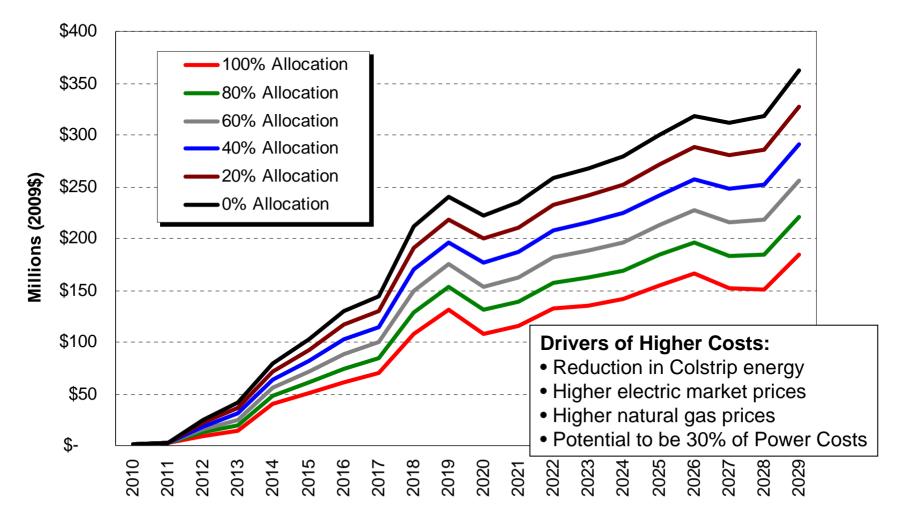
August Capacity L&R w/ New Resources



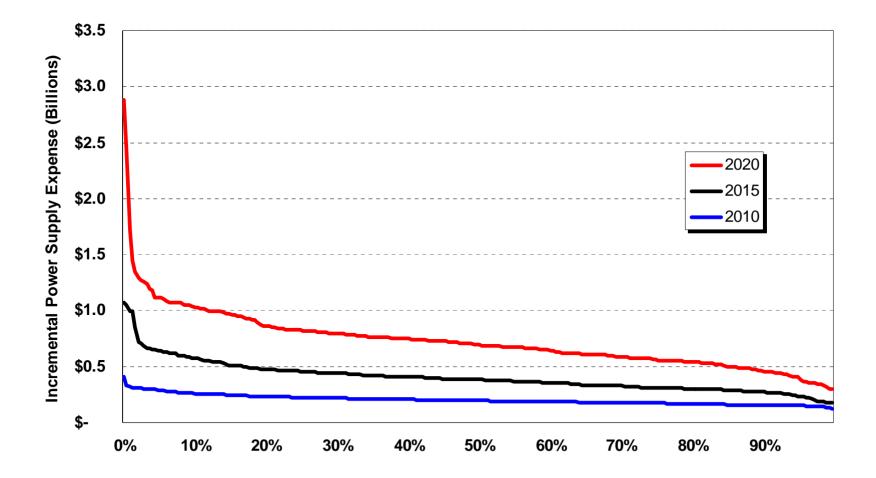
Annual Energy L&R w/ New Resources



Washington State RPS Compliance



Greenhouse Gas Emissions



Total Cost of Carbon Legislation

Portfolio Cost Duration Curve (2009\$)

Scenarios

James Gall & John Lyons

2009 Electric Integrated Resource Plan Fifth Technical Advisory Committee Meeting March 25, 2009

Market Scenarios

Market Futures (Stochastic)

- Base Case
- No Carbon Costs

Market Scenarios (Deterministic)

- High Natural Gas Prices
- Low Natural Gas Prices
- Solar Saturation ("Buck-a-Watt")

No Carbon Cost Scenario

Avista Portfolio Cost versus Risk Analysis

Portfolios:

- Market reliance
- Build to capacity requirements
- Least cost strategy
- Efficient frontier

Avista Portfolio Scenarios

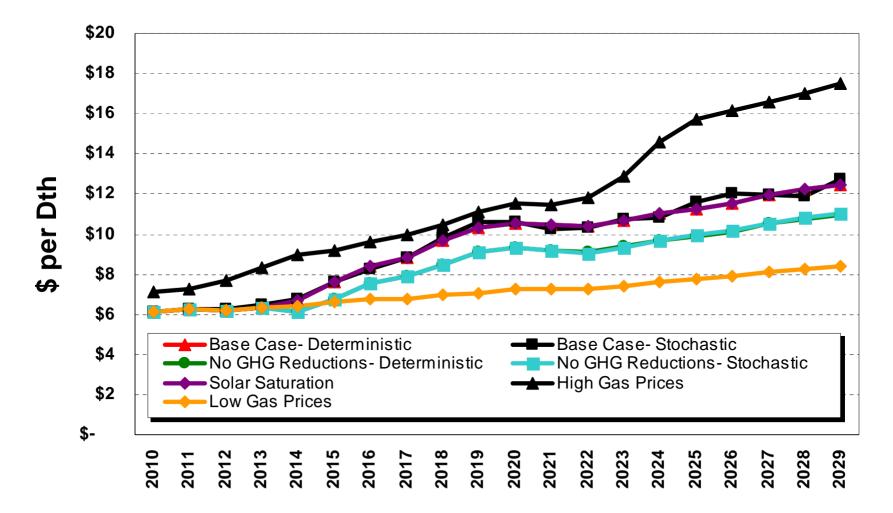
Fundamental Changes

- No State RPS
- Alternative load forecasts (High/Low)
- Least carbon emissions

Capital Cost Sensitivities

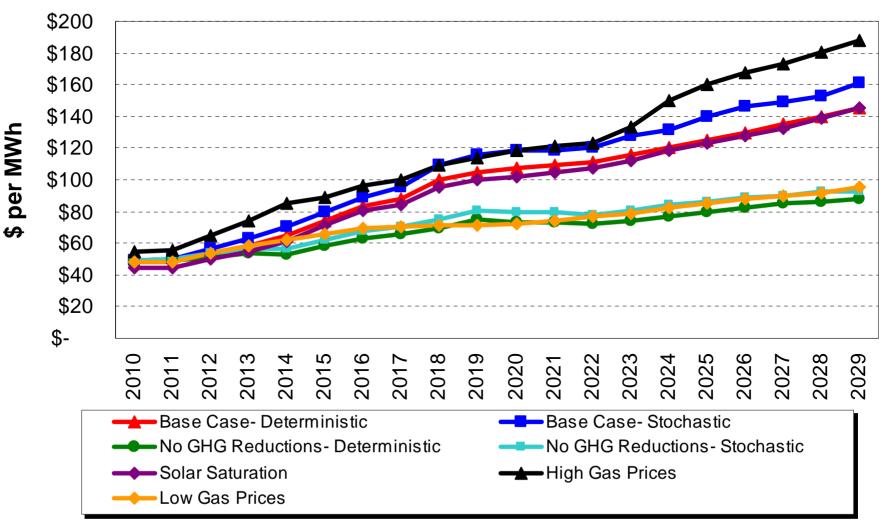
- Required capital cost to build wind in 2010
- Required capital cost to move from CCCT to SCCT

Resource Availability


- Large hydro upgrades, with capital cost sensitivities
- Other renewables (Biomass/Geothermal/Hydro Upgrades)
- Nuclear

Market Scenarios

Malin Natural Gas Prices (Nominal \$)



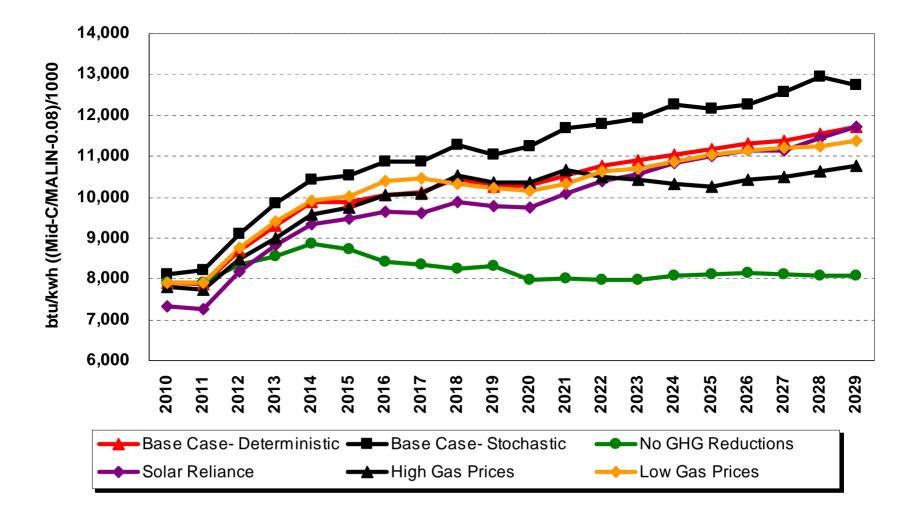
Malin Nominal Levelized Price Forecast (2010-2029)

Scenario	\$/Dth
Base Case- Deterministic	\$8.63
Base Case- Stochastic	\$8.67
No GHG Reductions- Deterministic	\$7.86
No GHG Reductions- Stochastic	\$7.87
Solar Saturation	\$8.63
High Gas Prices	\$10.52
Low Gas Prices	\$6.88
2007 IRP Base Case	\$7.15
2007 Climate Stewardship Act Future	\$7.15

Mid-Columbia Electric Price Forecasts (2010-2029, Nominal \$)

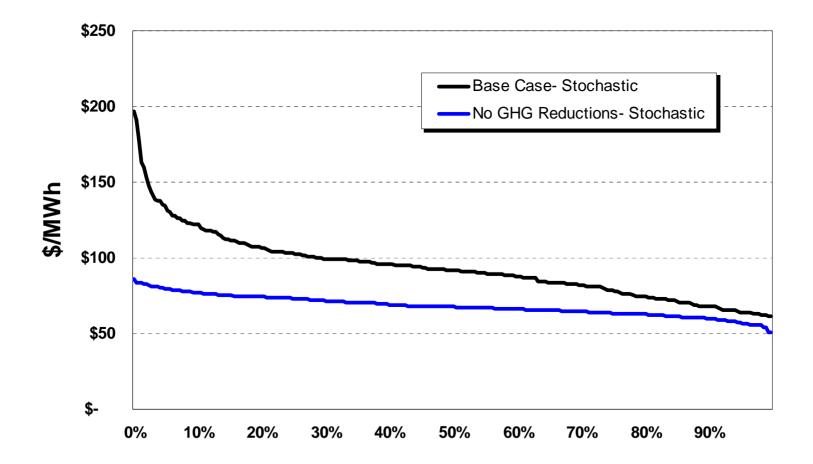
Mid-Columbia Nominal Levelized Price Forecast

Scenario	\$/MWh
Base Case- Deterministic	\$86.36
Base Case- Stochastic	\$93.74
No GHG Reductions- Deterministic	\$63.93
No GHG Reductions- Stochastic	\$68.22
Solar Saturation	\$82.87
High Gas Prices	\$102.61
Low Gas Prices	\$67.48
2007 IRP Base Case	\$62.16
2007 Climate Stewardship Act Future	\$73.50

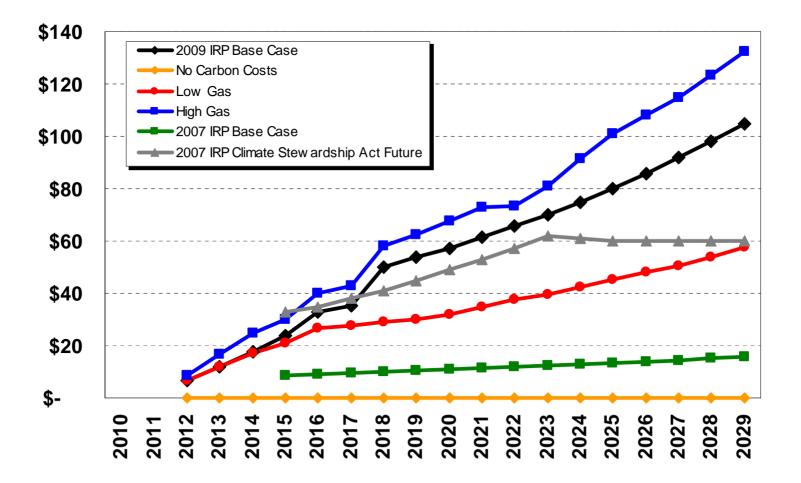


More on Solar Saturation Scenario

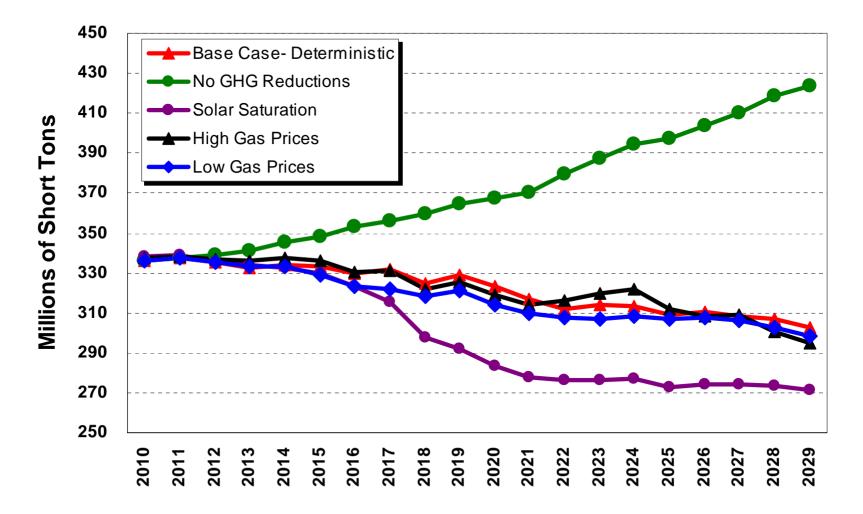
- Reduce capital cost by 80%
- Increased solar energy in 2029 from 4,243 aMW to 20,486 aMW or 75 GW of capacity
- Reduced Western Interconnect fuel costs by 18% or \$10 billion in 2029 or \$36.4 billion (PV 2009\$)
- Reduced 2029 power generation greenhouse gas emissions by 10%
- Small reduction in Q2 and Q3 on-peak power prices, although higher solar saturation rates could further reduce on-peak power prices



Implied Market Heat Rates

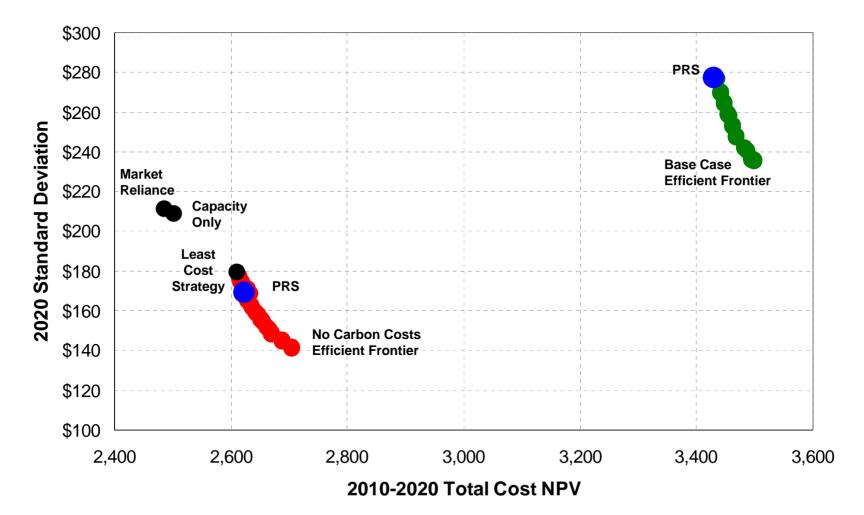


Mid-Columbia Levelized Price (2010-2029) Duration Curve



Greenhouse Gas Prices (\$/Ton)

US WECC Greenhouse Gas Levels

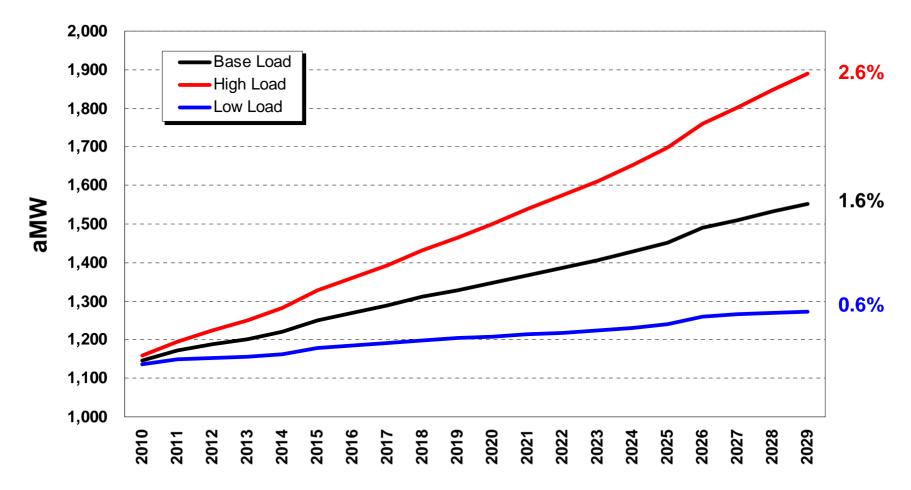


No Carbon Costs Scenario

No Carbon Costs Scenario

No CO₂ Costs: Least Cost Strategy (MW)

					Low		
				Hydro			T&D
Year	СССТ	SCCT	Wind	Upgrades		DSM	Effic.
2010	-	-	-	-	-	12	1
2011	-	-	-	-	-	12	1
2012	-	-	-	-	-	12	1
2013	-	-	150	-	-	12	1
2014	-	-	-	-	-	14	1
2015	-	-	-	-	-	14	-
2016	-	-	-	-	-	15	-
2017	-	-	-	1	-	15	-
2018	-	-	-	-	-	15	-
2019	-	-	-	1	-	17	-
2020	-	200	150	-	-	17	-
2021	-	-	-	-	-	18	-
2022	-	-	-	2	-	18	-
2023	-	100	50	-	-	20	-
2024	-	-	-	-	-	20	-
2025	-	-	-	-	-	21	-
2026	-	100	-	-	-	21	-
2027	-	300	-	-	-	23	-
2028	-	-	-	-	-	23	-
2029	-	100	-	-	-	24	-
2010-2019	-	-	150	2	-	137	5
2010-2029	-	800	350	4	-	339	5



Fundamental Portfolio Changes

Alternative Load Forecasts (Energy)

AAGR

High Load Least Cost Strategy (MW)

					Low		
				Hydro			T&D
Year	СССТ	SCCT	Wind	Upgrades		DSM	Effic.
2010	-	-	-	-	-	12	1
2011	-	-	-	-	-	12	1
2012	-	60	-	-	-	14	1
2013	-	-	200	-	-	14	1
2014	-	100	-	1	-	15	1
2015	-	-	-	1	-	15	-
2016	-	-	-	-	-	17	-
2017	-	-	-	1	-	17	-
2018	-	100	-	-	-	18	-
2019	-	-	-	-	-	18	-
2020	-	100	200	-	-	20	-
2021	250	-	-	2	-	20	-
2022	-	-	-	-	-	21	-
2023	-	-	50	-	-	23	-
2024	-	-	-	-	-	23	-
2025	250	-	50	-	-	24	-
2026	-	-	-	-	-	26	-
2027	500	-	-	-	-	27	-
2028	-	-	50	-	-	29	-
2029	-	-	-	-	-	29	-
2010-2019	-	260	200	3	-	150	5
2010-2029	1,000	360	550	5	-	389	5

Low Load Least Cost Strategy (MW)

				Hydro	Low Carbon		T&D
Year	СССТ	SCCT	Wind	Upgrades	Baseload	DSM	Effic.
2010	-	-	-	-	-	12	1
2011	-	-	-	-	-	12	1
2012	-	-	-	-	-	12	1
2013	-	-	150	-	-	12	1
2014	-	-	-	1	-	14	1
2015	-	-	-	1	-	14	-
2016	-	-	-	-	-	15	-
2017	-	-	-	1	-	15	-
2018	-	-	-	-	-	15	-
2019	-	-	-	-	-	17	-
2020	-	-	100	-	-	17	-
2021	-	-	-	-	-	18	-
2022	-	-	-	-	-	18	-
2023	-	-	-	-	-	20	-
2024	-	-	-	-	-	20	-
2025	-	-	-	-	-	21	-
2026	250	-	-	-	-	21	-
2027	-	-	-	-	-	23	-
2028	-	100	-	-	-	23	-
2029	-	-	-	2	-	24	-
2010-2019	-	-	150	3	-	137	5
2010-2029	250	100	250	5	-	339	5

Least Avista Greenhouse Gas Emissions Scenario

- Model selected small renewable and hydro upgrades, simple cycle gas turbines and low carbon emitting resource (nuclear/carbon sequestration)
- Wind resources reduce Western Interconnect emissions, but likely would not significantly reduce Avista's greenhouse gas emissions
- Carbon reductions could be from retiring resources such as Colstrip and Coyote Springs 2

Capital Cost Sensitivities

Wind Capital Cost Sensitivity

Starting Point: 150 MW Wind by December 31, 2012

- 50 MW Reardan (\$2,423 per kW) [2009\$: \$2,262]
- 100 MW Generic Wind (\$2,513 kW) [2009\$: \$2,183]

 Assumes Avista can only take advantage of 90% of tax credit beginning in 2011, due to not enough tax liability

Scenario: At what capital cost does PRiSM select Reardan earlier?

 Model selected Reardan in 2010, if capital costs are less than \$1,877 per kW [2009\$: \$1,832]

CCCT Capital Cost Sensitivity

Starting Point: 250 MW CCCT beginning January 1, 2020

Generic CCCT (\$1,949 per kW) [2009\$: \$1,461]

Scenario: At what price is CCCT no longer preferred on a least cost basis, if SCCT cost remain equal.

- If cost are above (\$2,051 per kW) [2009\$: \$1,535] the least cost strategy includes 300MW of LMS 100 in 2020-21
- Although, the 2020 standard deviation of power supply expense increases by 3.5%

Resource Availability Scenarios

Large Hydro Upgrades

- Base Case does not include Cabinet Gorge Unit 5 or Long Lake 2nd PH/Unit 5 as options.
- These units were not considered options at this time, due to cost uncertainty.
- Assumption (2009\$):
 - Cabinet Gorge 5: \$1,478 kW
 - Long Lake U5: \$2,168 kW
 - Long Lake 2nd PH: \$2,000 kW

This analysis first allows these units to be available at estimated costs, then studies how cost change impacts the PRS.

Least Cost Strategy: With Large Hydro Options (MW)

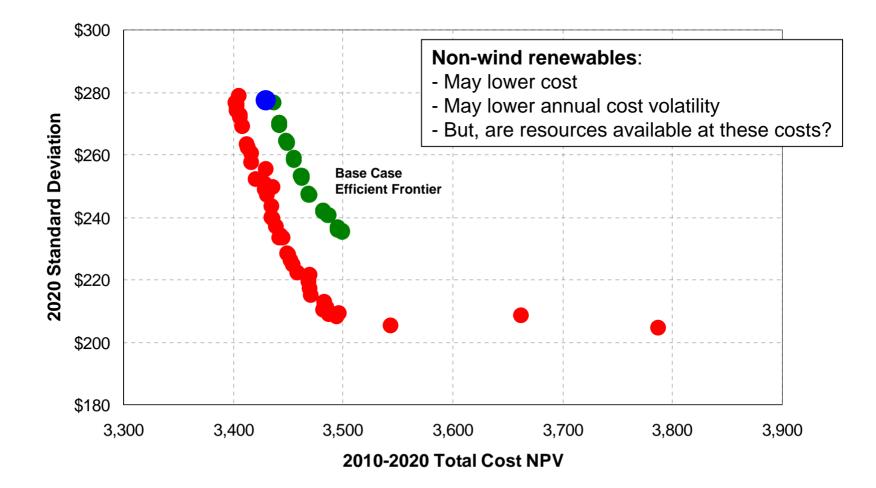
				Hydro	Low Carbon		
Year	СССТ	SCCT	Wind	Upgrades		DSM	T&D Effic.
2010	-	-	-	-	-	12	1
2011	-	-	-	-	-	12	1
2012	-	-	-	-	-	12	1
2013	-	-	150	-	-	12	1
2014	-	-	-	1	-	14	1
2015	-	-	-	1	-	14	-
2016	-	-	-	-	-	15	-
2017	-	-	-	1	-	15	-
2018	-	-	-	-	-	15	-
2019	-	-	-	-	-	17	-
2020	-	100	100	60	-	17	-
2021	250	-	-	-	-	18	-
2022	-	-	-	-	-	18	-
2023	-	-	50	-	-	20	-
2024	-	-	-	-	-	20	-
2025	-	-	-	-	-	21	-
2026	-	-	-	-	-	21	-
2027	400	-	-	-	-	23	-
2028	-	-	-	-	-	23	-
2029	-	-	-	2	-	24	-
2010-2019	-	-	150	3	-	137	5
2010-2029	650	100	300	65	-	339	5

Least Cost Strategy With Cabinet 4 and Long Lake 2nd PH (MW)

				Linder	Low		
				Hydro			
Year	СССТ	SCCT	Wind	Upgrades	Baseload	DSM	T&D Effic.
2010	-	-	-	-	-	12	1
2011	-	-	-	-	-	12	1
2012	-	-	-	-	-	12	1
2013	-	-	150	-	-	12	1
2014	-	-	-	1	-	14	1
2015	-	-	-	61	-	14	-
2016	-	-	-	-	-	15	-
2017	-	-	-	1	-	15	-
2018	-	-	-	-	-	15	-
2019	-	-	-	-	-	17	-
2020	-	-	100	60	-	17	-
2021	250	-	-	-	-	18	-
2022	-	-	-	-	-	18	-
2023	-	-	50	-	-	20	-
2024	-	-	-	-	-	20	-
2025	-	-	-	-	-	21	-
2026	-	-	-	-	-	21	-
2027	400	-	-	-	-	23	-
2028	-	-	-	-	-	23	-
2029	-	-	-	2	-	24	-
2010-2019	-	-	150	63	-	137	5
2010-2029	650	-	300	125	-	339	5

Large Hydro Upgrade Capital Cost Analysis

Long Lake 2nd Powerhouse is favored by PRiSM, due to larger capacity size and similar cost per MWh


 The plant is selected as least cost resource until the cost reaches \$2,150 kW

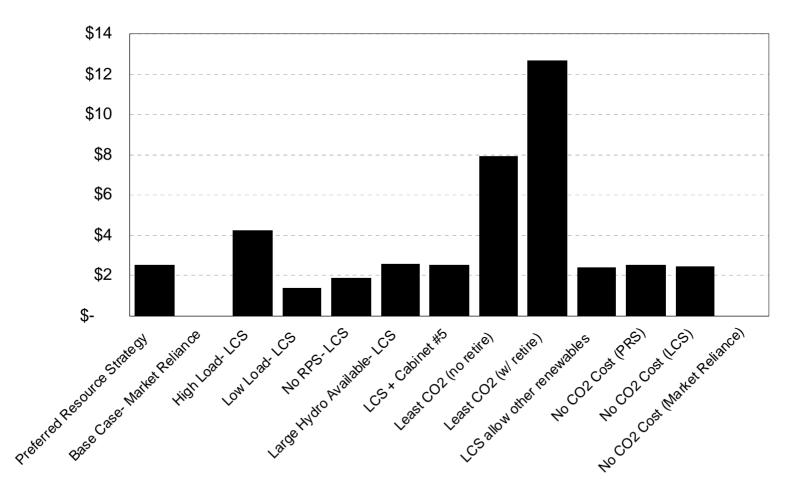
<u>Cabinet Gorge U5</u> is not selected as a least cost resource, due to low capacity factor, if costs were less than \$1,100 per kW, the plant would be selected

While these resources have capital cost uncertainty, they are a viable alternative to reduce carbon emissions

Non-Wind Renewable Resources Available

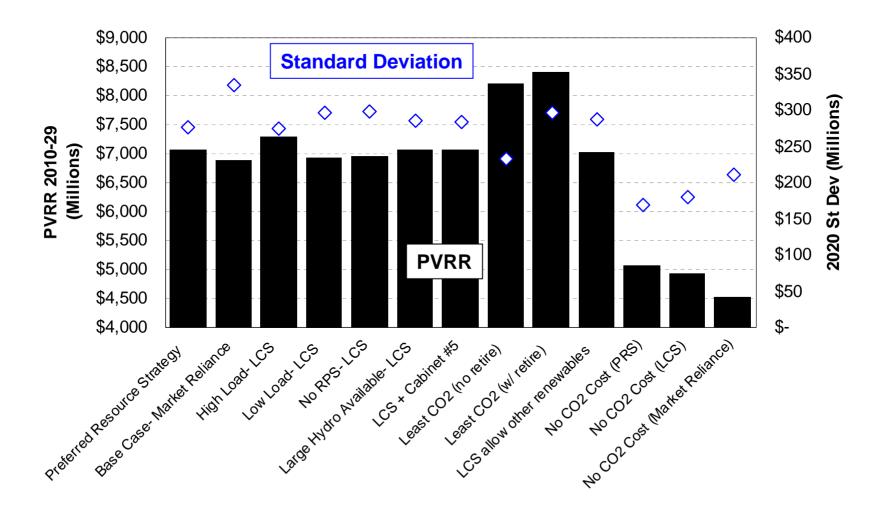
Least Cost Strategy-Small Renewables Available (MW)

						Low		
				Non-Wind	Hydro	Carbon		
Year	СССТ	SCCT	Wind	Renewable	-		DSM	T&D Effic.
2010	-	-	-	-	-	-	12	1
2011	-	-	-	-	-	-	12	1
2012	-	-	-	10	-	-	12	1
2013	-	-	100	5	-	-	12	1
2014	-	-	-	5	1	-	14	1
2015	-	-	-	-	-	-	14	-
2016	-	-	-	-	1	-	15	-
2017	-	-	-	-	1	-	15	-
2018	-	-	-	5	-	-	15	-
2019	-	-	-	-	-	-	17	-
2020	-	100	100	7	2	-	17	-
2021	250	-	-	-	-	-	18	-
2022	-	-	-	-	-	-	18	-
2023	-	-	-	-	-	-	20	-
2024	-	-	50	-	-	-	20	-
2025	-	-	-	-	-	-	21	-
2026	-	-	-	-	-	-	21	-
2027	400	-	-	-	-	-	23	-
2028	-	-	-	-	-	-	23	-
2029	-	-	-	-	-	-	24	-
2010-2019	-	-	100	25	3	-	137	5
2010-2029	650	100	250	32	5	-	339	5

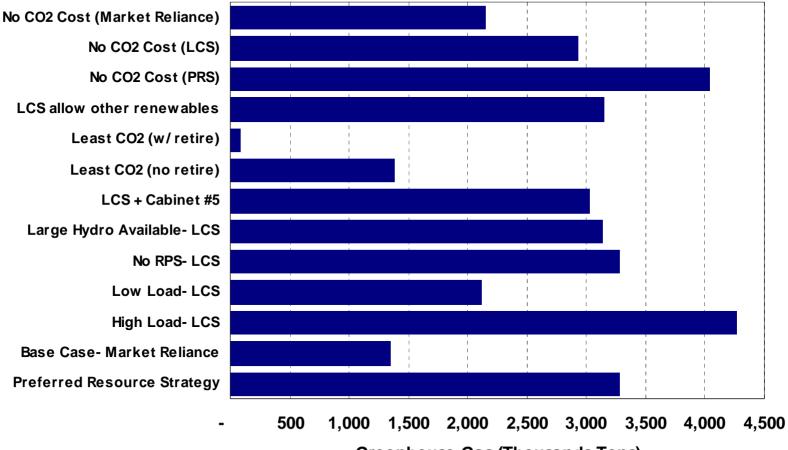

Nuclear

If Nuclear was allowed as a resource beginning in 2020 at a 2009\$ capital cost of \$5,500 per kW in 250 MW sizes.

- At this cost it would not be selected in the Least Cost Strategy.
- Although, if costs were \$3,800 per kW the resource would be selected
- If Avista were to acquire the plant in 100MW quantities it would be least cost at \$4,000 per kW.



Capital Expense in Billions Dollars (Nominal 2010-29)



Portfolio Cost/Risk Comparison

Avista Greenhouse Gas Emissions (2029)

Greenhouse Gas (Thousands Tons)

2009 IRP Topics

John Lyons

2009 Electric Integrated Resource Plan Fifth Technical Advisory Committee Meeting March 25, 2009

Executive Summary

- Resource needs
- Modeling and results
- Electricity and natural gas market price forecasts
- Demand side management
- Preferred Resource Strategy
- Environmental issues
- Action items

Introduction & Stakeholder Involvement

- IRP process
- Public involvement
- 2009 IRP chapter overview

Loads and Resources

- Economic forecast
- Load forecast
- Forecast scenarios
- Overview of current resources
- Planning margins and resource requirements

Demand Side Management

- Overview of DSM programs
 - Historical
 - Residential
 - Commercial and Industrial
- DSM programs for 2009 IRP
 - Programs considered
 - Analytics
 - DSM business plan and future commitments

Environmental Issues

- Environmental initiatives and policies
- Avista's Climate Change Committee
- State and federal renewable portfolio standards issues
- State and federal greenhouse gas legislation

Transmission & Distribution Planning

- Overview of Avista's transmission system
- Regional transmission issues
- Transmission cost estimates
- Distribution efficiency projects
- Transmission efficiency projects

Modeling Approach

- Market modeling
- Key assumptions and inputs
 - Hydro
 - Fuel prices: coal and natural gas
 - Emissions: SO_2 , NO_x and greenhouse gases
 - Risk modeling
 - Resource alternatives
- PRiSM model

Market Modeling Results

- Base Case
- Market Scenarios
- Portfolio Scenarios
 - Fundamental changes
 - Capital cost sensitivities
 - Resource availability

Preferred Resource Strategy

- 2009 Preferred Resource Strategy
- Comparisons with prior plans
- Portfolio strategies and performance across scenarios

2009 IRP Action Items

- Progress on 2007 IRP Action Items
- 2009 Action Items
 - Renewables
 - DSM
 - Greenhouse gas issues
 - Modeling and forecasting enhancements
 - Transmission planning

Avista's 2009 Electric Integrated Resource Plan Technical Advisory Committee Meeting No. 6 Agenda June 24, 2009

1.	Topic Introductions	Time 10:00	Staff Storro
2.	IRP Section Highlights	10:05	Kalich
3.	Preferred Resource Strategy	10:30	Gall
4.	Lunch	11:30	
5.	Preferred Resource Strategy	12:30	Kalich/Gall
6.	IRP Action Items	1:30	Lyons
7.	Adjourn	2:00	

Draft Chapter Highlights

Loads & Resources

- Weak economic growth is expected until 2011 in the service territory.
- Historic conservation acquisitions are included in the load forecast; higher acquisition levels anticipated in this IRP reduce the load forecast further.
- Annual electricity sales growth from 2010-2020 averages 1.6 percent over the next decade (199 aMW) and 1.8 percent over the entire 20-year forecast.
- Peak loads are expected to grow at 1.6 percent annual rate over the next 10 years (312 MW) and also 1.6 percent over the entire 20-year forecast.
- Avista's resource deficits begin 2018; without conservation resources deficits would begin in 2016.
- Capacity deficiencies now are the predominate driver of resource need.

Energy Efficiency

- Avista has offered conservation programs for over 30 years.
- The Company has acquired 138.5 aMW of electric-efficiency in the past three decades; an estimated 109 aMW is still in service, reducing overall load by approximately 10 percent.
- 20,000 additional customers heat their homes with natural gas today because of Avista's first fuel-switching program.
- The Company has developed and maintains the infrastructure necessary to respond quickly to an energy efficiency ramp-up if another energy crisis or opportunity occurs.
- Approximately 3,000 concepts were evaluated by Avista's demand-side management analysts for the 2009 IRP.
- 7 aMW of local and 2.9 aMW of regional conservation is expected in 2010
- Conservation additions provide 26 percent of new supplies through 2020.
- 2009 IRP includes 0.3 aMW (3.3%) more annual conservation acquisition than 2007 plan, building on a 50% increase in the 2005 and another 25% in the 2007 IRP.

Transmission & Distribution

- Avista has completed a \$130 million transmission improvement project.
- Avista has over 2,200 miles of high voltage transmission.
- Avista remains actively involved in regional transmission planning efforts.
- The cost of selected new transmission lines and upgrades are included in the 2009 Preferred Resource Strategy.
- 2.7 aMW of distribution efficiencies are included in this IRP.

Generation Resource Options

- Only resources with well known costs were considered in the PRS analysis, other resources were studied in sensitivities.
- Federal tax credits were extended to 1/1/2013 for wind and 1/1/2014 for nonwind renewables with a choice of the PTC (\$20/mwh or 30% ITC)
- Large hydro upgrades at Long Lake and Cabinet Gorge are not considered as new resources, but will be further studied for inclusion in the 2011 IRP analysis.
- Small hydro upgrades and wood fired upgrades were considered in this IRP.
- Solar is included as resource option for this first time.

Market Analysis

- Mid-Columbia electric and Malin natural gas prices are 27 and 20 percent higher than the 2007 IRP, primarily due to carbon legislation impacts
- Mid-Columbia electric prices are expected to be \$79.56 per megawatt-hour over the next 20 years
- Malin natural gas prices are expected to be \$7.36 per decatherm over the next 20 years
- Gas-fired resources continue to serve most new loads and take the place of coal generation to reduce greenhouse gas emissions
- Future carbon credit prices will depend on reduction goals and the differential between natural gas and coal prices
- Carbon legislation increases total fuel expenses in the Western Interconnect by over 16 percent

Preferred Resource Strategy

- Avista's physical energy needs begin in 2018; capacity needs begin in 2016.
- Near-term resource acquisitions are driven by pending environmental regulation and risk reduction.
- The first supply-side resource acquisitions are 150 MW of wind by 2012.
- Conservation additions provide 26 percent of new supplies through 2020.
- A 250 MW natural gas-fired combined cycle project is required by 2020.
- Large hydro upgrades have the potential to change the preferred resource mix.
- The 2020 CCCT acquisition could be moved forward to as soon as 2015 without a significant impact on the preferred resource strategy.

Draft Action Items Highlights

Resource Additions & Analysis

- Continue to explore the potential for wind and non-renewable resources.
- Issue an RFP for turbines at Reardan and up to 100 MW of wind or other renewables in 2009.
- Finish studies regarding the costs and environmental benefits of the large hydro upgrades at Cabinet Gorge, Long Lake, Post Falls, and Monroe Street.
- Study potential locations for the natural gas fired resource identified to be online between 2015 and 2020.

Demand Side Management

- Pursue American Reinvestment and Recovery Act funding and its affect on the amount of low income weatherization.
- Analyze and report on the results of the July 2007 through December 2009 demand response pilot in Moscow and Sandpoint.

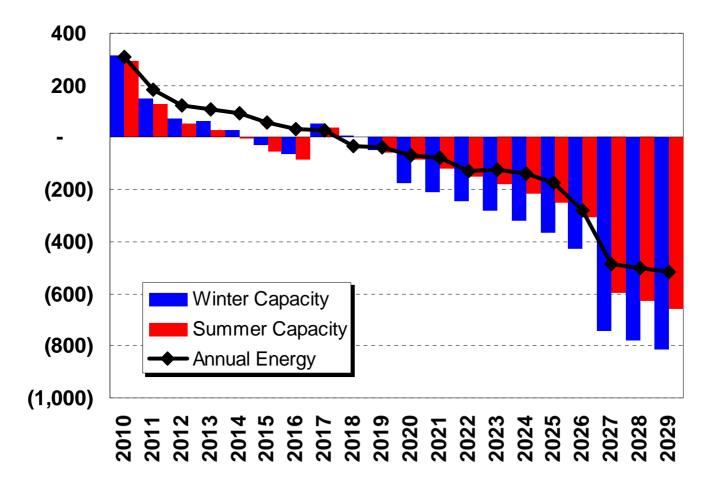
Environmental Policy

- Continue to study the potential impact of state and federal climate change legislation.
- Continue and report on the work of Avista's Climate Change Committee.

Modeling and Forecasting Enhancements

- Refine the stochastic model for cost driver relationships.
- Continue to refine the PRiSM model.
- Continue developing Loss of Load Probability and Sustained Peaking analysis for inclusion in the IRP process

Transmission Planning


- Work to maintain/retain existing transmission rights on the Company's transmission system, under applicable FERC policies, for transmission service to bundled retail native load.
- Continue involvement in BPA transmission practice processes and rate proceedings to minimize costs of integrating existing resources outside of the company's service area.
- Continue participation in regional and sub-regional efforts to establish new regional transmission structures (ColumbiaGrid and other forums) to facilitate long-term expansion of the regional transmission system.
- Evaluate costs to integrate new resources across Avista's service territory and from regions outside of the Northwest.
- Further study and implement distribution feeder rebuild projects to reduce system losses.
- Study transmission re-configurations to economical reduce system losses.

2009 IRP Preferred Resource Strategy

2009 Electric Integrated Resource Plan Sixth Technical Advisory Committee Meeting June 24, 2009

L&R Balances

Load is net 2007 Conservation Levels

Preferred Resource Strategy Approach

Least Cost Strategy that meets

- 1. Capacity Needs
- 2. Energy Needs
- 3. RPS Requirements
- 4. Conservation Requirements
- 5. Emissions Regulation
- 6. Actionable

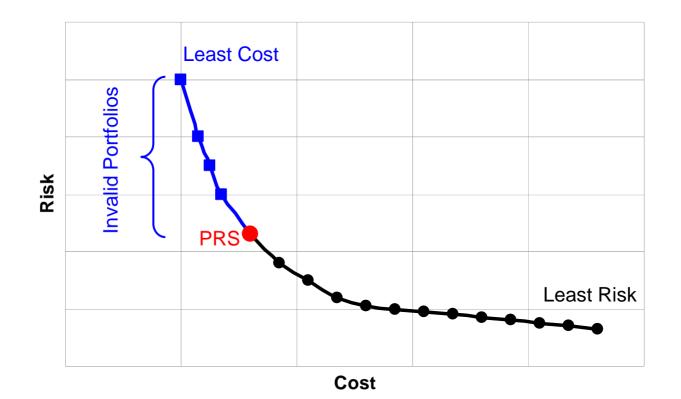
Flexible Strategy

Preferred Resource Strategy

But, what if?

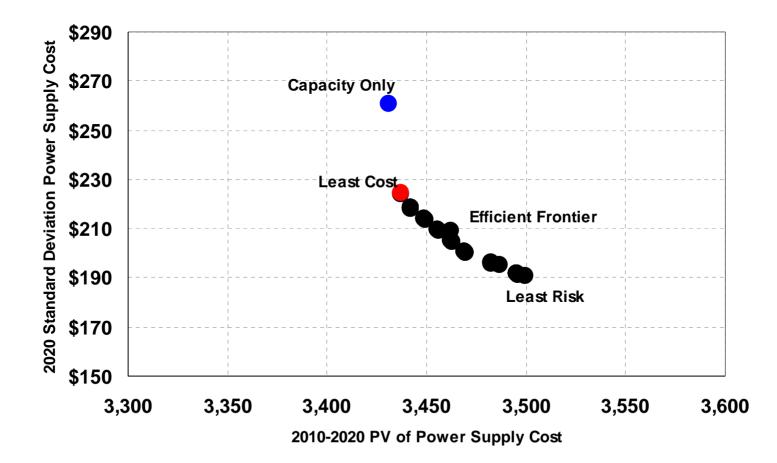
Capital Costs Change

Load Growth Rate Changes

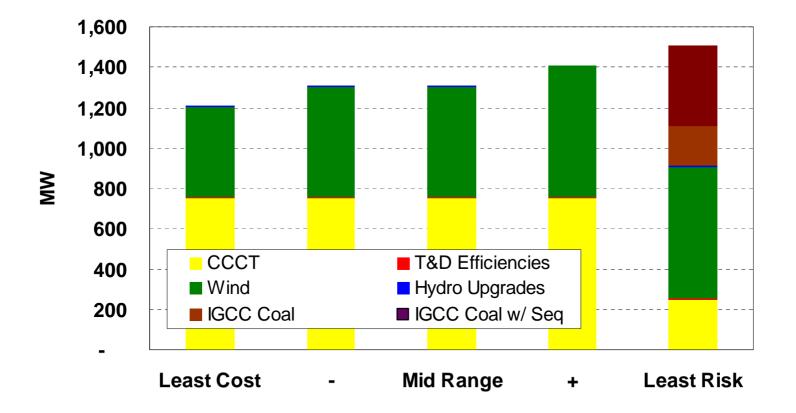

Large Hydro Upgrades Are Cost Effective

Non-Wind Renewables Become Abundant

Is Nuclear a Solution

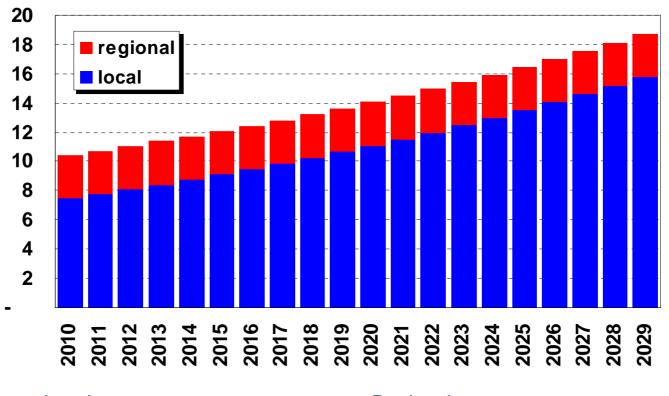


Conceptual Efficient Frontier



Efficient Frontier

Efficient Frontier Portfolios



2009 Preferred Resource Strategy

Resource	By the End of Year	Nameplate (MW)	Energy (aMW)
NW Wind	2012	150.0	50.0
Distribution Efficiencies	2010-2015	5.0	2.0
Little Falls 1	2013	1.0	0.3
Little Falls 2	2014	1.0	0.3
Little Falls 4	2016	1.0	0.3
NW Wind	2019	150.0	50.0
СССТ	2019	250.0	225.0
Upper Falls	2020	2.0	1.0
NW Wind	2022	50.0	17.0
СССТ	2024	250.0	225.0
СССТ	2027	250.0	225.0
Conservation	All Years	339.0	226.0
Total		1,449.0	1,019.9

Annual Conservation Acquisition

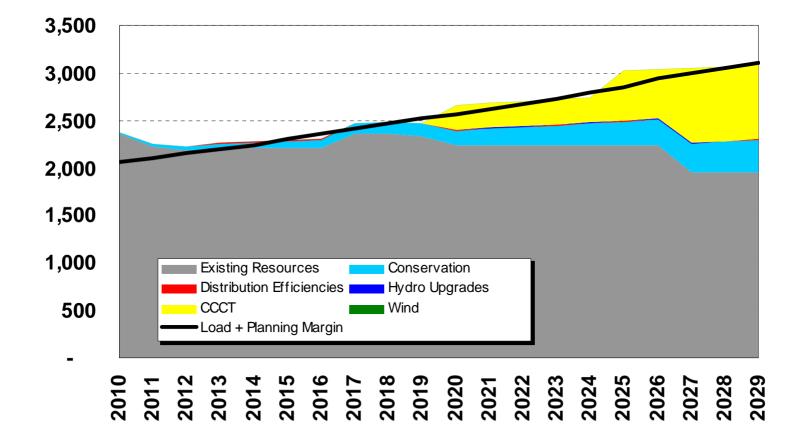
Local 90 aMW over first 10 years 226 aMW over 20 years Regional 29 aMW over first 10 years 59 aMW over 20 years

Local Energy Efficiency Targets

Portfolio	2010 Target	2011 Target
Limited Income Residential	1,977,099	2,056,183
Residential	20,518,584	21,339,327
Prescriptive Non-Residential	18,211,396	18,939,852
Site-Specific Non-Residential	24,936,765	25,934,236
Total Local Acquisition (kWh)	65,643,844	68,269,598
Local	7.5	7.8
Regional	2.9	2.9
Total Acquisition (aMW)	10.4	10.7
Draft NPCC 6 th Plan Goal	11.2	12.4

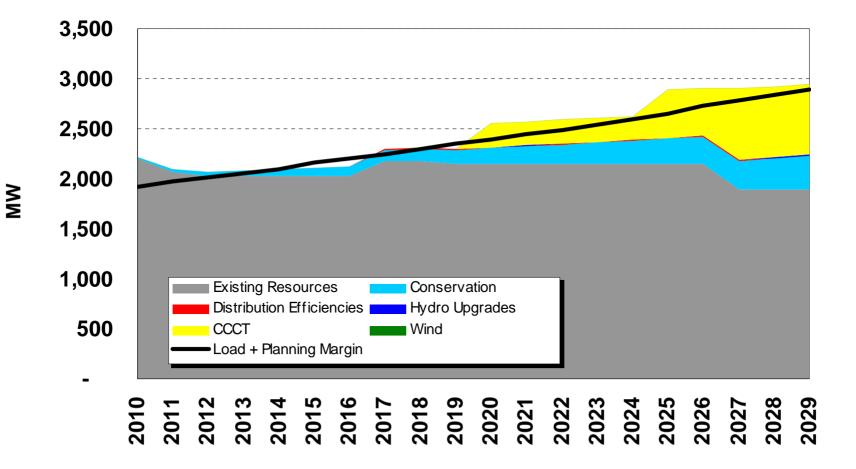
Rate Base Additions for Capital Expenditures (Millions)

Year	Investment	Year	Investment
2010	4.9	2020	942.1
2011	5.0	2021	10.6
2012	5.1	2022	0.0
2013	278.1	2023	163.3
2014	7.7	2024	0.0
2015	2.3	2025	542.0
2016	0.0	2026	0.0
2017	1.7	2027	0.0
2018	0.0	2028	571.6
2019	0.0	2029	0.0


Totals * \$0.3 billion thru 2019 \$2.5 billion thru 2029 **

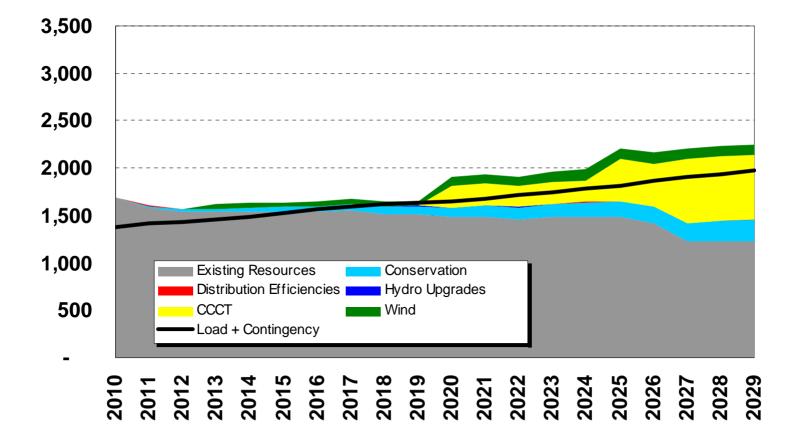
* Excludes conservation funding

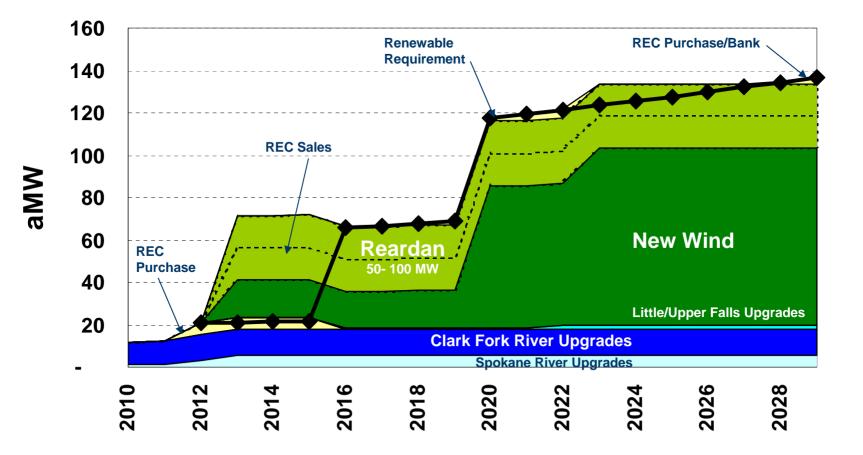
** \$1.0 billion NPV @ 8% discount rate



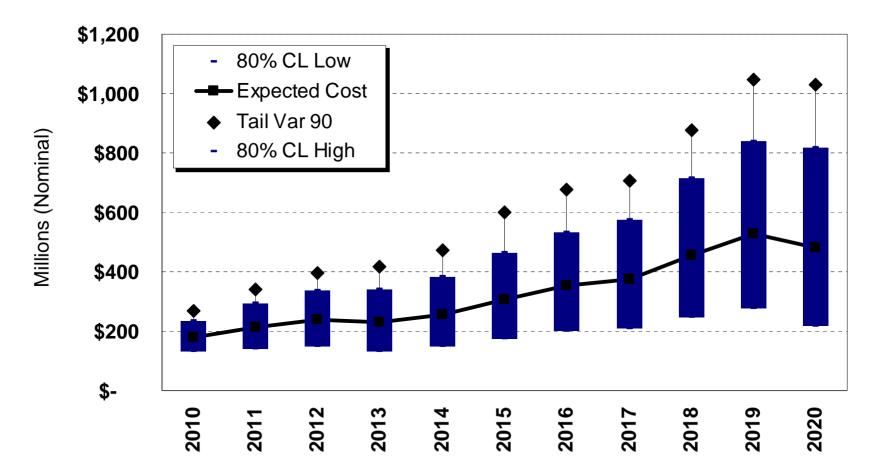
January Capacity L&R w/ New Resources

AIVISTA

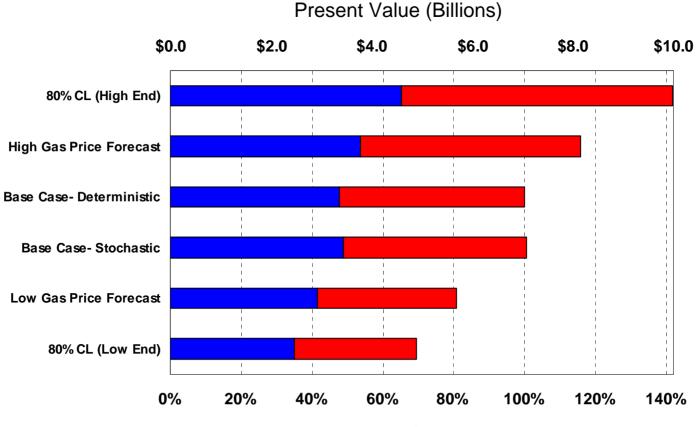

August Capacity L&R w/ New Resources


13

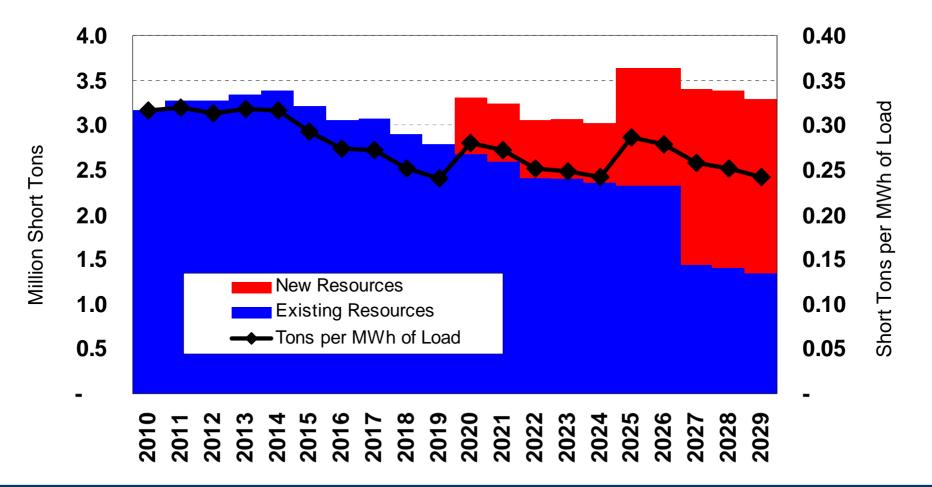
Annual Energy L&R w/ New Resources



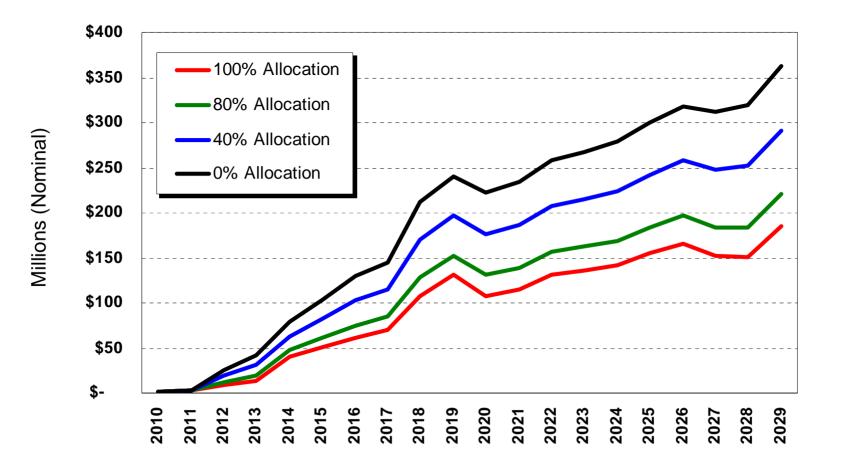
Washington State RPS Compliance

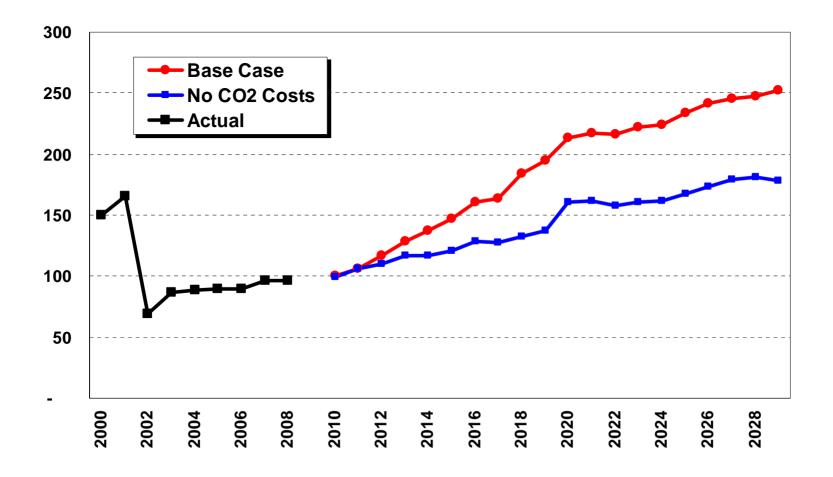

Power Supply Cost Variation

16


Power Supply Cost Ranges

Percent of 20 Year PV


Avista Generator GHG Emissions


18

Total Cost GHG Legislation

Future Power Supply Costs (Index: 2010= 100)

Flexible Strategy

What are the tipping points for key capital costs?

What are the impacts of load growth changes?

What if large hydro upgrades are viable?

What if non-wind renewables are abundant?

Is Nuclear a solution?

wind capital cost <\$1,830/kW, build early

CCCT cost >\$1,610/kW, consider SCCT

High: 260/100 MW more gas/wind next 10 years

Low: 250/50 MW less gas/wind in next 10 years

eliminate 50/100 MW of wind/gas over 20 years?

non-wind renewables replace some wind; could reduce gas by 100 MW

least-cost if <=\$4,000/kW (current range \$5-\$10k)</pre>

Schedule

- June 22: Internal draft released
- June 24: Final Technical Advisory Committee meeting
- July 1: "Big Picture" internal comments
- July 6: External draft released
- July 20: Comment deadline
- Aug 31: IRP Filed with Commissions
- ~April 2010: Begin 2011 IRP Process

2009 IRP Action Items

John Lyons

2009 Electric Integrated Resource Plan Sixth Technical Advisory Committee Meeting June 24, 2009

2007 IRP Action Items

- Renewable Energy
- Demand Side Management
- Emissions
- Modeling and Forecasting Enhancements
- Transmission Planning

Renewable Energy

- Continue studying wind potential in the Company's service territory, possibly including the placement of anemometers at the most promising wind sites.
- Commission a study of Montana wind resources that are strategically located near existing Company transmission assets
- Learn more about non-wind renewable resources to satisfy renewable portfolio standard requirements and decrease the Company's carbon footprint.

Demand Side Management

- Update processes and protocols for integrating energy efficiency programs into the IRP to improve and streamline the process.
- Study and quantify transmission and distribution efficiency concepts.
- Determine the potential impacts and costs of load management options currently being reviewed as part of the Heritage Project.
- Develop and quantify the long-term impacts of the newly signed contractual relationship with the Northwest Sustainable Energy for Economic Development organization.

Emissions

- Continue to evaluate the implications of new rules and regulations affecting power plant operations, most notably greenhouse gases.
- Continue to evaluate the merits of various carbon quantification methods and emissions markets.

Modeling and Forecasting Enhancements

- Study the potential for fixing natural gas prices through financial instruments, coal gasification, investments in gas fields, or other means.
- Continue studying the efficient frontier modeling approach to identify more and better uses for its information.
- Further enhance and refine the PRiSM LP model
- Continue to study the impact of climate on the load forecast.
- Monitor the following conditions relevant to the load forecast: large commercial load additions, Shoshone county mining developments, and the market penetration of electric cars.

Transmission Planning

- Work to maintain/retain existing transmission rights on the Company's transmission system, under applicable FERC policies, for transmission service to bundled retail native load.
- Continue involvement in BPA transmission practice processes and rate proceedings to minimize costs of integrating existing resources outside of the company's service area.
- Continue participation in regional and sub-regional efforts to establish new regional transmission structures (ColumbiaGrid and other forums) to facilitate long-term expansion of the regional transmission system.
- Evaluate costs to integrate new resources across Avista's service territory and from regions outside of the Northwest.

2009 IRP Action Items

- Resource Additions and Analysis
- Demand Side Management
- Environmental Policies
- Modeling and Forecasting Enhancements
- Transmission and Distribution Planning

Resource Additions and Analysis

- Continue to explore the potential for wind and non-renewable resources.
- Issue an RFP for turbines at Reardan and up to 100 MW of wind or other renewables in 2009.
- Finish studies regarding the costs and environmental benefits of the large hydro upgrades at Cabinet Gorge, Long Lake, Post Falls, and Monroe Street.
- Study potential locations for the natural gas fired resource identified to be on-line between 2015 and 2020.

Demand Side Management

- Pursue American Reinvestment and Recovery Act funding
- Analyze and report on the results of the demand response pilot in Moscow and Sandpoint
- Processing and implementing I-937 requirements

Environmental Policies

- Continue to study the potential impact of state and federal climate change and renewable portfolio legislation
 - Western Climate Initiative
 - Waxman-Markey American Clean Energy and Security Act of 2009
- Continue to report on Avista's Climate Change Committee

Modeling and Forecasting Enhancements

- Refine the stochastic model for cost driver relationships
- Continue to refine the PRiSM model
- Continue developing Loss of Load Probability and Sustained Peaking analysis for inclusion in the IRP process
- Study cooling degree day trend coefficient for inclusion in the load forecast

Transmission and Distribution Planning

- Work to maintain and retain existing transmission rights on Avista's transmission system
- Continued involvement in BPA transmission processes and rate proceedings
- Continued participation in regional and sub-regional efforts to establish new regional transmission structures and to facilitate long-term expansion of the regional transmission system
- Evaluate costs to integrate new resources across Avista's service territory and from regions outside of the Northwest
- Study and implement distribution feeder rebuild projects
- Study transmission re-configurations to reduce system losses

- Final Report Avista Corporation Wind Integration Study

Pre garea fan

Avista Corporation

G/g NT. Clin Kalan Manage at Resource Manning P.O. Iax 3727. J.411. Car. Misian Street. J.415. Car. Misian Street. Sigarane. Masiningran, 1922D-3727

Pre nored by:

EnerNex Corporation 1702 wanter floce Boulesona. Anaville, le nessee, 3722 1et: [355] 81-556 err. 149 MX: [355] 81-556 Boother nerrex.com Www.enerrex.com

Maroh. 2007

Clint Kalich Manager of Resource Planning & Power Supply Analyses clint.kalich@avistacorp.com October 21, 2008

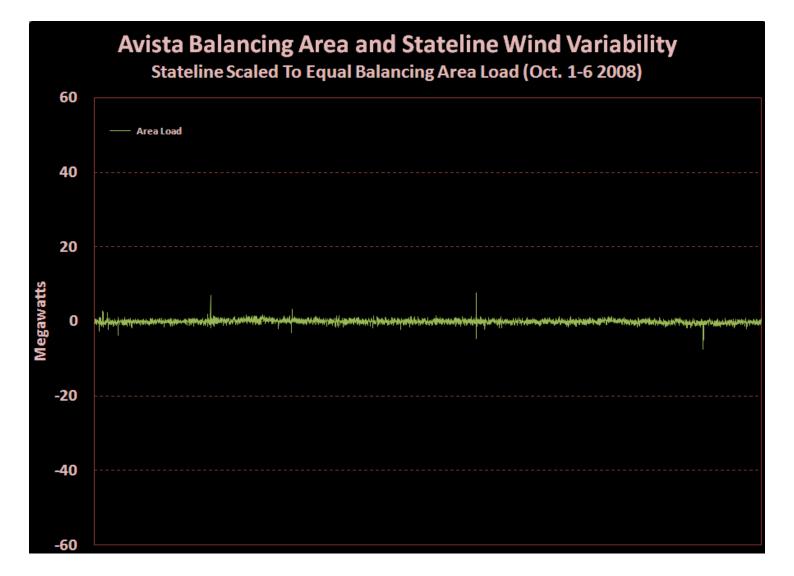
Defining Wind Integration &

Overview of Avista Study

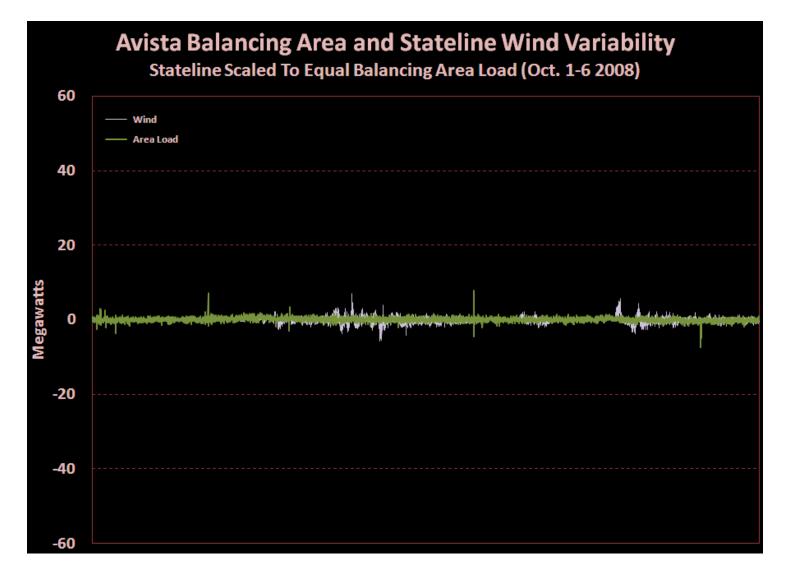
Outline of Presentation

- Defining Wind Integration
- Overview of Avista's System
- Evaluating Overall Cost of Wind
- Methodology Overview
- Wind Integration Cost Components
- Impact of Shorter Market Time Step
- Benefit of Wind Feathering
- Hydro Re-Dispatch Costs
- Next Steps/Modeling Enhancements
- Other Wind Integration Study Results

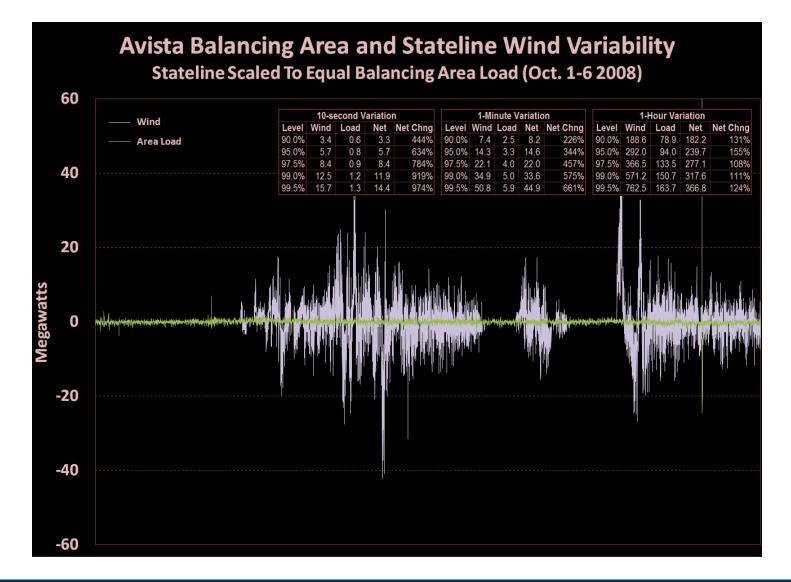
Defining Wind Integration


- Incremental Reserves (Avista Study Method)
 - Regulation (<1 minute)</p>
 - Load following
 - covers timeframe from end of regulation up to next ramp (1 hour in WECC)
 - Forecast error
 - difference between forecast and actual generation

• Other Things Sometimes Called Wind Integration


- Shape of delivered energy
- Fuel savings from wind operations
- Capital costs
- Environmental attributes

Bottom Line: Be Careful When Assuming 2 Studies are "Apples-to-Apples"



Overview of Avista's System (2010)

- 2,200 MW Control Area Peak
- 875 MW Minimum Load
- 1,200 MW Hydro
 - Very flexible with generous short-term storage
 - Provides majority of reserves for wind
 - regulation, spinning, supplemental

• 785 MW Gas Turbines

- 550 MW CCCT with 100 MW of spinning & supplemental reserves
- 210 MW (4 units) provide only supplemental reserves
- Remaining 7 (small) units cannot provide reserves

Overview of Avista's System, Cont

- 230 MW Coal & 50 MW Biomass
 - Do not provide reserves
- 35 MW of Stateline Wind
- ~750 MW Contracts Rights
 - 350 MW for "native load"
 - 400 MW 3rd party resources to serve 3rd party loads in control area
 - No reserve capabilities
- ~200 MW Capacity Contract Obligations
 - Sales of AGC and spinning reserves for 3rd party load and wind

Evaluating Overall Cost of Wind

• Commodity Value of Energy

- Consider hourly pattern
- Wind doesn't generate flat or at the operator's control
- Transmission Cost ~ 3 Times Traditional Resources
- Impact on Operation of Other Owned Resources
 - Fuel savings and/or impact on market sales & purchases

• Incremental Reserve Obligations

- Avista definition of wind integration
- Regulation, load following, forecast error
 - load following and forecast error are greatly affected by spot market timeframe
- Capital Recovery and Operation Costs
- Environmental Attribute Values (green tags, reduced CO₂)
- Capacity Contribution (or lack thereof)

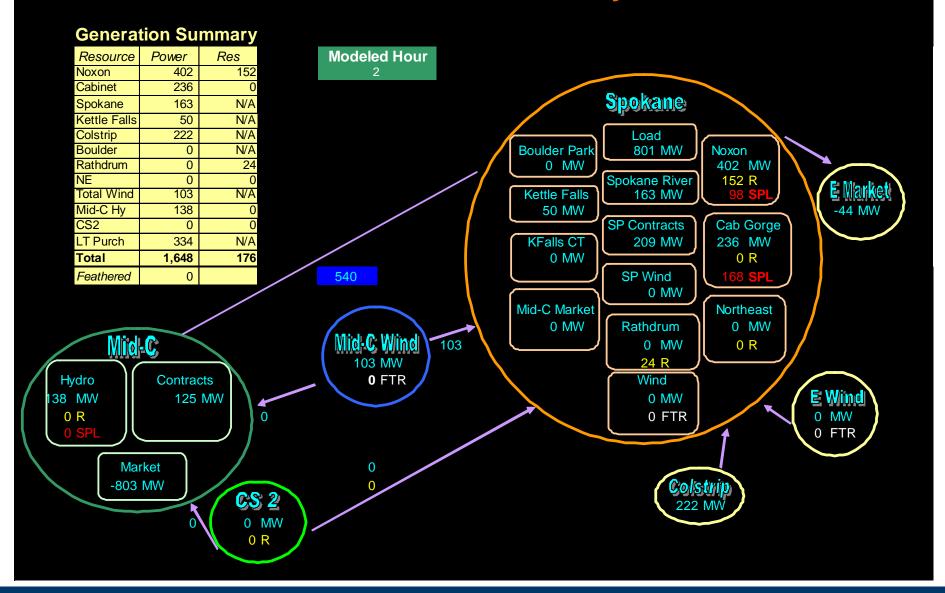
Methodology Overview

• Develop Hourly LP Model Of Avista System

- Model of both Real-Time and Pre-Schedule timeframes
 - pre-schedule commitment and market transactions "honored" in Real-Time
- Represent inherent flexibility and constraints
 - hydro storage and minimum flow
 - minimum up/down requirements
 - reserve capabilities and ramping rates
 - transmission paths
 - hydro spill and wind "feathering"
- Access to energy market for balancing and optimization
 - pre-schedule and real-time markets

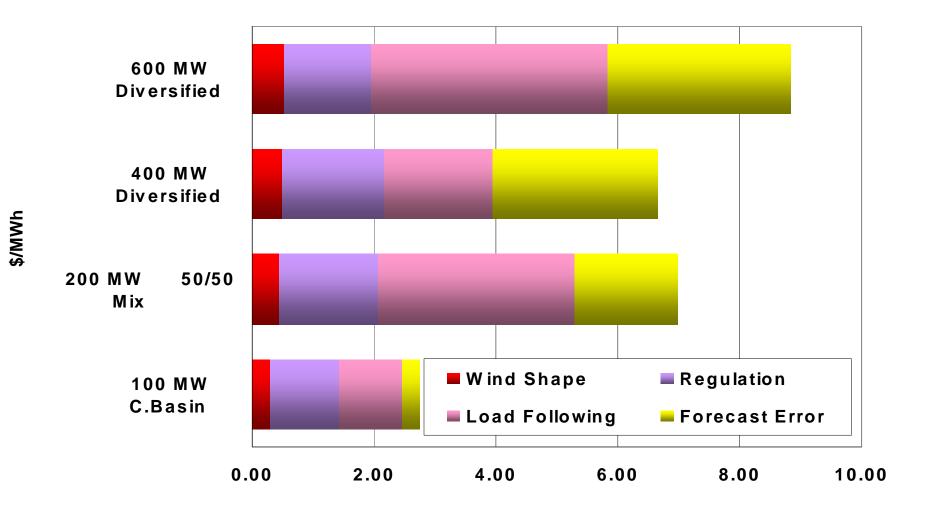
Methodology Overview (Cont.)

• Run Model With and Without Wind Variability

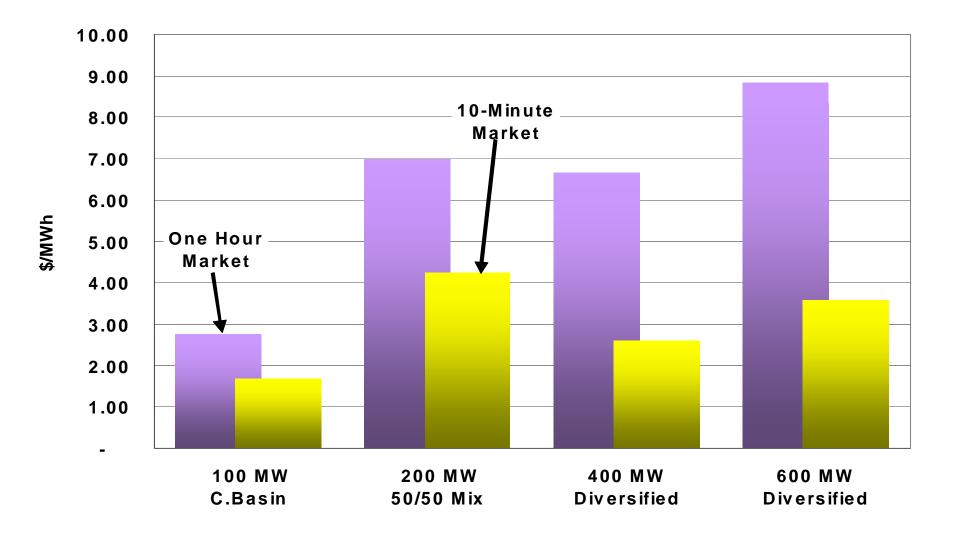

- Over same historical timeframe (2002-04)
 - using actual loads
 - wind is priced in each hour at market
 - eliminates potential for wind shape to bias result
 - carry additional reserves in "With Wind" case

Compare System Values

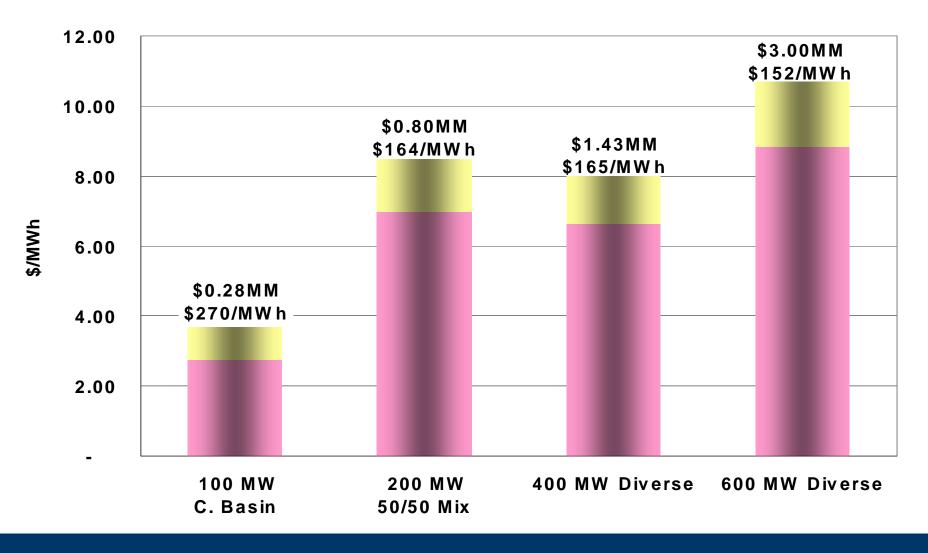
- Change is spread over wind deliveries to arrive at an integration cost
 - per MWh (absolute or % of market price)
 - per kW-month (absolute or % of market price)



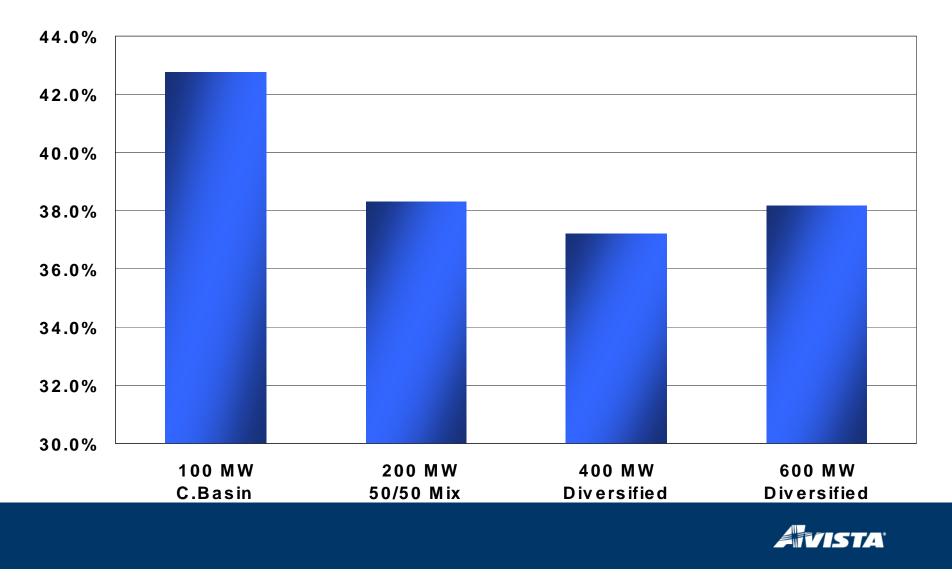
Pre-Schedule Wind Model Delivery Schematic



Wind Integration Cost Components



Impact of Shorter Market Time Step



Benefit of Wind Feathering

Hydro Re-Dispatch Costs

Next Steps/Modeling Enhancements

• Update With Latest Data

- Augment limited NW data sets with data from outside the NW
- Update to data through 2006
- Use NPCC/BPA 3-Tier meso-scale wind data when available
- Evaluate Regulation, Load Following, Forecast Errors Using Root-Mean-Squares Method
- Search For Better Wind Forecasting Algorithms
- Enhance Start-Up Cost Logic For Thermal Plants
- Model Reserve Capabilities of Coal-Fired Plants
- Evaluate Real-Time to Pre-Schedule Relationships

Other Integration Study Results

Wind Integration Study Costs (\$US/MWh)					
Entity	Low	High	Entity	Low	High
APS 2007	0.91	4.08	Maritimes (E. Canada) 2007	3.66	6.13
Avista 2007	2.75	9.00	Minnesota 2004	2.25	5.25
BPA 2007	1.90	4.60	Minnesota 2006	3.45	5.10
BPA 2008			Nordic 2004	1.50	3.15
California	0.45		Norway (Greennet)	0.30	0.68
Colorado 2007	4.00	8.00	PacifiCorp 2006	1.86	5.94
Denmark (Greennet)	0.60		Puget Sound Energy	3.73	4.06
Finland (Greennet)	0.30	2.10	Sweden (Greennet)	0.38	0.90
Finland 2004	3.00	4.50	UK 2002	5.10	6.08
Germany (Greennet)	3.23		UK 2007	2.10	5.10
Idaho Power 2007	6.00	9.00	WeEnergies 2003	1.90	2.90
Ireland	0.38	0.75			

The End

Defining Wind Integration in the 2009 Integrated Resource Plan

Clint Kalich Manager of Resource Planning & Power Supply Analyses clint.kalich@avistacorp.com May 22, 2009

Agenda

10:00 Introductions

10:15 Wind Integration and the 2009 IRP

11:15 Questions/Suggestions for Further Work

12:00 Adjourn

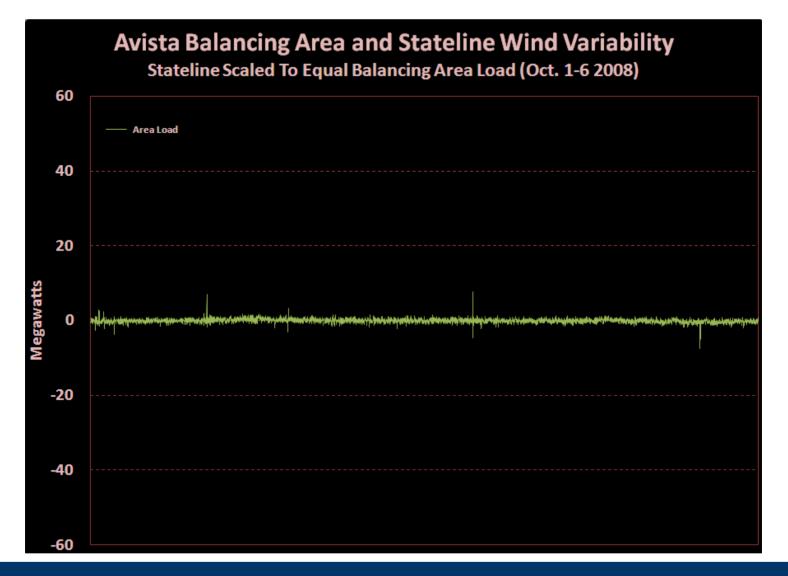
Defining Wind Integration and Its Costs

2009 Integrated Resource Plan

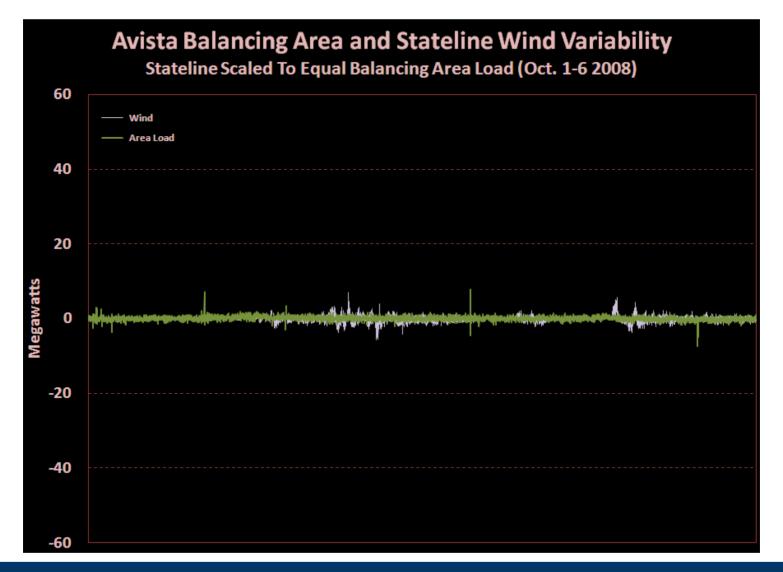
Outline of Presentation

- Defining Wind Integration
- Wind Integration Cost Components
- Preferred Resource Strategy Model (PRiSM)
 - What is PRiSM?
 - The Efficient Frontier
 - covers timeframe from end of regulation up to next ramp (1 hour in WECC)
 - Wind modeling in 2009 IRP
 - Recent enhancements to PRiSM
- Questions

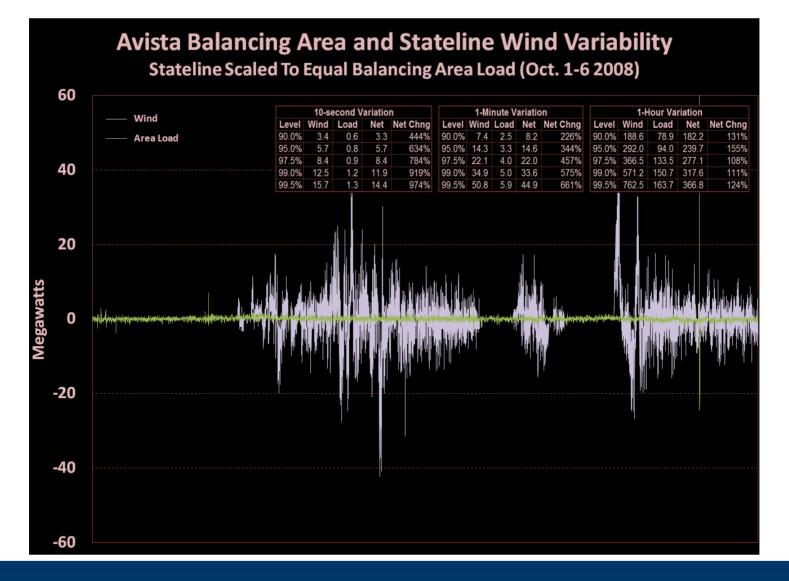
Defining Wind Integration

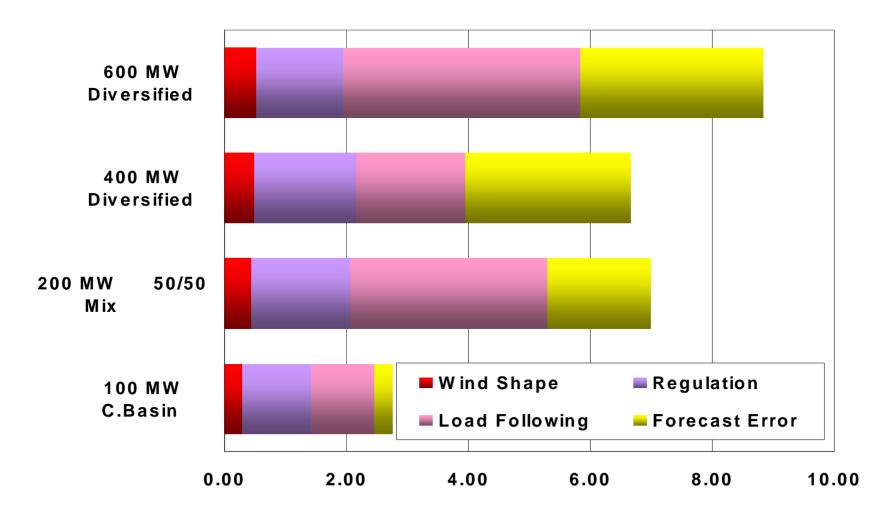

- Incremental Reserves (Avista Study Method)
 - Regulation (<1 minute)</p>
 - Load following
 - covers timeframe from end of regulation up to next ramp (1 hour in WECC)
 - Forecast error
 - difference between forecast and actual generation

• Other Things Sometimes Called Wind Integration


- Shape of delivered energy
- Fuel savings from wind operations
- Capital costs
- Environmental attributes

Bottom Line: Be Careful When Assuming 2 Studies are "Apples-to-Apples"

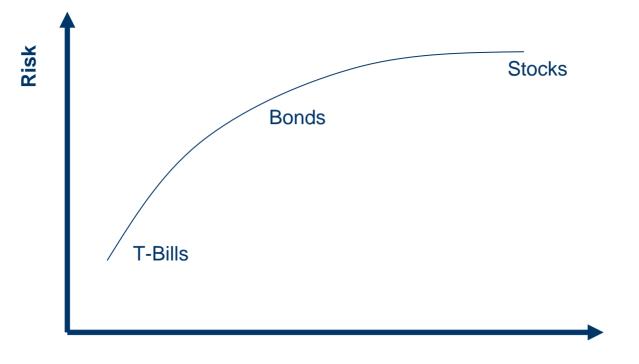




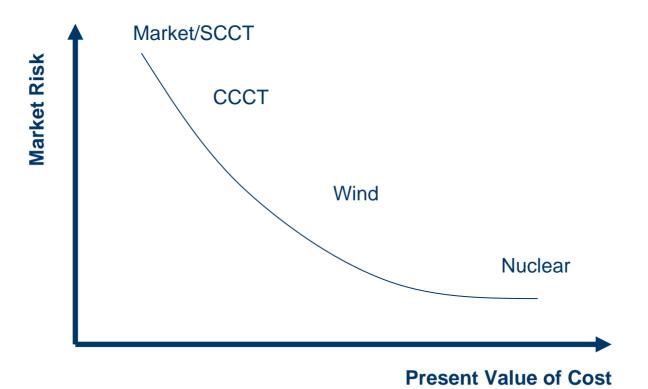
Wind Integration Cost Components

PRISM (Preferred Resource Strategy Model)

2009 Integrated Resource Plan


What is PRiSM?

- Preferred Resource Strategy Model
 - Selects resource & conservation opportunities on an optimal cost and risk basis using a linear program (What's Best!)
- Objective function is to either select resource strategies to meet our energy/capacity/market/RPS/CO₂ requirements on a least cost and/or least risk basis
- Cost is measured by the present value of incremental fuel & O&M expenses and new capital investment
- Risk is measured by the variation in fuel, emissions, load, wind, forced outages, and variable O&M expenses in years 2019/29


Efficient Frontier- An Introduction 1 (stock portfolios)

Expected Return

Efficient Frontier- An Introduction (Avista IRP)

EVISTA

Wind Modeling in 2009 IRP

- Various Wind Resource Options
 - Small wind (DG)
 - Northwest Wind (Tier 1 and Tier 2)
 - Montana Wind
 - Reardan Wind Project

Location	Capital 2009\$ (includes AFUDC)	Fixed O&M (\$ per kW/Yr)	Capacity Factor
Reardan	2,183	45	30.0%
Columbia Basin (tier 1)	2,262	50	33.0%
Columbia Basin (tier 2)	2,262	50	26.4%
Montana	2,262	50	37.0%
Small Scale	3,343	50	20.0%
Off Shore	5,573	95	45.0%

- Wind Integration Cost of \$3.50 per MWh (2009\$)
 - Reflective of low penetration rate presently on system
 - Rates will rise as penetration increases

New Enhancements

- Conservation measures are selected in model rather than an input (only measures that are between \$xx/MWh & \$xxx/MWh)
- Resources are now added in increments rather than any amount
- Use more precise method to estimate frontier curve
- Meets both summer & winter capacity requirements
- Ability to retire resources
- Ability to account for greenhouse gas caps
- More accurate ability to take into account post IRP time period

Questions/Open Discussion

2009

Electric Integrated Resource Plan

Appendix B – 2009 Integrated Resource Planning Work Plan

August 31, 2009

2009 Integrated Resource Planning Work Plan

This Work Plan is provided in response to the WUTC's Integrated Resource Planning (IRP) rules (WAC 480-100-238). It outlines the process Avista will follow to develop its 2009 Integrated Resource Plan to be filed with Washington and Idaho Commissions by August 31, 2009. Avista uses a public process to obtain technical expertise and guidance throughout the planning period through a series of public Technical Advisory Committee (TAC) meetings. The first of these meetings was held on May 14, 2008.

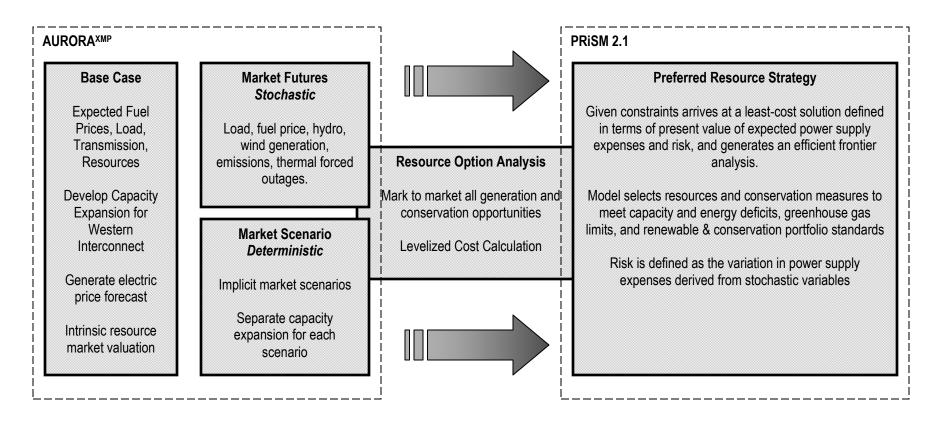
The 2009 Integrated Resource Plan process will be similar to those used to produce the previous three published plans. Avista will be using AURORA^{xmp} for electric market forecasting, resource valuation, and for conducting Monte-Carlo style risk analyses. Results from AURORA^{xmp} will be used to select the Preferred Resource Strategy using the proprietary PRiSM 2.0 model. This tool fills future capacity and energy deficits using an efficient frontier approach to evaluate quantitative portfolio risk versus portfolio cost while accounting for environmental legislation. Qualitative risk will be evaluated in a separate analysis. The process to identify the Preferred Resource Strategy is shown in Exhibit 1 and the process time line is shown in Exhibit 2.

For this plan, Avista intends to use more detailed and site-specific resource assumptions to be determined by an ongoing process to evaluate renewable, gas, and other supply-side resources. This plan will also study environmental costs, sustained peaking requirements, and detailed analyses of demand-side management programs. This IRP will develop a strategy that meets or exceeds renewable portfolio standards and greenhouse gas emissions legislation.

It is Avista's intention to "stress" or test the Preferred Resource Strategy against a variety of scenarios and stochastic futures. The TAC will be an important factor to determine the underlying assumptions used in the scenarios and futures. The IRP process is a very technical and data intensive process; public comments are welcome and will require input in a timely manner for appropriate inclusion into the process so the plan can be submitted according to the contemplated schedule.

Tentative timeline for public Technical Advisory Committee meetings:

- May 14, 2008 Load & resource balance, climate change, loss of load probability analysis, work plan, and analytical process changes
- August 27, 2008 Risk and resource assumptions, scenarios and futures, and demand side management
- October 22, 2008 Load forecast, electric and gas price forecasts, load & resource forecast balance, and transmission cost studies
- January 28, 2009 Review of final modeling and assumptions, and draft PRS
- March 25, 2009 Review of scenarios and futures, and portfolio analysis
- April 22, 2009 Review of final PRS and action items
- June 24, 2009 Review of the 2009 IRP


2009 Electric IRP Draft Outline

This section provides a draft outline of the major sections in the 2009 Electric IRP. This outline will be updated as IRP studies are completed and input from the Technical Advisory Committee has been received.

- 1. Executive Summary
- 2. Introduction and Stakeholder Involvement
- 3. Loads and Resources
 - a. Economic Conditions
 - b. Load Forecast
 - c. Forecast Scenarios
 - d. Supply Side Resources
 - e. Reserve Margins
 - f. Resource Requirements
- 4. Demand Side Management
- 5. Environmental Issues
- 6. Transmission Planning
- 7. Modeling Approach
 - a. Assumptions and Inputs
 - b. Risk Modeling
 - c. Resource Alternatives
 - d. The PRiSM Model
- 8. Market Modeling Approach
 - a. Futures
 - b. Scenarios
 - c. Avoided Costs
- 9. Preferred Resource Strategy & Stress Analysis
- 10. Action Items

Exhibit 1: Avista's 2009 IRP Modeling Process

Exhibit 2: Avista's 2009 IRP Timeline

<u>Task</u>	Target Date
Preferred Resource Strategy (PRS)	
Finalize load forecast	7/31/2008
Identify regional resource options for electric market price forecast	8/15/2008
Identify Avista's supply & conservation resource options	8/31/2008
Update AURORA ^{xmp} database for electric market price forecast	9/29/2008
Select natural gas price forecast	9/29/2008
Finalize deterministic base case	10/17/2008
Finalize datasets/statistics variables for risk studies	10/31/2008
Draft transmission study due	10/31/2008
Demand-side management load shapes input into AURORA	10/31/2008
Base case stochastic study complete	11/30/2008
Finalize PRiSM 2.1 model	12/19/2008
Final transmission study due	12/31/2008
Develop efficient frontier & PRS	1/30/2009
Simulation of risk studies "futures" complete	2/10/2009
Simulate market scenarios in AURORA ^{xmp}	2/27/2009
Evaluate resource strategies against market futures & scenarios	3/20/2009
Present to TAC preliminary study and PRS	3/31/2009

Writing Tasks

File 2009 integrated resource planning work plan	8/30/2008
Prepare report and appendix outline	9/15/2008
Prepare text drafts	4/15/2009
Prepare charts and tables	4/15/2009
Internal draft released	5/1/2009
External draft released	6/15/2009
Final editing and printing	8/1/2009
Final report distribution	8/30/2009

2009

Electric Integrated Resource Plan

Appendix C – Residential and Non-residential Load Profiles

August 31, 2009

Load Shape	Description
1	Res Space Heat
2	Res AC
3	Res Lighting
4	Res Refrigeration
5	Res Water Heating
6	Res Dishwasher
7	Res Washer Dryer
8	Res Misc
9	Res Furnace Fan
10	NonRes Comp Air
11	NonRes Cooking
12	NonRes Space Cooling
13	NonRes Ext Lighting
14	NonRes Space Heating
15	NonRes Water Heating
16	NonRes Int Lighting
17	NonRes Misc
18	NonRes Motors
19	NonRes Office Equipment
20	NonRes Process
21	NonRes Refrigeration
22	NonRes Ventillation
23	Flat
24	NonRes Space Heat/Cool
25	NonRes Space Heat/Cool/Vent
26	NonRes LEED
27	NonRes Refrigerated Warehouses
28	Traffic Signal Red
29	Traffic Signal Green
30	Renewables
31	Multifamily Market Transformation
32	Res Heat/Cool
33	Res Energy Star Homes

2009

Electric Integrated Resource Plan

Appendix D – DSM Concepts Reaching the Evaluation Stage

August 31, 2009

Segment Non-Res Non-Res Non-Res	Measure Anti-Sweat Heat Controls Auto-Closers for Coolers and Freezers Built-Up HVAC Controls Optimization-Anchor-ElecHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Anchor-GasHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Anchor-HtPmpHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Big Box-ElecHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Big Box-GasHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Big Box-HtPmpHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-High End-ElecHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-High End-GasHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-High End-HtPmpHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Hospital-ElecHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Hospital-GasHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Hospital-HtPmpHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-K-12-ElecHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-K-12-GasHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-K-12-HtPmpHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Large Off-ElecHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Large Off-GasHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Large Off-HtPmpHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Lodging-ElecHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Lodging-GasHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Lodging-HtPmpHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Medium Off-ElecHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Medium Off-GasHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Medium Off-HtPmpHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-MIniMart-ElecHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-MIniMart-GasHt-Retro

Non-Res	Built-Up HVAC Controls Optimization-Other-ElecHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Other-GasHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-OtherHealth-ElecHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-OtherHealth-GasHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-OtherHealth-HtPmpHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Other-HtPmpHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Restaurant-ElecHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Restaurant-GasHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Restaurant-HtPmpHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Small Box-ElecHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Small Box-GasHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Small Box-HtPmpHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Small Off-ElecHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Small Off-GasHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Small Off-HtPmpHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Supermarket-ElecHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Supermarket-GasHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Supermarket-HtPmpHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-University-ElecHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-University-GasHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-University-HtPmpHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Warehouse-ElecHt-Retro
Non-Res	Built-Up HVAC Controls Optimization-Warehouse-GasHt-Retro
Non-Res Non-Res Non-Res	Built-Up HVAC Controls Optimization-Warehouse-HtPmpHt-Retro Controls Commission-New EE Ice Maker from FEMP Baseline
Non-Res	EE Reach-In Freezer from E-Star Baseline
Non-Res	EE Reach-In Refrigerator from E-Star Baseline
Non-Res	EE Vending Machine from Average Baseline
Non-Res	EE Vending Machine from E-Star Baseline
Non-Res	Evaporative fan controller on walk-in
Non-Res	FQ6T12 to T8HP_Anchor_New_GasHt

Non-Res F96T12 to T8HP-Anchor-New-GasHt

- Non-Res F96T12 to T8HP-Anchor-Retro-ElecHt-V1987_1994
- Non-Res F96T12 to T8HP-Anchor-Retro-ElecHt-V1995_2001
- Non-Res F96T12 to T8HP-Anchor-Retro-GasHt-PRE1987
- Non-Res F96T12 to T8HP-Anchor-Retro-GasHt-V1987_1994
- Non-Res F96T12 to T8HP-Anchor-Retro-GasHt-V1995_2001
- Non-Res F96T12 to T8HP-Anchor-Retro-HtPmpHt-PRE1987
- Non-Res F96T12 to T8HP-Anchor-Retro-HtPmpHt-V1987_1994
- Non-Res F96T12 to T8HP-Anchor-Retro-HtPmpHt-V1995_2001
- Non-Res F96T12 to T8HP-Big Box-Retro-ElecHt-V1987_1994
- Non-Res F96T12 to T8HP-Big Box-Retro-ElecHt-V1995_2001
- Non-Res F96T12 to T8HP-Big Box-Retro-GasHt-V1987_1994
- Non-Res F96T12 to T8HP-Big Box-Retro-GasHt-V1995_2001
- Non-Res F96T12 to T8HP-Big Box-Retro-HtPmpHt-V1987_1994
- Non-Res F96T12 to T8HP-Big Box-Retro-HtPmpHt-V1995_2001
- Non-Res F96T12 to T8HP-High End-Retro-ElecHt-V1987_1994
- Non-Res F96T12 to T8HP-High End-Retro-GasHt-V1987_1994
- Non-ResF96T12 to T8HP-High End-Retro-HtPmpHt-V1987_1994Non-ResF96T12 to T8HP-Hospital-New-GasHt
- Non-Res F96T12 to T8HP-Hospital-Retro-ElecHt-PRE1987
- Non-Res F96T12 to T8HP-Hospital-Retro-ElecHt-V1987_1994
- Non-Res F96T12 to T8HP-Hospital-Retro-ElecHt-V1995_2001
- Non-Res F96T12 to T8HP-Hospital-Retro-GasHt-PRE1987
- Non-Res F96T12 to T8HP-Hospital-Retro-GasHt-V1987_1994
- Non-Res F96T12 to T8HP-Hospital-Retro-GasHt-V1995_2001
- Non-Res F96T12 to T8HP-Hospital-Retro-HtPmpHt-PRE1987
- Non-Res F96T12 to T8HP-Hospital-Retro-HtPmpHt-V1987_1994
- Non-Res F96T12 to T8HP-Hospital-Retro-HtPmpHt-V1995_2001
- Non-Res F96T12 to T8HP-K-12-Retro-ElecHt-V1995_2001

Non-Res	F96T12 to T8HP-K-12-Retro-GasHt-V1995_2001
Non-Res	F96T12 to T8HP-K-12-Retro-HtPmpHt-V1995_2001
Non-Res	F96T12 to T8HP-Large Off-Retro-ElecHt-PRE1987
Non-Res	F96T12 to T8HP-Large Off-Retro-ElecHt-V1995_2001
Non-Res	F96T12 to T8HP-Large Off-Retro-GasHt-PRE1987
Non-Res	F96T12 to T8HP-Large Off-Retro-GasHt-V1995_2001
Non-Res	F96T12 to T8HP-Large Off-Retro-HtPmpHt-PRE1987
Non-Res Non-Res	F96T12 to T8HP-Large Off-Retro-HtPmpHt-V1995_2001 F96T12 to T8HP-Lodging-New-GasHt
Non-Res	F96T12 to T8HP-Lodging-Retro-ElecHt-PRE1987
Non-Res	F96T12 to T8HP-Lodging-Retro-ElecHt-V1987_1994
Non-Res	F96T12 to T8HP-Lodging-Retro-ElecHt-V1995_2001
Non-Res	F96T12 to T8HP-Lodging-Retro-GasHt-PRE1987
Non-Res	F96T12 to T8HP-Lodging-Retro-GasHt-V1987_1994
Non-Res	F96T12 to T8HP-Lodging-Retro-GasHt-V1995_2001
Non-Res	F96T12 to T8HP-Lodging-Retro-HtPmpHt-PRE1987
Non-Res	F96T12 to T8HP-Lodging-Retro-HtPmpHt-V1987_1994
Non-Res	F96T12 to T8HP-Lodging-Retro-HtPmpHt-V1995_2001
Non-Res	F96T12 to T8HP-Medium Off-Retro-ElecHt-V1995_2001
Non-Res	F96T12 to T8HP-Medium Off-Retro-GasHt-V1995_2001
Non-Res Non-Res	F96T12 to T8HP-Medium Off-Retro-HtPmpHt-V1995_2001 F96T12 to T8HP-MIniMart-New-GasHt
Non-Res	F96T12 to T8HP-MIniMart-Retro-ElecHt-V1995_2001
Non-Res	F96T12 to T8HP-MIniMart-Retro-GasHt-V1995_2001
Non-Res	F96T12 to T8HP-MIniMart-Retro-HtPmpHt-V1995_2001
Non-Res	F96T12 to T8HP-OtherHealth-Retro-ElecHt-V1995_2001
Non-Res	F96T12 to T8HP-OtherHealth-Retro-GasHt-V1995_2001
Non-Res Non-Res	F96T12 to T8HP-OtherHealth-Retro-HtPmpHt-V1995_2001 F96T12 to T8HP-Other-Retro-ElecHt-PRE1987
Non-Res	F96T12 to T8HP-Other-Retro-ElecHt-V1987_1994

Non-Res Non-Res	F96T12 to T8HP-Other-Retro-ElecHt-V1995_2001 F96T12 to T8HP-Other-Retro-GasHt-PRE1987
Non-Res	F96T12 to T8HP-Other-Retro-GasHt-V1987_1994
Non-Res	F96T12 to T8HP-Other-Retro-GasHt-V1995_2001
Non-Res	F96T12 to T8HP-Other-Retro-HtPmpHt-PRE1987
Non-Res	F96T12 to T8HP-Other-Retro-HtPmpHt-V1987_1994
Non-Res Non-Res	F96T12 to T8HP-Other-Retro-HtPmpHt-V1995_2001 F96T12 to T8HP-Restaurant-New-GasHt
Non-Res	F96T12 to T8HP-Restaurant-Retro-ElecHt-V1995_2001
Non-Res	F96T12 to T8HP-Restaurant-Retro-GasHt-V1995_2001
Non-Res Non-Res	F96T12 to T8HP-Restaurant-Retro-HtPmpHt-V1995_2001 F96T12 to T8HP-Small Box-New-GasHt
Non-Res	F96T12 to T8HP-Small Box-Retro-ElecHt-PRE1987
Non-Res	F96T12 to T8HP-Small Box-Retro-ElecHt-V1987_1994
Non-Res	F96T12 to T8HP-Small Box-Retro-ElecHt-V1995_2001
Non-Res	F96T12 to T8HP-Small Box-Retro-GasHt-PRE1987
Non-Res	F96T12 to T8HP-Small Box-Retro-GasHt-V1987_1994
Non-Res	F96T12 to T8HP-Small Box-Retro-GasHt-V1995_2001
Non-Res	F96T12 to T8HP-Small Box-Retro-HtPmpHt-PRE1987
Non-Res	F96T12 to T8HP-Small Box-Retro-HtPmpHt-V1987_1994
Non-Res Non-Res	F96T12 to T8HP-Small Box-Retro-HtPmpHt-V1995_2001 F96T12 to T8HP-Small Off-New-GasHt
Non-Res	F96T12 to T8HP-Small Off-Retro-ElecHt-V1987_1994
Non-Res	F96T12 to T8HP-Small Off-Retro-GasHt-V1987_1994
Non-Res Non-Res	F96T12 to T8HP-Small Off-Retro-HtPmpHt-V1987_1994 F96T12 to T8HP-Supermarket-New-GasHt
Non-Res	F96T12 to T8HP-Supermarket-Retro-ElecHt-V1995_2001
Non-Res	F96T12 to T8HP-Supermarket-Retro-GasHt-V1995_2001
Non-Res	F96T12 to T8HP-Supermarket-Retro-HtPmpHt-V1995_2001
Non-Res	F96T12 to T8HP-University-Retro-ElecHt-PRE1987
Non-Res	F96T12 to T8HP-University-Retro-ElecHt-V1995_2001

Non-Res	F96T12 to T8HP-University-Retro-GasHt-PRE1987
Non-Res	F96T12 to T8HP-University-Retro-GasHt-V1995_2001
Non-Res	F96T12 to T8HP-University-Retro-HtPmpHt-PRE1987
Non-Res Non-Res	F96T12 to T8HP-University-Retro-HtPmpHt-V1995_2001 F96T12 to T8HP-Warehouse-New-GasHt
Non-Res	F96T12 to T8HP-Warehouse-Retro-ElecHt-PRE1987
Non-Res	F96T12 to T8HP-Warehouse-Retro-ElecHt-V1987_1994
Non-Res	F96T12 to T8HP-Warehouse-Retro-ElecHt-V1995_2001
Non-Res	F96T12 to T8HP-Warehouse-Retro-GasHt-PRE1987
Non-Res	F96T12 to T8HP-Warehouse-Retro-GasHt-V1987_1994
Non-Res	F96T12 to T8HP-Warehouse-Retro-GasHt-V1995_2001
Non-Res	F96T12 to T8HP-Warehouse-Retro-HtPmpHt-PRE1987
Non-Res	F96T12 to T8HP-Warehouse-Retro-HtPmpHt-V1987_1994
Non-Res	F96T12 to T8HP-Warehouse-Retro-HtPmpHt-V1995_2001
Non-Res	F96T12VHO to T8HP-4-K-12-Retro-ElecHt-PRE1987
Non-Res	F96T12VHO to T8HP-4-K-12-Retro-ElecHt-V1987_1994
Non-Res	F96T12VHO to T8HP-4-K-12-Retro-GasHt-PRE1987
Non-Res	F96T12VHO to T8HP-4-K-12-Retro-GasHt-V1987_1994
Non-Res	F96T12VHO to T8HP-4-K-12-Retro-HtPmpHt-PRE1987
Non-Res	F96T12VHO to T8HP-4-K-12-Retro-HtPmpHt-V1987_1994
Non-Res	F96T12VHO to T8HP-4-Large Off-Retro-ElecHt-V1987_1994
Non-Res	F96T12VHO to T8HP-4-Large Off-Retro-GasHt-V1987_1994
Non-Res	F96T12VHO to T8HP-4-Large Off-Retro-HtPmpHt-V1987_1994
Non-Res	F96T12VHO to T8HP-4-Medium Off-Retro-ElecHt-PRE1987
Non-Res	F96T12VHO to T8HP-4-Medium Off-Retro-ElecHt-V1987_1994
Non-Res	F96T12VHO to T8HP-4-Medium Off-Retro-GasHt-PRE1987
Non-Res	F96T12VHO to T8HP-4-Medium Off-Retro-GasHt-V1987_1994
Non-Res	F96T12VHO to T8HP-4-Medium Off-Retro-HtPmpHt-PRE1987
Non-Res	F96T12VHO to T8HP-4-Medium Off-Retro-HtPmpHt-V1987_1994

Non-Res	F96T12VHO to T8HP-4-MIniMart-Retro-ElecHt-V1987_1994
Non-Res	F96T12VHO to T8HP-4-MIniMart-Retro-GasHt-V1987_1994
Non-Res	F96T12VHO to T8HP-4-MIniMart-Retro-HtPmpHt-V1987_1994
Non-Res	F96T12VHO to T8HP-4-Small Off-Retro-ElecHt-PRE1987
Non-Res	F96T12VHO to T8HP-4-Small Off-Retro-ElecHt-V1987_1994
Non-Res	F96T12VHO to T8HP-4-Small Off-Retro-GasHt-PRE1987
Non-Res	F96T12VHO to T8HP-4-Small Off-Retro-GasHt-V1987_1994
Non-Res	F96T12VHO to T8HP-4-Small Off-Retro-HtPmpHt-PRE1987
Non-Res	F96T12VHO to T8HP-4-Small Off-Retro-HtPmpHt-V1987_1994
Non-Res	F96T12VHO to T8HP-4-Supermarket-Retro-ElecHt-V1987_1994
Non-Res	F96T12VHO to T8HP-4-Supermarket-Retro-GasHt-V1987_1994
Non-Res	F96T12VHO to T8HP-4-Supermarket-Retro-HtPmpHt-V1987_1994
Non-Res	F96T12VHO to T8HP-4-Warehouse-Retro-ElecHt-PRE1987
Non-Res	F96T12VHO to T8HP-4-Warehouse-Retro-ElecHt-V1987_1994
Non-Res	F96T12VHO to T8HP-4-Warehouse-Retro-GasHt-PRE1987
Non-Res	F96T12VHO to T8HP-4-Warehouse-Retro-GasHt-V1987_1994
Non-Res	F96T12VHO to T8HP-4-Warehouse-Retro-HtPmpHt-PRE1987
Non-Res Non-Res Non-Res Non-Res	F96T12VHO to T8HP-4-Warehouse-Retro-HtPmpHt-V1987_1994 Floating Head Pressure Controller Glass Doors on Open Display Cases (LT) Glass Doors on Open Display Cases (MT)
Non-Res	INC to CFL-Hospital-New-ElecHt
Non-Res	INC to CFL-Hospital-New-GasHt
Non-Res	INC to CFL-Hospital-New-HtPmpHt
Non-Res	INC to CFL-Hospital-Retro-ElecHt-PRE1987
Non-Res	INC to CFL-Hospital-Retro-Electite-1121994
Non-Res	
	INC to CFL-Hospital-Retro-ElecHt-V1995_2001 INC to CFL-Hospital-Retro-GasHt-PRE1987
Non-Res Non-Res	INC to CFL-Hospital-Retro-GasHt-V1987 1994
Non-Res	
	INC to CFL-Hospital-Retro-GasHt-V1995_2001
Non-Res	INC to CFL-Hospital-Retro-HtPmpHt-PRE1987
Non-Res	INC to CFL-Hospital-Retro-HtPmpHt-V1987_1994
Non-Res	INC to CFL-Hospital-Retro-HtPmpHt-V1995_2001
Non-Res	INC to CFL-K-12-New-ElecHt
Non-Res	INC to CFL-K-12-New-GasHt
Non-Res	INC to CFL-K-12-New-HtPmpHt
Non-Res	INC to CFL-K-12-Retro-ElecHt-PRE1987

Non-Res INC to CFL-K-12-Retro-ElecHt-V1987_1994 Non-Res INC to CFL-K-12-Retro-ElecHt-V1995 2001 Non-Res INC to CFL-K-12-Retro-GasHt-PRE1987 Non-Res INC to CFL-K-12-Retro-GasHt-V1987_1994 Non-Res INC to CFL-K-12-Retro-GasHt-V1995_2001 INC to CFL-K-12-Retro-HtPmpHt-PRE1987 Non-Res Non-Res INC to CFL-K-12-Retro-HtPmpHt-V1987_1994 Non-Res INC to CFL-K-12-Retro-HtPmpHt-V1995_2001 Non-Res INC to CFL-Large Off-New-ElecHt Non-Res INC to CFL-Large Off-New-GasHt Non-Res INC to CFL-Large Off-New-HtPmpHt INC to CFL-Large Off-Retro-ElecHt-PRE1987 Non-Res Non-Res INC to CFL-Large Off-Retro-ElecHt-V1987_1994 Non-Res INC to CFL-Large Off-Retro-ElecHt-V1995_2001 Non-Res INC to CFL-Large Off-Retro-GasHt-PRE1987 Non-Res INC to CFL-Large Off-Retro-GasHt-V1987_1994 Non-Res INC to CFL-Large Off-Retro-GasHt-V1995_2001 Non-Res INC to CFL-Large Off-Retro-HtPmpHt-PRE1987 INC to CFL-Large Off-Retro-HtPmpHt-V1987_1994 Non-Res Non-Res INC to CFL-Large Off-Retro-HtPmpHt-V1995_2001 Non-Res INC to CFL-Lodging-New-ElecHt Non-Res INC to CFL-Lodging-New-GasHt Non-Res INC to CFL-Lodging-New-HtPmpHt Non-Res INC to CFL-Lodging-Retro-ElecHt-PRE1987 INC to CFL-Lodging-Retro-ElecHt-V1987_1994 Non-Res Non-Res INC to CFL-Lodging-Retro-ElecHt-V1995_2001 Non-Res INC to CFL-Lodging-Retro-GasHt-PRE1987 Non-Res INC to CFL-Lodging-Retro-GasHt-V1987_1994 Non-Res INC to CFL-Lodging-Retro-GasHt-V1995_2001 Non-Res INC to CFL-Lodging-Retro-HtPmpHt-PRE1987 Non-Res INC to CFL-Lodging-Retro-HtPmpHt-V1987_1994 Non-Res INC to CFL-Lodging-Retro-HtPmpHt-V1995_2001 Non-Res INC to CFL-Medium Off-New-ElecHt Non-Res INC to CFL-Medium Off-New-GasHt Non-Res INC to CFL-Medium Off-New-HtPmpHt Non-Res INC to CFL-Medium Off-Retro-ElecHt-PRE1987 Non-Res INC to CFL-Medium Off-Retro-ElecHt-V1987_1994 Non-Res INC to CFL-Medium Off-Retro-ElecHt-V1995 2001 Non-Res INC to CFL-Medium Off-Retro-GasHt-PRE1987 Non-Res INC to CFL-Medium Off-Retro-GasHt-V1987_1994 Non-Res INC to CFL-Medium Off-Retro-GasHt-V1995_2001 Non-Res INC to CFL-Medium Off-Retro-HtPmpHt-PRE1987 Non-Res INC to CFL-Medium Off-Retro-HtPmpHt-V1987_1994

Non-Res Non-Res Non-Res Non-Res Non-Res	INC to CFL-Medium Off-Retro-HtPmpHt-V1995_2001 INC to CFL-OtherHealth-New-ElecHt INC to CFL-OtherHealth-New-GasHt INC to CFL-OtherHealth-New-HtPmpHt INC to CFL-OtherHealth-Retro-ElecHt-PRE1987
Non-Res	INC to CFL-OtherHealth-Retro-ElecHt-V1987_1994
Non-Res Non-Res	INC to CFL-OtherHealth-Retro-ElecHt-V1995_2001 INC to CFL-OtherHealth-Retro-GasHt-PRE1987
Non-Res	INC to CFL-OtherHealth-Retro-GasHt-V1987_1994
Non-Res	INC to CFL-OtherHealth-Retro-GasHt-V1995_2001
Non-Res	INC to CFL-OtherHealth-Retro-HtPmpHt-PRE1987
Non-Res	INC to CFL-OtherHealth-Retro-HtPmpHt-V1987_1994
Non-Res	INC to CFL-OtherHealth-Retro-HtPmpHt-V1995_2001
Non-Res	INC to CFL-Other-New-ElecHt
Non-Res	INC to CFL-Other-New-GasHt
Non-Res	INC to CFL-Other-New-HtPmpHt
Non-Res	INC to CFL-Other-Retro-ElecHt-PRE1987
Non-Res	INC to CFL-Other-Retro-ElecHt-V1995_2001
Non-Res	INC to CFL-Other-Retro-GasHt-PRE1987
Non-Res	INC to CFL-Other-Retro-GasHt-V1995_2001
Non-Res	INC to CFL-Other-Retro-HtPmpHt-PRE1987
Non-Res	INC to CFL-Other-Retro-HtPmpHt-V1995 2001
Non-Res	INC to CFL-Restaurant-New-ElecHt
Non-Res	INC to CFL-Restaurant-New-GasHt
Non-Res	INC to CFL-Restaurant-New-HtPmpHt
Non-Res	INC to CFL-Restaurant-Retro-ElecHt-PRE1987
Non-Res	INC to CFL-Restaurant-Retro-ElecHt-V1987_1994
Non-Res	INC to CFL-Restaurant-Retro-ElecHt-V1995 2001
Non-Res	INC to CFL-Restaurant-Retro-GasHt-PRE1987
Non-Res	INC to CFL-Restaurant-Retro-GasHt-V1987_1994
Non-Res	INC to CFL-Restaurant-Retro-GasHt-V1995_2001
Non-Res	INC to CFL-Restaurant-Retro-HtPmpHt-PRE1987
Non-Res	INC to CFL-Restaurant-Retro-HtPmpHt-V1987_1994
Non-Res	INC to CFL-Restaurant-Retro-HtPmpHt-V1995_2001
Non-Res	INC to CFL-Small Off-New-ElecHt
Non-Res	INC to CFL-Small Off-New-GasHt
Non-Res	INC to CFL-Small Off-New-HtPmpHt
Non-Res	INC to CFL-Small Off-Retro-ElecHt-PRE1987
Non-Res	INC to CFL-Small Off-Retro-ElecHt-V1987_1994
Non-Res	INC to CFL-Small Off-Retro-ElecHt-V1995_2001

Non-Res	INC to CFL-Small Off-Retro-GasHt-PRE1987
Non-Res	INC to CFL-Small Off-Retro-GasHt-V1987_1994
Non-Res	INC to CFL-Small Off-Retro-GasHt-V1995 2001
Non-Res	INC to CFL-Small Off-Retro-HtPmpHt-PRE1987
Non-Res	INC to CFL-Small Off-Retro-HtPmpHt-V1987_1994
Non-Res	INC to CFL-Small Off-Retro-HtPmpHt-V1995 2001
Non-Res	INC to CFL-University-Retro-ElecHt-PRE1987
Non-Res	INC to CFL-University-Retro-ElecHt-V1995_2001
Non-Res	INC to CFL-University-Retro-GasHt-PRE1987
Non-Res	INC to CFL-University-Retro-GasHt-V1995_2001
Non-Res	INC to CFL-University-Retro-HtPmpHt-PRE1987
Non-Res Non-Res	INC to CFL-University-Retro-HtPmpHt-V1995_2001 INC to CFL-Warehouse-New-ElecHt
Non-Res	INC to CFL-Warehouse-New-GasHt
Non-Res	INC to CFL-Warehouse-New-HtPmpHt
Non-Res	INC to CFL-Warehouse-Retro-ElecHt-V1995_2001
Non-Res	INC to CFL-Warehouse-Retro-GasHt-V1995_2001
Non-Res	INC to CFL-Warehouse-Retro-HtPmpHt-V1995_2001
Non-Res	INC to CMH-Anchor-Retro-ElecHt-V1987_1994
Non-Res	INC to CMH-Anchor-Retro-GasHt-V1987_1994
Non-Res	INC to CMH-Anchor-Retro-HtPmpHt-V1987_1994
Non-Res	INC to CMH-Big Box-New-ElecHt
Non-Res	INC to CMH-Big Box-New-GasHt
Non-Res	INC to CMH-Big Box-New-HtPmpHt
Non-Res	INC to CMH-Big Box-Retro-ElecHt-V1995_2001
Non-Res	INC to CMH-Big Box-Retro-GasHt-V1995_2001
Non-Res	INC to CMH-Big Box-Retro-HtPmpHt-V1995_2001
Non-Res	INC to CMH-High End-New-ElecHt
Non-Res	INC to CMH-High End-New-GasHt
Non-Res	INC to CMH-High End-New-HtPmpHt
Non-Res	INC to CMH-High End-Retro-ElecHt-PRE1987
Non-Res	INC to CMH-High End-Retro-ElecHt-V1987_1994
Non-Res	INC to CMH-High End-Retro-ElecHt-V1995_2001
Non-Res	INC to CMH-High End-Retro-GasHt-PRE1987
	-
Non-Res	INC to CMH-High End-Retro-GasHt-V1987_1994
Non-Res	INC to CMH-High End-Retro-GasHt-V1995_2001
Non-Res	INC to CMH-High End-Retro-HtPmpHt-PRE1987
Non-Res	INC to CMH-High End-Retro-HtPmpHt-V1987_1994
Non-Res	INC to CMH-High End-Retro-HtPmpHt-V1995_2001

Non-Res Non-Res Non-Res Non-Res Non-Res Non-Res Non-Res Non-Res Non-Res	INC to CMH-MIniMart-New-ElecHt INC to CMH-MIniMart-New-GasHt INC to CMH-MIniMart-New-HtPmpHt INC to CMH-MIniMart-Retro-ElecHt-PRE1987 INC to CMH-MIniMart-Retro-ElecHt-V1987_1994 INC to CMH-MIniMart-Retro-GasHt-PRE1987 INC to CMH-MIniMart-Retro-GasHt-V1987_1994 INC to CMH-MIniMart-Retro-GasHt-V1995_2001 INC to CMH-MIniMart-Retro-GasHt-V1995_2001 INC to CMH-MIniMart-Retro-HtPmpHt-PRE1987
Non-Res	INC to CMH-MIniMart-Retro-HtPmpHt-V1987_1994
Non-Res Non-Res Non-Res Non-Res	INC to CMH-MIniMart-Retro-HtPmpHt-V1995_2001 INC to CMH-Small Box-New-ElecHt INC to CMH-Small Box-New-GasHt INC to CMH-Small Box-New-HtPmpHt
Non-Res	INC to CMH-Small Box-Retro-ElecHt-V1987_1994
Non-Res	INC to CMH-Small Box-Retro-ElecHt-V1995_2001
Non-Res	INC to CMH-Small Box-Retro-GasHt-V1987_1994
Non-Res	INC to CMH-Small Box-Retro-GasHt-V1995_2001
Non-Res	INC to CMH-Small Box-Retro-HtPmpHt-V1987_1994
Non-Res	INC to CMH-Small Box-Retro-HtPmpHt-V1995_2001
Non-Res	INC to CMH-Supermarket-Retro-ElecHt-PRE1987
Non-Res	INC to CMH-Supermarket-Retro-ElecHt-V1987_1994
Non-Res	INC to CMH-Supermarket-Retro-GasHt-PRE1987
Non-Res	INC to CMH-Supermarket-Retro-GasHt-V1987_1994
Non-Res	INC to CMH-Supermarket-Retro-HtPmpHt-PRE1987
Non-Res Non-Res Non-Res Non-Res Non-Res Non-Res	INC to CMH-Supermarket-Retro-HtPmpHt-V1987_1994 INC to CMH-University-New-ElecHt INC to CMH-University-New-GasHt INC to CMH-University-New-HtPmpHt Large MH to T5HO-Big Box-New-ElecHt Large MH to T5HO-Big Box-New-GasHt Large MH to T5HO-Big Box-New-HtPmpHt
Non-Res	Large MH to T5HO-Big Box-Retro-ElecHt-PRE1987
Non-Res	Large MH to T5HO-Big Box-Retro-ElecHt-V1987_1994
Non-Res	Large MH to T5HO-Big Box-Retro-ElecHt-V1995_2001
Non-Res	Large MH to T5HO-Big Box-Retro-GasHt-PRE1987
Non-Res	Large MH to T5HO-Big Box-Retro-GasHt-V1987_1994

Non-Res	Large MH to T5HO-Big Box-Retro-GasHt-V1995_2001
Non-Res	Large MH to T5HO-Big Box-Retro-HtPmpHt-PRE1987
Non-Res	Large MH to T5HO-Big Box-Retro-HtPmpHt-V1987_1994
Non-Res	Large MH to T5HO-Big Box-Retro-HtPmpHt-V1995_2001
Non-Res	Large MH to T5HO-Other-New-ElecHt
Non-Res	Large MH to T5HO-Other-New-GasHt
Non-Res	Large MH to T5HO-Other-New-HtPmpHt
Non-Res	Large MH to T5HO-Other-Retro-ElecHt-PRE1987
Non-Res	Large MH to T5HO-Other-Retro-ElecHt-V1987_1994
Non-Res	Large MH to T5HO-Other-Retro-GasHt-PRE1987
Non-Res	Large MH to T5HO-Other-Retro-GasHt-V1987_1994
Non-Res	Large MH to T5HO-Other-Retro-HtPmpHt-PRE1987
Non-Res	Large MH to T5HO-Other-Retro-HtPmpHt-V1987_1994
Non-Res	Large MH to T5HO-Warehouse-New-ElecHt
Non-Res	Large MH to T5HO-Warehouse-New-GasHt
Non-Res	Large MH to T5HO-Warehouse-New-HtPmpHt
Non-Res	Large MH to T5HO-Warehouse-Retro-ElecHt-PRE1987
Non-Res	Large MH to T5HO-Warehouse-Retro-ElecHt-V1987_1994
Non-Res	Large MH to T5HO-Warehouse-Retro-ElecHt-V1995_2001
Non-Res	Large MH to T5HO-Warehouse-Retro-GasHt-PRE1987
Non-Res	Large MH to T5HO-Warehouse-Retro-GasHt-V1987_1994
Non-Res	Large MH to T5HO-Warehouse-Retro-GasHt-V1995_2001
Non-Res	Large MH to T5HO-Warehouse-Retro-HtPmpHt-PRE1987
Non-Res	Large MH to T5HO-Warehouse-Retro-HtPmpHt-V1987_1994
Non-Res	Large MH to T5HO-Warehouse-Retro-HtPmpHt-V1995_2001
Non-Res	Med MH to T5HO-Other-New-ElecHt
Non-Res	Med MH to T5HO-Other-New-GasHt
Non-Res	Med MH to T5HO-Other-New-HtPmpHt
Non-Res	Med MH to T5HO-Supermarket-New-ElecHt
Non-Res	Med MH to T5HO-Supermarket-New-GasHt
Non-Res	Med MH to T5HO-Supermarket-New-HtPmpHt
Non-Res	Med MH to T8HP-Anchor-New-GasHt
Non-Res	Med MH to T8HP-Anchor-Retro-ElecHt-V1987_1994
Non-Res	Med MH to T8HP-Anchor-Retro-ElecHt-V1995_2001
Non-Res	Med MH to T8HP-Anchor-Retro-GasHt-V1987_1994

Non-Res	Med MH to T8HP-Anchor-Retro-GasHt-V1995_2001
Non-Res	Med MH to T8HP-Anchor-Retro-HtPmpHt-V1987_1994
Non-Res	Med MH to T8HP-Anchor-Retro-HtPmpHt-V1995_2001
Non-Res	Med MH to T8HP-High End-Retro-ElecHt-V1987_1994
Non-Res	Med MH to T8HP-High End-Retro-GasHt-V1987_1994
Non-Res Non-Res	Med MH to T8HP-High End-Retro-HtPmpHt-V1987_1994 Med MH to T8HP-Hospital-New-GasHt
Non-Res	Med MH to T8HP-Hospital-Retro-ElecHt-V1995_2001
Non-Res	Med MH to T8HP-Hospital-Retro-GasHt-V1995_2001
Non-Res Non-Res	Med MH to T8HP-Hospital-Retro-HtPmpHt-V1995_2001 Med MH to T8HP-K-12-Retro-ElecHt-PRE1987
Non-Res	Med MH to T8HP-K-12-Retro-ElecHt-V1987_1994
Non-Res Non-Res	Med MH to T8HP-K-12-Retro-ElecHt-V1995_2001 Med MH to T8HP-K-12-Retro-GasHt-PRE1987
Non-Res	Med MH to T8HP-K-12-Retro-GasHt-V1987_1994
Non-Res Non-Res	Med MH to T8HP-K-12-Retro-GasHt-V1995_2001 Med MH to T8HP-K-12-Retro-HtPmpHt-PRE1987
Non-Res	Med MH to T8HP-K-12-Retro-HtPmpHt-V1987_1994
Non-Res	Med MH to T8HP-K-12-Retro-HtPmpHt-V1995_2001
Non-Res	Med MH to T8HP-Large Off-Retro-ElecHt-V1987_1994
Non-Res	Med MH to T8HP-Large Off-Retro-ElecHt-V1995_2001
Non-Res	Med MH to T8HP-Large Off-Retro-GasHt-V1987_1994
Non-Res	Med MH to T8HP-Large Off-Retro-GasHt-V1995_2001
Non-Res	Med MH to T8HP-Large Off-Retro-HtPmpHt-V1987_1994
Non-Res	Med MH to T8HP-Large Off-Retro-HtPmpHt-V1995_2001
Non-Res	Med MH to T8HP-Medium Off-Retro-ElecHt-V1987_1994
Non-Res	Med MH to T8HP-Medium Off-Retro-ElecHt-V1995_2001
Non-Res	Med MH to T8HP-Medium Off-Retro-GasHt-V1987_1994
Non-Res	Med MH to T8HP-Medium Off-Retro-GasHt-V1995_2001
Non-Res	Med MH to T8HP-Medium Off-Retro-HtPmpHt-V1987_1994

Non-Res	Med MH to T8HP-Medium Off-Retro-HtPmpHt-V1995_2001
Non-Res	Med MH to T8HP-MIniMart-Retro-ElecHt-V1987_1994
Non-Res	Med MH to T8HP-MIniMart-Retro-ElecHt-V1995_2001
Non-Res	Med MH to T8HP-MIniMart-Retro-GasHt-V1987_1994
Non-Res	Med MH to T8HP-MIniMart-Retro-GasHt-V1995_2001
Non-Res	Med MH to T8HP-MIniMart-Retro-HtPmpHt-V1987_1994
Non-Res Non-Res	Med MH to T8HP-MIniMart-Retro-HtPmpHt-V1995_2001 Med MH to T8HP-OtherHealth-New-GasHt
Non-Res	Med MH to T8HP-OtherHealth-Retro-ElecHt-V1995_2001
Non-Res	Med MH to T8HP-OtherHealth-Retro-GasHt-V1995_2001
Non-Res	Med MH to T8HP-OtherHealth-Retro-HtPmpHt-V1995_2001
Non-Res	Med MH to T8HP-Other-Retro-ElecHt-V1995_2001
Non-Res	Med MH to T8HP-Other-Retro-GasHt-V1995_2001
Non-Res Non-Res	Med MH to T8HP-Other-Retro-HtPmpHt-V1995_2001 Med MH to T8HP-Small Box-New-GasHt
Non-Res	Med MH to T8HP-Small Box-Retro-ElecHt-PRE1987
Non-Res	Med MH to T8HP-Small Box-Retro-ElecHt-V1987_1994
Non-Res	Med MH to T8HP-Small Box-Retro-ElecHt-V1995_2001
Non-Res	Med MH to T8HP-Small Box-Retro-GasHt-PRE1987
Non-Res	Med MH to T8HP-Small Box-Retro-GasHt-V1987_1994
Non-Res	Med MH to T8HP-Small Box-Retro-GasHt-V1995_2001
Non-Res	Med MH to T8HP-Small Box-Retro-HtPmpHt-PRE1987
Non-Res	Med MH to T8HP-Small Box-Retro-HtPmpHt-V1987_1994
Non-Res	Med MH to T8HP-Small Box-Retro-HtPmpHt-V1995_2001
Non-Res	Med MH to T8HP-Supermarket-Retro-ElecHt-V1995_2001
Non-Res	Med MH to T8HP-Supermarket-Retro-GasHt-V1995_2001
Non-Res	Med MH to T8HP-Supermarket-Retro-HtPmpHt-V1995_2001
Non-Res	Med MH to T8HP-University-Retro-ElecHt-V1987_1994
Non-Res	Med MH to T8HP-University-Retro-GasHt-V1987_1994

Non-Res Non-Res Non-Res Non-Res Non-Res Non-Res	Med MH to T8HP-University-Retro-HtPmpHt-V1987_1994 Night Covers for Display Cases - Horizontal Night Covers for Display Cases - Vertical Outdoor Sign Ballast - 24 Outdoor Sign Ballast - 24 - Retro Outdoor Sign Ballast - Night Outdoor Sign Ballast - Night - Retro
Non-Res	Perimeter Day lighting Controls (Advanced)-New-K-12-ElecHt
Non-Res	Perimeter Day lighting Controls (Advanced)-New-K-12-GasHt
Non-Res	Perimeter Day lighting Controls (Advanced)-New-K-12-HtPmpHt
Non-Res	Perimeter Day lighting Controls (Advanced)-New-Large Off-ElecHt
Non-Res	Perimeter Day lighting Controls (Advanced)-New-Large Off-GasHt
Non-Res	Perimeter Day lighting Controls (Advanced)-New-Large Off-HtPmpHt
Non-Res	Perimeter Day lighting Controls (Advanced)-New-Medium Off-ElecHt
Non-Res	Perimeter Day lighting Controls (Advanced)-New-Medium Off-GasHt
Non-Res	Perimeter Day lighting Controls (Advanced)-New-Medium Off-HtPmpHt
Non-Res	Perimeter Day lighting Controls (Advanced)-New-OtherHealth-ElecHt
Non-Res	Perimeter Day lighting Controls (Advanced)-New-OtherHealth-GasHt
Non-Res	Perimeter Day lighting Controls (Advanced)-New-OtherHealth-HtPmpHt
Non-Res	Perimeter Day lighting Controls (Advanced)-New-Small Off-ElecHt
Non-Res	Perimeter Day lighting Controls (Advanced)-New-Small Off-GasHt
Non-Res	Perimeter Day lighting Controls (Advanced)-New-Small Off-HtPmpHt
Non-Res	Perimeter Day lighting Controls (Advanced)-New-University-ElecHt
Non-Res	Perimeter Day lighting Controls (Advanced)-New-University-GasHt
Non-Res	Perimeter Day lighting Controls (Advanced)-New-University-HtPmpHt
Non-Res	Perimeter Day lighting Controls (Advanced)-NR-K-12-ElecHt
Non-Res	Perimeter Day lighting Controls (Advanced)-NR-K-12-GasHt
Non-Res	Perimeter Day lighting Controls (Advanced)-NR-K-12-HtPmpHt
Non-Res	Perimeter Day lighting Controls (Advanced)-NR-Large Off-ElecHt
Non-Res	Perimeter Day lighting Controls (Advanced)-NR-Large Off-GasHt
Non-Res	Perimeter Day lighting Controls (Advanced)-NR-Large Off-HtPmpHt

Non-Res	Perimeter Day lighting Controls (Advanced)-NR-Medium Off-ElecHt
Non-Res	Perimeter Day lighting Controls (Advanced)-NR-Medium Off-GasHt
Non-Res	Perimeter Day lighting Controls (Advanced)-NR-Medium Off-HtPmpHt
Non-Res	Perimeter Day lighting Controls (Advanced)-NR-OtherHealth-ElecHt
Non-Res	Perimeter Day lighting Controls (Advanced)-NR-OtherHealth-GasHt
Non-Res	Perimeter Day lighting Controls (Advanced)-NR-OtherHealth-HtPmpHt
Non-Res	Perimeter Day lighting Controls (Advanced)-NR-Small Off-ElecHt
Non-Res	Perimeter Day lighting Controls (Advanced)-NR-Small Off-GasHt
Non-Res	Perimeter Day lighting Controls (Advanced)-NR-Small Off-HtPmpHt
Non-Res	Perimeter Day lighting Controls (Advanced)-NR-University-ElecHt
Non-Res	Perimeter Day lighting Controls (Advanced)-NR-University-GasHt
Non-Res	Perimeter Day lighting Controls (Advanced)-NR-University-HtPmpHt
Non-Res	Replace 12 inch Green Incandescent Left Turn Bay with 12 inchGreen LED module
Non-Res	Replace 12 inch Green Incandescent Thru Lane with 12 inch Green LED module
Non-Res	Replace 12 inch Red Incandescent Left Turn Bay with 12 inch Red LED module
Non-Res	Replace 12 inch Red Incandescent Thru Lane with 12 inch Red LED module
Non-Res	Replace 8 inch Red Incandescent Left Turn Bay with 8 inch Red LED module
Non-Res Non-Res Non-Res	Replace 8 inch Red Incandescent Thru Lane with 8 inch Red LED module Special Doors with Low/No Anti-Sweat Heat Strip Curtains for Walk-in Boxes
Non-Res Non-Res	T12-2 to T8HP-1-Other-Retro-ElecHt-PRE1987 T12-2 to T8HP-1-Other-Retro-GasHt-PRE1987
Non-Res Non-Res	T12-2 to T8HP-1-Other-Retro-HtPmpHt-PRE1987 T12-3 to T8HP-2-High End-New-GasHt
Non-Res	T12-3 to T8HP-2-High End-Retro-ElecHt-V1995_2001
Non-Res	T12-3 to T8HP-2-High End-Retro-GasHt-V1995_2001
Non-Res	T12-3 to T8HP-2-High End-Retro-HtPmpHt-V1995_2001
Non-Res	T12-3 to T8HP-2-K-12-Retro-ElecHt-V1987_1994
Non-Res	T12-3 to T8HP-2-K-12-Retro-GasHt-V1987_1994
Non-Res	T12-3 to T8HP-2-K-12-Retro-HtPmpHt-V1987_1994
Non-Res	T12-3 to T8HP-2-Small Off-Retro-ElecHt-V1995_2001

- Non-Res T12-3 to T8HP-2-Small Off-Retro-GasHt-V1995_2001
- Non-Res T12-3 to T8HP-2-Small Off-Retro-HtPmpHt-V1995_2001
- Non-Res T12-3 to T8HP-3-Anchor-Retro-ElecHt-V1987_1994
- Non-Res T12-3 to T8HP-3-Anchor-Retro-GasHt-V1987_1994
- Non-Res T12-3 to T8HP-3-Anchor-Retro-HtPmpHt-V1987_1994
- Non-Res T12-3 to T8HP-3-Big Box-Retro-ElecHt-PRE1987
- Non-Res T12-3 to T8HP-3-Big Box-Retro-GasHt-PRE1987
- Non-Res T12-3 to T8HP-3-Big Box-Retro-HtPmpHt-PRE1987
- Non-Res T12-3 to T8HP-3-High End-Retro-ElecHt-PRE1987
- Non-Res T12-3 to T8HP-3-High End-Retro-ElecHt-V1987_1994
- Non-Res T12-3 to T8HP-3-High End-Retro-GasHt-PRE1987
- Non-Res T12-3 to T8HP-3-High End-Retro-GasHt-V1987_1994
- Non-Res T12-3 to T8HP-3-High End-Retro-HtPmpHt-PRE1987
- Non-Res T12-3 to T8HP-3-High End-Retro-HtPmpHt-V1987_1994
- Non-Res T12-3 to T8HP-3-MIniMart-Retro-ElecHt-PRE1987
- Non-Res T12-3 to T8HP-3-MIniMart-Retro-GasHt-PRE1987
- Non-Res T12-3 to T8HP-3-MIniMart-Retro-HtPmpHt-PRE1987
- Non-Res T12-3 to T8HP-3-OtherHealth-Retro-ElecHt-PRE1987
- Non-Res T12-3 to T8HP-3-OtherHealth-Retro-ElecHt-V1987_1994
- Non-Res T12-3 to T8HP-3-OtherHealth-Retro-GasHt-PRE1987
- Non-Res T12-3 to T8HP-3-OtherHealth-Retro-GasHt-V1987_1994
- Non-Res T12-3 to T8HP-3-OtherHealth-Retro-HtPmpHt-PRE1987
- Non-Res T12-3 to T8HP-3-OtherHealth-Retro-HtPmpHt-V1987_1994
- Non-Res T12-3 to T8HP-3-Restaurant-Retro-ElecHt-PRE1987
- Non-Res T12-3 to T8HP-3-Restaurant-Retro-ElecHt-V1987_1994
- Non-Res T12-3 to T8HP-3-Restaurant-Retro-GasHt-PRE1987
- Non-Res T12-3 to T8HP-3-Restaurant-Retro-GasHt-V1987_1994
- Non-Res T12-3 to T8HP-3-Restaurant-Retro-HtPmpHt-PRE1987

- Non-Res T12-3 to T8HP-3-Restaurant-Retro-HtPmpHt-V1987_1994
- Non-Res T12-3 to T8HP-3-Supermarket-Retro-ElecHt-PRE1987
- Non-Res T12-3 to T8HP-3-Supermarket-Retro-GasHt-PRE1987
- Non-Res T12-3 to T8HP-3-Supermarket-Retro-HtPmpHt-PRE1987
- Non-Res T12-3 to T8HP-3-University-Retro-ElecHt-V1987_1994
- Non-Res T12-3 to T8HP-3-University-Retro-GasHt-V1987_1994
- Non-Res T12-3 to T8HP-3-University-Retro-HtPmpHt-V1987_1994
- Non-Res T12-4 to T8HP-2-Large Off-Retro-ElecHt-PRE1987
- Non-Res T12-4 to T8HP-2-Large Off-Retro-ElecHt-V1987_1994
- Non-Res T12-4 to T8HP-2-Large Off-Retro-GasHt-PRE1987
- Non-Res T12-4 to T8HP-2-Large Off-Retro-GasHt-V1987_1994
- Non-Res T12-4 to T8HP-2-Large Off-Retro-HtPmpHt-PRE1987
- Non-Res T12-4 to T8HP-2-Large Off-Retro-HtPmpHt-V1987_1994
- Non-Res T12-4 to T8HP-2-Medium Off-Retro-ElecHt-PRE1987
- Non-Res T12-4 to T8HP-2-Medium Off-Retro-ElecHt-V1987_1994
- Non-Res T12-4 to T8HP-2-Medium Off-Retro-GasHt-PRE1987
- Non-Res T12-4 to T8HP-2-Medium Off-Retro-GasHt-V1987_1994
- Non-Res T12-4 to T8HP-2-Medium Off-Retro-HtPmpHt-PRE1987
- Non-Res T12-4 to T8HP-2-Medium Off-Retro-HtPmpHt-V1987_1994
- Non-Res T12-4 to T8HP-2-MIniMart-Retro-ElecHt-V1987_1994
- Non-Res T12-4 to T8HP-2-MIniMart-Retro-GasHt-V1987_1994
- Non-Res T12-4 to T8HP-2-MIniMart-Retro-HtPmpHt-V1987_1994
- Non-Res T12-4 to T8HP-2-Small Off-Retro-ElecHt-PRE1987
- Non-Res T12-4 to T8HP-2-Small Off-Retro-ElecHt-V1987_1994
- Non-Res T12-4 to T8HP-2-Small Off-Retro-GasHt-PRE1987
- Non-Res T12-4 to T8HP-2-Small Off-Retro-GasHt-V1987_1994
- Non-Res T12-4 to T8HP-2-Small Off-Retro-HtPmpHt-PRE1987
- Non-Res T12-4 to T8HP-2-Small Off-Retro-HtPmpHt-V1987_1994

Non-Res T12-4 to	T8HP-2-Supermarket-Retro-ElecHt-V1987 1	1994
------------------	---	------

- Non-Res T12-4 to T8HP-2-Supermarket-Retro-GasHt-V1987_1994
- Non-Res T12-4 to T8HP-2-Supermarket-Retro-HtPmpHt-V1987_1994
- Non-Res T12-4 to T8HP-3-Anchor-Retro-ElecHt-PRE1987
- Non-Res T12-4 to T8HP-3-Anchor-Retro-GasHt-PRE1987
- Non-Res T12-4 to T8HP-3-Anchor-Retro-HtPmpHt-PRE1987
- Non-Res T12-4 to T8HP-3-Big Box-Retro-ElecHt-V1987_1994
- Non-Res T12-4 to T8HP-3-Big Box-Retro-GasHt-V1987_1994
- Non-Res T12-4 to T8HP-3-Big Box-Retro-HtPmpHt-V1987_1994
- Non-Res T12-4 to T8HP-3-Small Box-Retro-ElecHt-PRE1987
- Non-Res T12-4 to T8HP-3-Small Box-Retro-GasHt-PRE1987
- Non-Res T12-4 to T8HP-3-Small Box-Retro-HtPmpHt-PRE1987
- Non-Res Vending Machine Controller-Large Machine w/Illuminated Front
- Non-ResVending Machine Controller-Small Machine or Machine without Illuminated FrontNon-ResVSD Large FanNon-ResVSD Medium fanNon-ResVSD PumpNon-ResVSD Small Fan
- Res Biradiant Oven
- Res Bottom Freezer No Ice
- Res Energy Conservation School Program
- Res Energy Star Dishwasher (EF 68) PNW DHW Fuel Average + NEB Waste Water Treatment Savings
- Res Energy Star Dishwasher (EF58) PNW DHW Fuel Average + NEB of Waste Water Treatment Savings
- Res Energy Star Dishwasher (EF76) PNW DHW Fuel Average + NEB Waste Water Treatment Savings
- Res Energy Star Dishwasher (EF85) PNW DHW Fuel Average + NEB Waste Water Treatment Savings
- Heat Traps + Increased Insulation (3 1/2" foam) + Insulated Tank Bottom & Plastic Tank w/minimum 10 yr Res warranty
- Res Heat Traps + Increased Insulation (3" foam) + Insulated Tank Bottom w/minimum 10 year Warranty
- Res Heating System Maintenance (tune-up/filter)
- Res Improved Oven Insulation
- Res Improved Oven Seals

Res	Manufactured Home NonSGC Forced Air Furnace w/CAC - PTCS Duct Sealing and System Commissioning Heat Zone 1
Res	Manufactured Home NonSGC Forced Air Furnace w/CAC - PTCS Duct Sealing and System Commissioning Heat Zone 2
Res	Manufactured Home NonSGC Forced Air Furnace w/CAC - PTCS Duct Sealing Heat Zone 1
Res	Manufactured Home NonSGC Forced Air Furnace w/CAC - PTCS Duct Sealing Heat Zone 2
Res	Manufactured Home NonSGC Forced Air Furnace w/o CAC - PTCS Duct Sealing Heat Zone 1
Res	Manufactured Home NonSGC Forced Air Furnace w/o CAC - PTCS Duct Sealing Heat Zone 2
Res	Manufactured Home NonSGC Heat Pump - PTCS Duct Sealing and System Commissioning Heat Zone 1
Res	Manufactured Home NonSGC Heat Pump - PTCS Duct Sealing and System Commissioning Heat Zone 2
Res	Manufactured Home NonSGC Heat Pump - PTCS Duct Sealing Heat Zone 1
Res	Manufactured Home NonSGC Heat Pump - PTCS Duct Sealing Heat Zone 2
Res	Manufactured Home NonSGC Heat Pump - PTCS Duct Sealing, Commissioning and Controls Heat Zone 1
Res Res	Manufactured Home NonSGC Heat Pump - PTCS Duct Sealing, Commissioning and Controls Heat Zone 1 Manufactured Home NonSGC Heat Pump - PTCS Duct Sealing, Commissioning and Controls Heat Zone 2
Res	Manufactured Home NonSGC Heat Pump - PTCS Duct Sealing, Commissioning and Controls Heat Zone 2
Res Res	Manufactured Home NonSGC Heat Pump - PTCS Duct Sealing, Commissioning and Controls Heat Zone 2 Manufactured Home NonSGC Heat Pump - PTCS System Commissioning Heat Zone 1
Res Res Res	Manufactured Home NonSGC Heat Pump - PTCS Duct Sealing, Commissioning and Controls Heat Zone 2 Manufactured Home NonSGC Heat Pump - PTCS System Commissioning Heat Zone 1 Manufactured Home NonSGC Heat Pump - PTCS System Commissioning Heat Zone 2 Manufactured Home SGC Forced Air Furnace w/CAC - PTCS Duct Sealing and System Commissioning
Res Res Res	Manufactured Home NonSGC Heat Pump - PTCS Duct Sealing, Commissioning and Controls Heat Zone 2 Manufactured Home NonSGC Heat Pump - PTCS System Commissioning Heat Zone 1 Manufactured Home NonSGC Heat Pump - PTCS System Commissioning Heat Zone 2 Manufactured Home SGC Forced Air Furnace w/CAC - PTCS Duct Sealing and System Commissioning Heat Zone 1 Manufactured Home SGC Forced Air Furnace w/CAC - PTCS Duct Sealing and System Commissioning
Res Res Res Res	Manufactured Home NonSGC Heat Pump - PTCS Duct Sealing, Commissioning and Controls Heat Zone 2 Manufactured Home NonSGC Heat Pump - PTCS System Commissioning Heat Zone 1 Manufactured Home NonSGC Heat Pump - PTCS System Commissioning Heat Zone 2 Manufactured Home SGC Forced Air Furnace w/CAC - PTCS Duct Sealing and System Commissioning Heat Zone 1 Manufactured Home SGC Forced Air Furnace w/CAC - PTCS Duct Sealing and System Commissioning Heat Zone 2
Res Res Res Res Res	Manufactured Home NonSGC Heat Pump - PTCS Duct Sealing, Commissioning and Controls Heat Zone 2 Manufactured Home NonSGC Heat Pump - PTCS System Commissioning Heat Zone 1 Manufactured Home NonSGC Heat Pump - PTCS System Commissioning Heat Zone 2 Manufactured Home SGC Forced Air Furnace w/CAC - PTCS Duct Sealing and System Commissioning Heat Zone 1 Manufactured Home SGC Forced Air Furnace w/CAC - PTCS Duct Sealing and System Commissioning Heat Zone 2 Manufactured Home SGC Forced Air Furnace w/CAC - PTCS Duct Sealing and System Commissioning
Res Res Res Res Res Res	Manufactured Home NonSGC Heat Pump - PTCS Duct Sealing, Commissioning and Controls Heat Zone 2 Manufactured Home NonSGC Heat Pump - PTCS System Commissioning Heat Zone 1 Manufactured Home NonSGC Heat Pump - PTCS System Commissioning Heat Zone 2 Manufactured Home SGC Forced Air Furnace w/CAC - PTCS Duct Sealing and System Commissioning Heat Zone 1 Manufactured Home SGC Forced Air Furnace w/CAC - PTCS Duct Sealing and System Commissioning Heat Zone 2 Manufactured Home SGC Forced Air Furnace w/CAC - PTCS Duct Sealing Heat Zone 1 Manufactured Home SGC Forced Air Furnace w/CAC - PTCS Duct Sealing Heat Zone 1 Manufactured Home SGC Forced Air Furnace w/CAC - PTCS Duct Sealing Heat Zone 1

- Res Manufactured Home SGC Heat Pump PTCS Duct Sealing and System Commissioning Heat Zone 2
- Res Manufactured Home SGC Heat Pump PTCS Duct Sealing Heat Zone 1
- Res Manufactured Home SGC Heat Pump PTCS Duct Sealing Heat Zone 2
- Res Manufactured Home SGC Heat Pump PTCS Duct Sealing, Commissioning and Controls Heat Zone 1
- Res Manufactured Home SGC Heat Pump PTCS Duct Sealing, Commissioning and Controls Heat Zone 2
- Res Manufactured Home SGC Heat Pump PTCS System Commissioning Heat Zone 1
- Res Manufactured Home SGC Heat Pump PTCS System Commissioning Heat Zone 2
- Res Manufactured Home Weatherization Heating Zone 1
- Res Manufactured Home Weatherization Heating Zone 2
- Res Multifamily Weatherization Heating Zone 1
- Res Multifamily Weatherization Heating Zone 2
- Res New MultiFamily Construction, DHW & Shower Preheat, Electric Resistance
- Res New MultiFamily Construction, DHW Preheat, Electric Resistance
- Res New MultiFamily Construction, Shower Preheat, Electric Resistance
- Res New Single Family Construction, DHW & Shower Preheat, Electric Resistance
- Res New Single Family Construction, DHW Preheat, Electric Resistance
- Res New Single Family Construction, Shower Preheat, Electric Resistance
- Res Post79/Pre93 Single Family Construction CAC Upgrade SEER Cooling Zone 3
- Res Post79/Pre93 Single Family Construction CAC Upgrade SEER Cooling Zone 3
- Res Post79/Pre93 Single Family Construction CAC Upgrade SEER Cooling Zone 3
- Res Post79/Pre93 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 Heating
- Res Post79/Pre93 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 Heating
- Res Post79/Pre93 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 Heating
- Res Post79/Pre93 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 Heating
- Res Post79/Pre93 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 Heating

Res	Post79/Pre93 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 - Heating
Res	Post79/Pre93 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating
Res	Post79/Pre93 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating
Res	Post79/Pre93 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating
Res	Post79/Pre93 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating
Res	Post79/Pre93 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating
Res	Post79/Pre93 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating
Res	Post79/Pre93 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat
Res	Post79/Pre93 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat
Res	Post79/Pre93 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat
Res	Post79/Pre93 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat
Res	Post79/Pre93 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat
Res	Post79/Pre93 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat
Res	Post79/Pre93 Single Family Construction Convert Zonal Heating w/o CAC to HP HSPF 8/SEER 13 - Heat
Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Air Source HP - Zone 1
Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Air Source HP - Zone 1
Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Air Source HP - Zone 1
Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Air Source HP - Zone 2
Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Air Source HP - Zone 2

Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Air Source HP - Zone 2
Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 1
Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 1
Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 1
Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 2
Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 2
Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 2
Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 1
Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 1
Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 1
Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 2
Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 2
Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 2
Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 1
Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 1
Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 1
Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 2
Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 2
Res	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 2

Res	Post79/Pre93 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 1
Res	Post79/Pre93 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 1
Res	Post79/Pre93 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 1
Res	Post79/Pre93 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 2
Res	Post79/Pre93 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 2
Res	Post79/Pre93 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 2
Res	Post92 Single Family Construction CAC Upgrade SEER - Cooling Zone 3
Res	Post92 Single Family Construction CAC Upgrade SEER - Cooling Zone 3
Res	Post92 Single Family Construction CAC Upgrade SEER - Cooling Zone 3
Res	Post92 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 - Heating
Res	Post92 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 - Heating
Res	Post92 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 - Heating
Res	Post92 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 - Heating
Res	Post92 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 - Heating
Res	Post92 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 - Heating
Res	Post92 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating
Res	Post92 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating
Res	Post92 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating
Res	Post92 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating
Res	Post92 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating
Res	Post92 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating
Res	Post92 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat
Res	Post92 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat
Res	Post92 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat
Res	Post92 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat
Res	Post92 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat

Res	Post92 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 1
Res	Post92 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 1
Res	Post92 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 1
Res	Post92 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 2
Res	Post92 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 2
Res	Post92 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 2
Res	Post92 Single Family Contruction Geothermal Heat Pump vs Air Source Heat Pump - Zone 1
Res	Post92 Single Family Contruction Geothermal Heat Pump vs Air Source Heat Pump - Zone 2
Res	Post92 Single Family Contruction Geothermal Heat Pump vs Air Source Heat Pump - Zone 2
Res	Post92 Single Family Contruction Geothermal Heat Pump vs FAF w/CAC - Zone 1
Res	Post92 Single Family Contruction Geothermal Heat Pump vs FAF w/CAC - Zone 1
Res	Post92 Single Family Contruction Geothermal Heat Pump vs FAF w/CAC - Zone 1
Res	Post92 Single Family Contruction Geothermal Heat Pump vs FAF w/CAC - Zone 2
Res	Post92 Single Family Contruction Geothermal Heat Pump vs FAF w/CAC - Zone 2
Res	Post92 Single Family Contruction Geothermal Heat Pump vs FAF w/CAC - Zone 2
Res	Post92 Single Family Contruction Geothermal Heat Pump vs FAF w/oCAC - Zone 1
Res	Post92 Single Family Contruction Geothermal Heat Pump vs FAF w/oCAC - Zone 1
Res	Post92 Single Family Contruction Geothermal Heat Pump vs FAF w/oCAC - Zone 1
Res	Post92 Single Family Contruction Geothermal Heat Pump vs FAF w/oCAC - Zone 2
Res	Post92 Single Family Contruction Geothermal Heat Pump vs FAF w/oCAC - Zone 2
Res	Post92 Single Family Contruction Geothermal Heat Pump vs FAF w/oCAC - Zone 2
Res	Post92 Single Family Contruction Geothermal Heat Pump vs Zonal Heating - Zone 2
Res	Post92 Single Family Contruction Geothermal Heat Pump vs Zonal Heating - Zone 2
Res	Post92 Single Family Contruction Geothermal Heat Pump vs Zonal Heating - Zone 2
Res	Post93 Manufactured Home NonSGC CAC Upgrade SEER w/PTCS - Cooling Zone 3
Res	Post93 Manufactured Home NonSGC Convert FAF w/CAC to HP HSPF 8/SEER 12 - Heating
Res	Post93 Manufactured Home NonSGC Convert FAF w/CAC to HP HSPF 8/SEER 12 - Heating
Res	Post93 Manufactured Home NonSGC Convert FAF w/o CAC to HP HSPF 8/SEER 12 - Heating

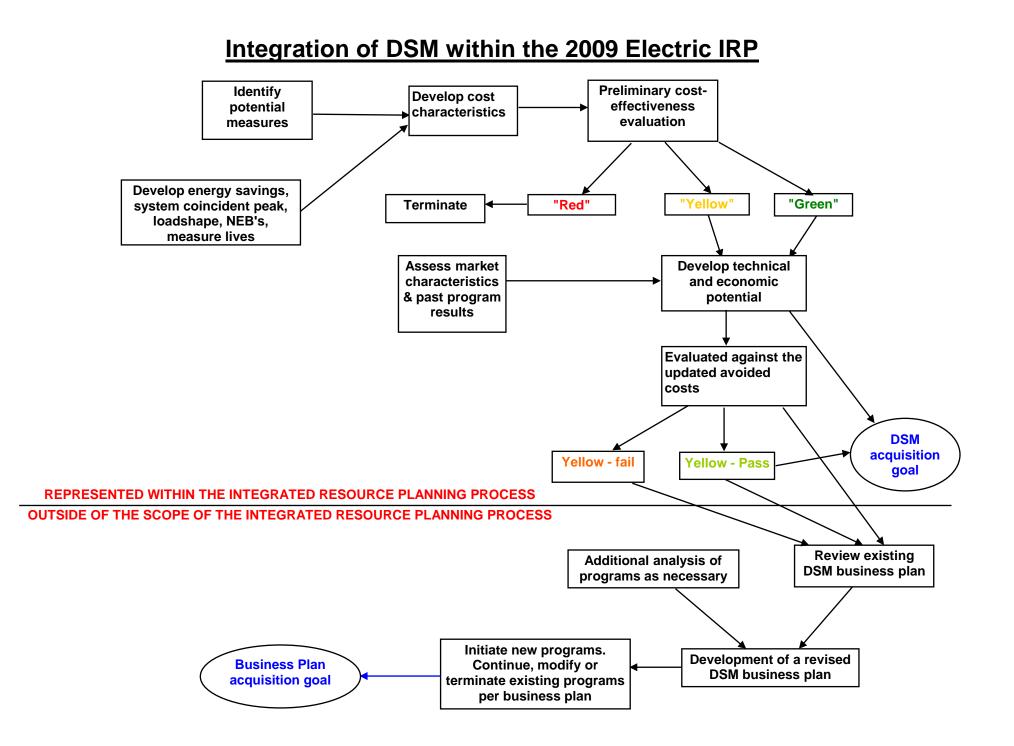
Res	Post93 Manufactured Home NonSGC Convert FAF w/o CAC to HP HSPF 8/SEER 12 - Heating
Res	Post93 Manufactured Home NonSGC HP Upgrade HSPF 8 w/PTCS - Cooling Zone 1
Res	Post93 Manufactured Home NonSGC HP Upgrade HSPF 8 w/PTCS - Cooling Zone 2
Res	Post93 NonSGC Manufactured Home Convert FAF w/CAC to Energy Star Geothermal Heat Pump w/PTCS Specifications - Heating Zone 1
Res	Post93 NonSGC Manufactured Home Convert FAF w/CAC to Energy Star Geothermal Heat Pump w/PTCS Specifications - Heating Zone 2
Res	Post93 NonSGC Manufactured Home Convert FAF w/o CAC to Energy Star Geothermal Heat Pump w/PTCS Specifications - Heating Zone 1
Res	Post93 NonSGC Manufactured Home Convert FAF w/o CAC to Energy Star Geothermal Heat Pump w/PTCS Specifications - Heating Zone 2
Res	Pre80 Single Family Construction CAC Upgrade SEER - Cooling Zone 3
Res	Pre80 Single Family Construction CAC Upgrade SEER - Cooling Zone 3
Res	Pre80 Single Family Construction CAC Upgrade SEER - Cooling Zone 3
Res	Pre80 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 - Heating
Res	Pre80 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 - Heating
Res	Pre80 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 - Heating
Res	Pre80 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 - Heating
Res	Pre80 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 - Heating
Res	Pre80 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 - Heating
Res	Pre80 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating
Res	Pre80 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating
Res	Pre80 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating
Res	Pre80 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating
Res	Pre80 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating
Res	Pre80 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating
Res	Pre80 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat
Res	Pre80 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat
Res	Pre80 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat

Res	Pre80 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat
Res	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Air Source HP - Zone 1
Res	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Air Source HP - Zone 1
Res	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Air Source HP - Zone 1
Res	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Air Source HP - Zone 2
Res	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Air Source HP - Zone 2
Res	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 1
Res	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 1
Res	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 1
Res	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 2
Res	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 2
Res	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 2
Res	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 1
Res	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 1
Res	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 1
Res	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 2
Res	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 2
Res	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 2
Res	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 1

Res	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 1
Res	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 1
Res	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 2
Res	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 2
Res	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 2
Res	Pre80 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 1
Res	Pre80 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 1
Res	Pre80 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 1
Res	Pre80 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 2
Res	Pre80 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 2
Res	Pre80 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 2
Res	Pre94 Manufactured Home CAC Upgrade SEER w/PTCS - Cooling Zone 3
Res	Pre94 Manufactured Home Convert FAF w/CAC to HP HSPF 8/SEER 12 - Heating
Res	Pre94 Manufactured Home Convert FAF w/CAC to HP HSPF 8/SEER 12 - Heating
Res	Pre94 Manufactured Home Convert FAF w/o CAC to HP HSPF 8/SEER 12 - Heating
Res	Pre94 Manufactured Home Convert FAF w/o CAC to HP HSPF 8/SEER 12 - Heating
Res	Pre94 NonSGC Manufactured Home Convert FAF w/CAC to Energy Star Geothermal Heat Pump w/PTCS Specifications - Heating Zone 1
Res	Pre94 NonSGC Manufactured Home Convert FAF w/CAC to Energy Star Geothermal Heat Pump w/PTCS Specifications - Heating Zone 2
Res	Pre94 NonSGC Manufactured Home Convert FAF w/o CAC to Energy Star Geothermal Heat Pump w/PTCS Specifications - Heating Zone 1
Res Res Res Res Res	Pre94 NonSGC Manufactured Home Convert FAF w/o CAC to Energy Star Geothermal Heat Pump w/PTCS Specifications - Heating Zone 2 Reduced Oven Ventilation Rate SGC - Heating Zone 1 SGC - Heating Zone 2 SGC - Zone 1 SGC - Zone 2
Res	SGC Manufactured Home CAC Upgrade SEER w/PTCS - Cooling Zone 3

Res	SGC Manufactured Home Convert FAF w/CAC to Energy Star Geothermal Heat Pump w/PTCS Specifications - Heating Zone 2
Res	SGC Manufactured Home Convert FAF w/CAC to HP HSPF 8/SEER 12 - Heating
Res	SGC Manufactured Home Convert FAF w/CAC to HP HSPF 8/SEER 12 - Heating
Res	SGC Manufactured Home Convert FAF w/o CAC to Energy Star Geothermal Heat Pump w/PTCS Specifications - Heating Zone 2
Res	SGC Manufactured Home Convert FAF w/o CAC to HP HSPF 8/SEER 12 - Heating
Res Res Res Res Res	SGC Manufactured Home Convert FAF w/o CAC to HP HSPF 8/SEER 12 - Heating SGCSF - Heating Zone 1 SGCSF - Heating Zone 2 Side-by-Side Model - Ice Side-by-Side Model - No Ice
Res	Single Family Heat Pump - PTCS Duct Sealing and System Commissioning Heat Zone 1
Res	Single Family Heat Pump - PTCS Duct Sealing and System Commissioning Heat Zone 2
Res	Single Family Heat Pump - PTCS System Commissioning Heat Zone 1
Res Res Res Res Res	Single Family Heat Pump - PTCS System Commissioning Heat Zone 2 Single Family Weatherization - Zone 1 Single Family Weatherization - Zone 2 Top Freezer - Ice Top Freezer - No Ice

Res Weighted Average - Interior & Exterior Wattage - 92 Watt


2009

Electric Integrated Resource Plan

Appendix E – Integration of DSM within the 2009 Electric IRP

August 31, 2009

2009

Electric Integrated Resource Plan

Appendix F – Achievable 20-Year Potential for Residential and Non-Residential DSM Programs

August 31, 2009

(in 2009 \$s)

Meas #	Segment	Category	Measure	achievable potential (20 yr)	levelized trc cost 2009	Life
46.5 F	Res	Dishwash	Energy Star Dishwasher (EF58) - PNW DHW Fuel Average + NEB of Waste Water Treatment Savings	835,250	0.00	9
52.5 F	Res	Dishwash	Energy Star Dishwasher (EF 68) - PNW DHW Fuel Average + NEB Waste Water Treatment Savings	835,250	0.01	9
58.5 F	Res	Dishwash	Energy Star Dishwasher (EF76) - PNW DHW Fuel Average + NEB Waste Water Treatment Savings	835,250	0.61	9
64.5 F	Res	Dishwash	Energy Star Dishwasher (EF85) - PNW DHW Fuel Average + NEB Waste Water Treatment Savings Weighted Average - Interior & Exterior Wattage - 92	835,250	1.98	9
104 F	Res	Lighting	Watt	250,452,883	0.03	9
106 F	Res	Appliance	Bottom Freezer - No Ice	659,410	0.04	19
107 F		Appliance	Side-by-Side Model - No Ice	659,410	0.03	19
108 F		Appliance	Side-by-Side Model - Ice	659,410	0.52	19
100 F		Appliance	Top Freezer - No Ice	659,410	0.24	19
100 F		Appliance	Top Freezer - Ice	659,410	0.13	19
	103	Арріансе	New Single Family Construction, Shower Preheat,	055,410	0.15	15
111 F	Res	DHW	Electric Resistance New Single Family Construction, DHW & Shower	44,117	0.11	40
113 F	Res	DHW	Preheat, Electric Resistance	126,027	0.08	40
115 F	Res	DHW	New Single Family Construction, DHW Preheat, Electric Resistance	50,419	0.10	40
117 F	Res	DHW	New MultiFamily Construction, Shower Preheat, Electric Resistance	17,638	0.09	40
119 F	Res	DHW	New MultiFamily Construction, DHW & Shower Preheat, Electric Resistance New MultiFamily Construction, DHW Preheat,	50,419	0.07	40
121 F	Res	DHW	Electric Resistance	20,155	0.08	40
129 F	Res	Cooking	Reduced Oven Ventilation Rate	24,336	0.03	20
130 F	Res	Cooking	Improved Oven Insulation	23,712	0.11	20
131 F		Cooking	Improved Oven Seals	7,904	0.86	20
132 F		Cooking	Biradiant Oven	163,072	0.26	20
133 F		DHW	Heat Traps + Increased Insulation (3" foam) + Insulated Tank Bottom w/minimum 10 year Warranty	92,976	0.03	12
124 5			Heat Traps + Increased Insulation (3 1/2" foam) + Insulated Tank Bottom & Plastic Tank w/minimum 10 yr warranty		0.04	10
134 F	tes	DHW		29,370	0.04	12
172 F	Res	HP Upgrade	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 1	892,459	0.18	30
175 F	Res	HP Upgrade	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 2	892,459	0.13	30
178 F	Res	HP Upgrade	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Air Source HP - Zone 1	892,459	0.09	30

181 Res	HP Upgrade	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Air Source HP - Zone 2	892,459	0.07	30
184 Res	HP Upgrade	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 1	892,459	0.09	30
187 Res	HP Upgrade	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 2	892,459	0.06	30
190 Res	HP Upgrade	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 1	892,459	0.09	30
193 Res	HP Upgrade	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 2 Post79/Pre93 Single Family Construction	892,459	0.06	30
196 Res	HP Upgrade	Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 1	892,459	0.15	30
199 Res	HP Upgrade	Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 2	892,459	0.11	30
202 Res	HP Upgrade	Geothermal Heat Pump Retrofit w/PTCS on Air Source HP - Zone 1	892,459	0.08	30
205 Res	HP Upgrade	Geothermal Heat Pump Retrofit w/PTCS on Air Source HP - Zone 2	892,459	0.06	30
208 Res	HP Upgrade	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 1 Post79/Pre93 Single Family Construction	892,459	0.06	30
211 Res	HP Upgrade	Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 2 Post79/Pre93 Single Family Construction	892,459	0.04	30
214 Res	HP Upgrade	Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 1	892,459	0.06	30
217 Res	HP Upgrade	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 2	892,459	0.04	30
223 Res	HP Upgrade	Post92 Single Family Contruction Geothermal Heat Pump vs Zonal Heating - Zone 2	892,459	0.18	30
226 Res	HP Upgrade	Post92 Single Family Contruction Geothermal Heat Pump vs FAF w/oCAC - Zone 1	892,459	0.11	30
229 Res	HP Upgrade	Post92 Single Family Contruction Geothermal Heat Pump vs FAF w/oCAC - Zone 2 Post92 Single Family Contruction Geothermal Heat	892,459	0.07	30
232 Res	HP Upgrade	Pump vs FAF w/CAC - Zone 1 Post92 Single Family Contruction Geothermal Heat	892,459	0.11	30
235 Res	HP Upgrade	Pump vs FAF w/CAC - Zone 2 Post92 Single Family Contruction Geothermal Heat	892,459	0.07	30
238 Res	HP Upgrade	Pump vs Air Source Heat Pump - Zone 1 Post92 Single Family Contruction Geothermal Heat	892,459	0.14	30
241 Res	HP Upgrade	Pump vs Air Source Heat Pump - Zone 2	892,459	0.10	30
244 Res	HP Upgrade	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 1	892,459	0.17	30
247 Res	HP Upgrade	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 2	892,459	0.12	30
250 Res	HP Upgrade	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Air Source HP - Zone 1	892,459	0.17	30

256 Res	HP Upgrade	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 1	892,459	0.11	30
259 Res	HP Upgrade	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 2	892,459	0.08	30
262 Res	HP Upgrade	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 1	892,459	0.11	30
265 Res	HP Upgrade	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 2 Post79/Pre93 Single Family Construction	892,459	0.08	30
268 Res	HP Upgrade	Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 1 Post79/Pre93 Single Family Construction	892,459	0.15	30
271 Res	HP Upgrade	Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 2 Post79/Pre93 Single Family Construction	892,459	0.11	30
274 Res	HP Upgrade	Geothermal Heat Pump Retrofit w/PTCS on Air Source HP - Zone 1 Post79/Pre93 Single Family Construction	892,459	0.14	30
277 Res	HP Upgrade	Geothermal Heat Pump Retrofit w/PTCS on Air Source HP - Zone 2 Post79/Pre93 Single Family Construction	892,459	0.11	30
280 Res	HP Upgrade	Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 1	892,459	0.08	30
283 Res	HP Upgrade	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 2	892,459	0.06	30
286 Res	HP Upgrade	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 1	892,459	0.08	30
289 Res	HP Upgrade	Post79/Pre93 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 2	892,459	0.06	30
295 Res	HP Conv	Post92 Single Family Contruction Geothermal Heat Pump vs Zonal Heating - Zone 2	484,272	0.17	30
298 Res	HP Conv	Post92 Single Family Contruction Geothermal Heat Pump vs FAF w/oCAC - Zone 1 Post92 Single Family Contruction Geothermal Heat	484,272	0.14	30
301 Res	HP Conv	Pump vs FAF w/oCAC - Zone 2 Post92 Single Family Contruction Geothermal Heat	484,272	0.10	30
304 Res	HP Conv	Pump vs FAF w/CAC - Zone 1 Post92 Single Family Contruction Geothermal Heat	484,272	0.14	30
307 Res	HP Conv	Pump vs FAF w/CAC - Zone 2 Post92 Single Family Contruction Geothermal Heat	484,272	0.10	30
313 Res	HP Conv	Pump vs Air Source Heat Pump - Zone 2	484,272	0.18	30
316 Res	HP Conv	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 1	484,272	0.17	30
319 Res	HP Conv	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 2	484,272	0.12	30
322 Res	HP Conv	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Air Source HP - Zone 1	484,272	0.22	30

325 Res	HP Conv	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on Air Source HP - Zone 2	484,272	0.17	30
328 Res	HP Conv	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 1	484,272	0.13	30
331 Res	HP Conv	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 2	484,272	0.09	30
334 Res	HP Conv	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 1	484,272	0.13	30
337 Res	HP Conv	Pre80 Single Family Construction Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 2 Post79/Pre93 Single Family Construction	484,272	0.09	30
340 Res	HP Conv	Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 1 Post79/Pre93 Single Family Construction	484,272	0.14	30
343 Res	HP Conv	Geothermal Heat Pump Retrofit w/PTCS on Zonal Heating - Zone 2 Post79/Pre93 Single Family Construction	484,272	0.10	30
346 Res	HP Conv	Geothermal Heat Pump Retrofit w/PTCS on Air Source HP - Zone 1 Post79/Pre93 Single Family Construction	484,272	0.18	30
349 Res	HP Conv	Geothermal Heat Pump Retrofit w/PTCS on Air Source HP - Zone 2 Post79/Pre93 Single Family Construction	484,272	0.14	30
352 Res	HP Conv	Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 1 Post79/Pre93 Single Family Construction	484,272	0.09	30
355 Res	HP Conv	Geothermal Heat Pump Retrofit w/PTCS on FAF w/oCAC - Zone 2 Post79/Pre93 Single Family Construction	484,272	0.07	30
358 Res	HP Conv	Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 1 Post79/Pre93 Single Family Construction	484,272	0.09	30
361 Res	HP Conv	Geothermal Heat Pump Retrofit w/PTCS on FAF w/CAC - Zone 2 Post92 Single Family Contruction Geothermal Heat	484,272	0.07	30
367 Res	HP Conv	Pump vs Zonal Heating - Zone 2 Post92 Single Family Contruction Geothermal Heat	484,272	0.17	30
370 Res	HP Conv	Pump vs FAF w/oCAC - Zone 1 Post92 Single Family Contruction Geothermal Heat	484,272	0.16	30
373 Res	HP Conv	Pump vs FAF w/oCAC - Zone 2 Post92 Single Family Contruction Geothermal Heat	484,272	0.11	30
376 Res	HP Conv	Pump vs FAF w/CAC - Zone 1 Post92 Single Family Contruction Geothermal Heat	484,272	0.16	30
379 Res	HP Conv	Pump vs FAF w/CAC - Zone 2 Pre94 Manufactured Home Convert FAF w/o CAC	484,272	0.11	30
388 Res	MH HP Conv	to HP HSPF 8/SEER 12 - Heating Pre94 Manufactured Home Convert FAF w/o CAC	410,091	0.09	18
390 Res	MH HP Conv	to HP HSPF 8/SEER 12 - Heating Post93 Manufactured Home NonSGC Convert FAF	527,124	0.07	18
392 Res	MH HP Conv	w/o CAC to HP HSPF 8/SEER 12 - Heating	341,756	0.10	18
394 Res	MH HP Conv	Post93 Manufactured Home NonSGC Convert FAF w/o CAC to HP HSPF 8/SEER 12 - Heating	450,441	0.08	18
396 Res	MH HP Conv	SGC Manufactured Home Convert FAF w/o CAC to HP HSPF 8/SEER 12 - Heating	217,385	0.14	18

		SGC Manufactured Home Convert FAF w/o CAC to			
398 Res	MH HP Conv	HP HSPF 8/SEER 12 - Heating	300,697	0.10	18
		Pre94 Manufactured Home Convert FAF w/CAC to	000,007	0.10	10
400 Res	MH HP Conv	HP HSPF 8/SEER 12 - Heating	410,091	0.08	18
		Pre94 Manufactured Home Convert FAF w/CAC to	,		
402 Res	MH HP Conv	HP HSPF 8/SEER 12 - Heating	527,124	0.07	18
		Post93 Manufactured Home NonSGC Convert FAF			
404 Res	MH HP Conv	w/CAC to HP HSPF 8/SEER 12 - Heating	341,756	0.10	18
		Post93 Manufactured Home NonSGC Convert FAF			
406 Res	MH HP Conv	w/CAC to HP HSPF 8/SEER 12 - Heating	450,441	0.08	18
		SGC Manufactured Home Convert FAF w/CAC to			
408 Res	MH HP Conv	HP HSPF 8/SEER 12 - Heating	217,385	0.13	18
		SGC Manufactured Home Convert FAF w/CAC to			
410 Res		HP HSPF 8/SEER 12 - Heating	300,697	0.10	18
412 Res	Shell	SGC - Heating Zone 1	31,387	0.05	70
413 Res	Shell	SGC - Heating Zone 2	92,577	0.05	70
414 Res	Shell	Single Family Weatherization - Zone 1	2,263,516	0.04	45
415 Res	Shell	Single Family Weatherization - Zone 2	4,334,121	0.03	45
416 Res	Shell	Multifamily Weatherization - Heating Zone 1	1,060,596	0.05	45
417 Res	Shell	Multifamily Weatherization - Heating Zone 2 SGCSF - Heating Zone 1	1,394,411 2,416,877	0.04	45 70
418 Res 419 Res	Shell Shell	SGCSF - Heating Zone 2	3,931,820	0.06 0.05	70 70
419 Res	Shell	Pre80 Single Family Construction Convert FAF w/o	3,931,020	0.05	70
420 Res	HP Conv	CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.12	18
420 1163		Pre80 Single Family Construction Convert FAF w/o	404,272	0.12	10
422 Res	HP Conv	CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.10	18
422 1105			-10-1,272	0.10	10
		Post79/Pre93 Single Family Construction Convert			
424 Res	HP Conv	FAF w/o CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.07	18
		-	,		
		Post79/Pre93 Single Family Construction Convert			
426 Res	HP Conv	FAF w/o CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.06	18
		Post92 Single Family Construction Convert FAF			
428 Res	HP Conv	w/o CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.11	18
		Post92 Single Family Construction Convert FAF			
430 Res	HP Conv	w/o CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.09	18
		Pre80 Single Family Construction Convert FAF			
432 Res	HP Conv	w/CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.12	18
101 5		Pre80 Single Family Construction Convert FAF	404.070	0.40	40
434 Res	HP Conv	w/CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.10	18
		Dest70/Dra02 Single Femily Construction Convert			
436 Res	HP Conv	Post79/Pre93 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.07	18
430 1165	TIF COIN	TAI WOAD to THE HOLE OF DELICITY - Heating	404,272	0.07	10
		Post79/Pre93 Single Family Construction Convert			
438 Res	HP Conv	FAF w/CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.06	18
		Post92 Single Family Construction Convert FAF	101,272	0.00	10
440 Res	HP Conv	w/CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.11	18
		Post92 Single Family Construction Convert FAF			
442 Res	HP Conv	w/CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.09	18
		Pre80 Single Family Construction Convert Zonal			
444 Res	HP Conv	Heating w/CAC to HP HSPF 8/SEER 13 - Heat	484,272	0.15	18
		Pre80 Single Family Construction Convert Zonal			
446 Res	HP Conv	Heating w/CAC to HP HSPF 8/SEER 13 - Heat	484,272	0.13	18
		Post79/Pre93 Single Family Construction Convert			
440 5		Zonal Heating w/CAC to HP HSPF 8/SEER 13 -	404.070	0.00	40
448 Res	HP Conv	Heat	484,272	0.09	18

450 Res	HP Conv	Post79/Pre93 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat	484,272	0.08	18
452 Res	HP Conv	Post92 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat	484,272	0.13	18
454 Res	HP Conv	Post92 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat Pre80 Single Family Construction Convert FAF w/o	484,272	0.11	18
468 Res	HP Conv	CAC to HP HSPF 8/SEER 13 - Heating Pre80 Single Family Construction Convert FAF w/o	484,272	0.14	18
470 Res	HP Conv	CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.12	18
472 Res	HP Conv	Post79/Pre93 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.08	18
474 Res	HP Conv	Post79/Pre93 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating Post92 Single Family Construction Convert FAF	484,272	0.07	18
476 Res	HP Conv	w/o CAC to HP HSPF 8/SEER 13 - Heating Post92 Single Family Construction Convert FAF	484,272	0.13	18
478 Res	HP Conv	w/o CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.10	18
480 Res	HP Conv	Pre80 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.14	18
482 Res	HP Conv	Pre80 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.12	18
484 Res	HP Conv	Post79/Pre93 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.08	18
486 Res	HP Conv	Post79/Pre93 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 - Heating Post92 Single Family Construction Convert FAF	484,272	0.07	18
488 Res	HP Conv	w/CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.13	18
490 Res	HP Conv	Post92 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.10	18
492 Res	HP Conv	Pre80 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat	484,272	0.14	18
494 Res	HP Conv	Pre80 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat	484,272	0.12	18
496 Res	HP Conv	Post79/Pre93 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat Post79/Pre93 Single Family Construction Convert	484,272	0.08	18
498 Res	HP Conv	Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat	484,272	0.07	18
500 Res	HP Conv	Post92 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat	484,272	0.13	18
502 Res	HP Conv	Post92 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat Post79/Pre93 Single Family Construction Convert	484,272	0.10	18
510 Res	HP Conv	Zonal Heating w/o CAC to HP HSPF 8/SEER 13 - Heat	484,272	0.13	18

516 Res	Shell	Manufactured Home Weatherization - Heating Zone	6,151,873	0.07	25
0.0.100		Manufactured Home Weatherization - Heating Zone	0,101,010	0101	
517 Res	Shell	2	7,870,990	0.06	25
529 Res	MF Duc Seal	Manufactured Home NonSGC Forced Air Furnace w/o CAC - PTCS Duct Sealing Heat Zone 1	60,322	0.05	20
530 Res	MF Duc Seal	Manufactured Home NonSGC Forced Air Furnace w/o CAC - PTCS Duct Sealing Heat Zone 2 Manufactured Home SGC Forced Air Furnace w/o	89,539	0.04	20
531 Res	MF Duc Seal	CAC - PTCS Duct Sealing Heat Zone 1	32,672	0.10	20
532 Res	MF Duc Seal	Manufactured Home SGC Forced Air Furnace w/o CAC - PTCS Duct Sealing Heat Zone 2	52,508	0.06	20
537 Res	SF Com	Single Family Heat Pump - PTCS System Commissioning Heat Zone 1 Single Family Heat Pump - PTCS System	222,025	0.26	5
539 Res	SF Com	Commissioning Heat Zone 2	383,505	0.15	5
541 Res	SF Com	Single Family Heat Pump - PTCS Duct Sealing and System Commissioning Heat Zone 1 Single Family Heat Pump - PTCS Duct Sealing and	1,183,530	0.05	20
543 Res	SF Com	System Commissioning Heat Zone 2	2,038,711	0.03	20
549 Res	MH Duct Sea	Manufactured Home NonSGC Heat Pump - PTCS Duct Sealing Heat Zone 1	37,507	0.09	20
551 Res	MH Duct Sea	Manufactured Home NonSGC Heat Pump - PTCS Duct Sealing Heat Zone 2	65,568	0.05	20
553 Res	MH Com	Manufactured Home NonSGC Heat Pump - PTCS System Commissioning Heat Zone 1	17,514	0.28	5
555 Res	MH Com	Manufactured Home NonSGC Heat Pump - PTCS System Commissioning Heat Zone 2	30 317	0.16	5
555 Res		Manufactured Home NonSGC Heat Pump - PTCS Duct Sealing and System Commissioning Heat	30,317	0.10	5
557 Res	MH Duct Sea		55,020	0.09	20
		Manufactured Home NonSGC Heat Pump - PTCS Duct Sealing and System Commissioning Heat			
559 Res	MH Duct Sea		95,885	0.05	20
561 Dec	MH Duct Sea	Manufactured Home NonSGC Heat Pump - PTCS Duct Sealing, Commissioning and Controls Heat	62.404	0.10	20
561 Res	MH Duct Sea	Manufactured Home NonSGC Heat Pump - PTCS	62,104	0.10	20
563 Res	MH Duct Sea	Duct Sealing, Commissioning and Controls Heat Zone 2	92,314	0.06	20
565 Res	MH Duct Sea	Manufactured Home SGC Heat Pump - PTCS Duct Sealing Heat Zone 1	20,752	0.15	20
507 0		Manufactured Home SGC Heat Pump - PTCS Duct	00.400	0.00	
567 Res	MH Duct Sea	I Sealing Heat Zone 2 Manufactured Home SGC Heat Pump - PTCS	39,129	0.08	20
569 Res	MH Com	System Commissioning Heat Zone 1 Manufactured Home SGC Heat Pump - PTCS	9,692	0.51	5
571 Res	MH Com	System Commissioning Heat Zone 2	18,094	0.27	5
573 Res	MH Duct Sea	Manufactured Home SGC Heat Pump - PTCS Duct Sealing and System Commissioning Heat Zone 1	30,444	0.17	20
575 Res	MH Duct Sea	Manufactured Home SGC Heat Pump - PTCS Duct Sealing and System Commissioning Heat Zone 2	57,223	0.09	20
577 Res	MH Duct Sea	Manufactured Home SGC Heat Pump - PTCS Duct Sealing, Commissioning and Controls Heat Zone 1	34,399	0.17	20

579 Res	MH Duct Seal	Manufactured Home SGC Heat Pump - PTCS Duct Sealing, Commissioning and Controls Heat Zone 2	55,088	0.11	20
593 Res	MH Duct Seal	Manufactured Home NonSGC Forced Air Furnace w/CAC - PTCS Duct Sealing Heat Zone 1	60,322	0.05	20
595 Res	MH Duct Sea	Manufactured Home NonSGC Forced Air Furnace w/CAC - PTCS Duct Sealing Heat Zone 2 Manufactured Home NonSGC Forced Air Furnace w/CAC - PTCS Duct Sealing and System	89,539	0.04	20
601 Res	MH Duct Sea	Commissioning Heat Zone 1 Manufactured Home NonSGC Forced Air Furnace w/CAC - PTCS Duct Sealing and System	60,322	0.05	20
603 Res	MH Duct Seal	Commissioning Heat Zone 2 Manufactured Home SGC Forced Air Furnace	89,539	0.04	20
605 Res		w/CAC - PTCS Duct Sealing Heat Zone 1 Manufactured Home SGC Forced Air Furnace	32,672	0.10	20
607 Res	MH Duct Seal	w/CAC - PTCS Duct Sealing Heat Zone 2 Manufactured Home SGC Forced Air Furnace w/CAC - PTCS Duct Sealing and System	52,508	0.06	20
613 Res	MH Duct Sea	Commissioning Heat Zone 1 Manufactured Home SGC Forced Air Furnace w/CAC - PTCS Duct Sealing and System	32,672	0.10	20
615 Res	MH Duct Seal	Commissioning Heat Zone 2	52,508	0.06	20
617 Res	Shell	SGC - Zone 1	538,582	0.05	45
618 Res	Shell	SGC - Zone 2	1,089,896	0.04	45
005 D		Pre94 NonSGC Manufactured Home Convert FAF w/o CAC to Energy Star Geothermal Heat Pump	404.070	0.00	00
625 Res	HP Conv	w/PTCS Specifications - Heating Zone 1 Pre94 NonSGC Manufactured Home Convert FAF w/o CAC to Energy Star Geothermal Heat Pump	484,272	0.09	30
628 Res	HP Conv	w/PTCS Specifications - Heating Zone 2 Pre94 NonSGC Manufactured Home Convert FAF	484,272	0.07	30
631 Res	HP Conv	w/CAC to Energy Star Geothermal Heat Pump w/PTCS Specifications - Heating Zone 1 Pre94 NonSGC Manufactured Home Convert FAF	484,272	0.09	30
634 Res	HP Conv	w/CAC to Energy Star Geothermal Heat Pump w/PTCS Specifications - Heating Zone 2 Post93 NonSGC Manufactured Home Convert FAF	484,272	0.07	30
643 Res	HP Conv	w/o CAC to Energy Star Geothermal Heat Pump w/PTCS Specifications - Heating Zone 1 Post93 NonSGC Manufactured Home Convert FAF	484,272	0.13	30
646 Res	HP Conv	w/o CAC to Energy Star Geothermal Heat Pump w/PTCS Specifications - Heating Zone 2	484,272	0.09	30
649 Res	HP Conv	Post93 NonSGC Manufactured Home Convert FAF w/CAC to Energy Star Geothermal Heat Pump w/PTCS Specifications - Heating Zone 1	484,272	0.13	30
652 Res	HP Conv	Post93 NonSGC Manufactured Home Convert FAF w/CAC to Energy Star Geothermal Heat Pump w/PTCS Specifications - Heating Zone 2	484,272	0.09	30
658 Res	HP Conv	SGC Manufactured Home Convert FAF w/o CAC to Energy Star Geothermal Heat Pump w/PTCS Specifications - Heating Zone 2	484,272	0.13	30
000 1785		SGC Manufactured Home Convert FAF w/CAC to Energy Star Geothermal Heat Pump w/PTCS	404,2 <i>1</i> 2	0.13	30
664 Res	HP Conv	Specifications - Heating Zone 2 Pre80 Single Family Construction CAC Upgrade	484,272	0.13	30
673 Res	AC Upgrade	SEER - Cooling Zone 3	224,848	0.56	18

		Post79/Pre93 Single Family Construction CAC			
674 Res	AC Upgrade	Upgrade SEER - Cooling Zone 3	224,848	0.36	18
675 Res	AC Upgrade	Post92 Single Family Construction CAC Upgrade SEER - Cooling Zone 3	224,848	0.47	18
676 Res	HP Upgrade	Pre80 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 1	892,459	0.17	18
678 Res	HP Upgrade	Pre80 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 2	892,459	0.10	18
680 Res	HP Upgrade	Post79/Pre93 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 1	892,459	0.10	18
682 Res	HP Upgrade	Post79/Pre93 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 2	892,459	0.06	18
684 Res	HP Upgrade	Post92 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 1	892,459	0.16	18
686 Res	HP Upgrade	Post92 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 2	892,459	0.09	18
688 Res	AC Upgrade	Pre80 Single Family Construction CAC Upgrade SEER - Cooling Zone 3	224,848	0.33	18
689 Res	AC Upgrade	Post79/Pre93 Single Family Construction CAC Upgrade SEER - Cooling Zone 3	224,848	0.21	18
690 Res	AC Upgrade	Post92 Single Family Construction CAC Upgrade SEER - Cooling Zone 3	224,848	0.28	18
691 Res	HP Upgrade	Pre80 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 1	892,459	0.06	18
693 Res	HP Upgrade	Pre80 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 2	892,459	0.04	18
695 Res	HP Upgrade	Post79/Pre93 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 1	892,459	0.04	18
697 Res	HP Upgrade	Post79/Pre93 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 2	892,459	0.02	18
699 Res	HP Upgrade	Post92 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 1	892,459	0.06	18
701 Res	HP Upgrade	Post92 Single Family Construction HP Upgrade HSPF 8 - Heating Zone 2	892,459	0.03	18
703 Res	AC Upgrade	Pre94 Manufactured Home CAC Upgrade SEER w/PTCS - Cooling Zone 3	224,848	0.28	18
704 Res	AC Upgrade	Post93 Manufactured Home NonSGC CAC Upgrade SEER w/PTCS - Cooling Zone 3	224,848	0.29	18
705 Res	AC Upgrade	SGC Manufactured Home CAC Upgrade SEER w/PTCS - Cooling Zone 3	224,848	0.39	18
710 Res	HP Upgrade	Post93 Manufactured Home NonSGC HP Upgrade HSPF 8 w/PTCS - Cooling Zone 1	892,459	0.09	18
712 Res	HP Upgrade	Post93 Manufactured Home NonSGC HP Upgrade HSPF 8 w/PTCS - Cooling Zone 2	892,459	0.04	18
718 Res	HP Conv	Pre80 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.10	18
720 Res	HP Conv	Pre80 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.08	18
		Post79/Pre93 Single Family Construction Convert			
722 Res	HP Conv	FAF w/o CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.06	18
724 Res	HP Conv	Post79/Pre93 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.05	18
726 Res	HP Conv	Post92 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.09	18
728 Res	HP Conv	Post92 Single Family Construction Convert FAF w/o CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.07	18

700 0		Pre80 Single Family Construction Convert FAF	404.070	0.40	40
730 Res	HP Conv	w/CAC to HP HSPF 8/SEER 13 - Heating Pre80 Single Family Construction Convert FAF	484,272	0.10	18
732 Res	HP Conv	w/CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.08	18
734 Res	HP Conv	Post79/Pre93 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.06	18
736 Res	HP Conv	Post79/Pre93 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 - Heating Post02 Single Family Construction Convert FAF	484,272	0.05	18
738 Res	HP Conv	Post92 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.09	18
740 Res	HP Conv	Post92 Single Family Construction Convert FAF w/CAC to HP HSPF 8/SEER 13 - Heating	484,272	0.07	18
746 Res	HP Conv	Post79/Pre93 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat Post79/Pre93 Single Family Construction Convert	484,272	0.11	18
748 Res	HP Conv	Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat	484,272	0.10	18
752 Res	HP Conv	Post92 Single Family Construction Convert Zonal Heating w/CAC to HP HSPF 8/SEER 13 - Heat Pre80 Single Family Construction CAC Upgrade	484,272	0.15	18
766 Res	AC Upgrade	SEER - Cooling Zone 3 Post79/Pre93 Single Family Construction CAC	224,848	0.41	18
767 Res	AC Upgrade	Upgrade SEER - Cooling Zone 3 Post92 Single Family Construction CAC Upgrade	224,848	0.26	18
768 Res	AC Upgrade	SEER - Cooling Zone 3 Pre80 Single Family Construction HP Upgrade	224,848	0.34	18
769 Res	HP Upgrade	HSPF 8 - Heating Zone 1 Pre80 Single Family Construction HP Upgrade	892,459	0.12	18
771 Res	HP Upgrade	HSPF 8 - Heating Zone 2 Post79/Pre93 Single Family Construction HP	892,459	0.07	18
773 Res	HP Upgrade	Upgrade HSPF 8 - Heating Zone 1 Post79/Pre93 Single Family Construction HP	892,459	0.07	18
775 Res	HP Upgrade	Upgrade HSPF 8 - Heating Zone 2 Post92 Single Family Construction HP Upgrade	892,459	0.04	18
777 Res	HP Upgrade	HSPF 8 - Heating Zone 1 Post92 Single Family Construction HP Upgrade	892,459	0.11	18
779 Res	HP Upgrade	HSPF 8 - Heating Zone 2	892,459	0.06	18
783 Res	Lighting	Energy Conservation School Program	13,728,000	0.02	7
785 Res	HVAC	Heating System Maintenance (tune-up/filter)	416,000	0.00	12
21 Non-Res	HVAC	VSD Small Fan	13,000,000	0.16	15
22 Non-Res	HVAC	VSD Medium fan	13,000,000	0.10	15
23 Non-Res	HVAC	VSD Large Fan	13,000,000	0.07	15
24 Non-Res	HVAC	VSD Pump	13,000,000	0.11	15
27 Non-Res	Energy Smart	Night Covers for Display Cases - Vertical	9,464,000	0.02	5
28 Non-Res	Energy Smart	Night Covers for Display Cases - Horizontal	9,464,000	0.04	5
29 Non-Res	Energy Smart	Strip Curtains for Walk-in Boxes	9,464,000	0.00	4
30 Non-Res	Energy Smart	Glass Doors on Open Display Cases (LT)	9,464,000	0.03	12
31 Non-Res	Energy Smart	Glass Doors on Open Display Cases (MT)	9,464,000	0.08	12
34 Non-Res	Energy Smart	Special Doors with Low/No Anti-Sweat Heat	9,464,000	0.05	12
35 Non-Res		Anti-Sweat Heat Controls	9,464,000	0.03	11
36 Non-Res		Auto-Closers for Coolers and Freezers	9,464,000	0.01	8
37 Non-Res	•••	Evaporative fan controller on walk-in	9,464,000	0.07	5
40 Non-Res	•••	Floating Head Pressure Controller	9,464,000	0.04	12
44 Non-Res	HVAC	Built-Up HVAC Controls Optimization-Large Off- GasHt-Retro	260,000	0.07	8

		Duilt Ha HVAO Oratarla Ortigaination Madium Off			
45 Non-Res	HVAC	Built-Up HVAC Controls Optimization-Medium Off- GasHt-Retro	260,000	0.08	8
46 Non-Res	HVAC	Built-Up HVAC Controls Optimization-Small Off- GasHt-Retro	260,000	0.25	8
		Built-Up HVAC Controls Optimization-Big Box-			
47 Non-Res	HVAC	GasHt-Retro Built-Up HVAC Controls Optimization-Small Box-	260,000	0.10	8
48 Non-Res	HVAC	GasHt-Retro	260,000	0.23	8
49 Non-Res	HVAC	Built-Up HVAC Controls Optimization-High End- GasHt-Retro	260,000	0.17	8
50 Non-Res	HVAC	Built-Up HVAC Controls Optimization-Anchor- GasHt-Retro	260,000	0.06	8
		Built-Up HVAC Controls Optimization-K-12-GasHt-			
51 Non-Res	HVAC	Retro Built-Up HVAC Controls Optimization-University-	260,000	0.29	8
52 Non-Res	HVAC	GasHt-Retro Built-Up HVAC Controls Optimization-Warehouse-	260,000	0.10	8
53 Non-Res	HVAC	GasHt-Retro	260,000	0.28	8
54 Non-Res	HVAC	Built-Up HVAC Controls Optimization-Supermarket- GasHt-Retro	260,000	0.08	8
		Built-Up HVAC Controls Optimization-MIniMart-			
55 Non-Res	HVAC	GasHt-Retro Built-Up HVAC Controls Optimization-Restaurant-	260,000	0.11	8
56 Non-Res	HVAC	GasHt-Retro Built-Up HVAC Controls Optimization-Lodging-	260,000	0.10	8
57 Non-Res	HVAC	GasHt-Retro	260,000	0.08	8
58 Non-Res	HVAC	Built-Up HVAC Controls Optimization-Hospital- GasHt-Retro	260,000	0.06	8
50 Nee Dee		Built-Up HVAC Controls Optimization-OtherHealth-		0.07	0
59 Non-Res	HVAC	GasHt-Retro Built-Up HVAC Controls Optimization-Other-GasHt-	260,000	0.07	8
60 Non-Res	HVAC	Retro Built-Up HVAC Controls Optimization-Large Off-	260,000	0.23	8
61 Non-Res	HVAC	ElecHt-Retro	260,000	0.05	8
62 Non-Res	HVAC	Built-Up HVAC Controls Optimization-Medium Off- ElecHt-Retro	260,000	0.05	8
63 Non-Res		Built-Up HVAC Controls Optimization-Small Off- ElecHt-Retro	260,000	0.15	8
03 NUII-Res	HVAC	Built-Up HVAC Controls Optimization-Big Box-	200,000	0.15	0
64 Non-Res	HVAC	ElecHt-Retro Built-Up HVAC Controls Optimization-Small Box-	260,000	0.09	8
65 Non-Res	HVAC	ElecHt-Retro	260,000	0.17	8
66 Non-Res	HVAC	Built-Up HVAC Controls Optimization-High End- ElecHt-Retro	260,000	0.14	8
67 Non-Res	HVAC	Built-Up HVAC Controls Optimization-Anchor- ElecHt-Retro	260,000	0.05	8
		Built-Up HVAC Controls Optimization-K-12-ElecHt-			
68 Non-Res	HVAC	Retro Built-Up HVAC Controls Optimization-University-	260,000	0.05	8
69 Non-Res	HVAC	ElecHt-Retro	260,000	0.06	8
70 Non-Res	HVAC	Built-Up HVAC Controls Optimization-Warehouse- ElecHt-Retro	260,000	0.11	8
71 Non-Res	HVAC	Built-Up HVAC Controls Optimization-Supermarket- ElecHt-Retro	260,000	0.05	8
		Built-Up HVAC Controls Optimization-MIniMart-			
72 Non-Res	HVAC	ElecHt-Retro Built-Up HVAC Controls Optimization-Restaurant-	260,000	0.09	8
73 Non-Res	HVAC	ElecHt-Retro	260,000	0.08	8

		Built-Up HVAC Controls Optimization-Lodging-			
74 Non-Res	HVAC	ElecHt-Retro	260,000	0.05	8
75 Non-Res	HVAC	Built-Up HVAC Controls Optimization-Hospital- ElecHt-Retro	260,000	0.04	8
		Built-Up HVAC Controls Optimization-OtherHealth-	200,000	0.01	U
76 Non-Res	HVAC	ElecHt-Retro Built-Up HVAC Controls Optimization-Other-ElecHt-	260,000	0.04	8
77 Non-Res	HVAC	Retro	260,000	0.13	8
78 Non-Res		Built-Up HVAC Controls Optimization-Large Off- HtPmpHt-Retro	260.000	0.06	0
10 NUII-RES	HVAC	Built-Up HVAC Controls Optimization-Medium Off-	260,000	0.06	8
79 Non-Res	HVAC	HtPmpHt-Retro	260,000	0.07	8
80 Non-Res	HVAC	Built-Up HVAC Controls Optimization-Small Off- HtPmpHt-Retro	260,000	0.19	8
		Built-Up HVAC Controls Optimization-Big Box-			
81 Non-Res	HVAC	HtPmpHt-Retro Built-Up HVAC Controls Optimization-Small Box-	260,000	0.09	8
82 Non-Res	HVAC	HtPmpHt-Retro	260,000	0.20	8
83 Non-Res	HVAC	Built-Up HVAC Controls Optimization-High End- HtPmpHt-Retro	260,000	0.17	8
03 1001-128	IIVAC	Built-Up HVAC Controls Optimization-Anchor-	200,000	0.17	0
84 Non-Res	HVAC	HtPmpHt-Retro	260,000	0.06	8
85 Non-Res	HVAC	Built-Up HVAC Controls Optimization-K-12- HtPmpHt-Retro	260,000	0.08	8
		Built-Up HVAC Controls Optimization-University-			
86 Non-Res	HVAC	HtPmpHt-Retro Built-Up HVAC Controls Optimization-Warehouse-	260,000	0.08	8
87 Non-Res	HVAC	HtPmpHt-Retro	260,000	0.17	8
88 Non-Res	HVAC	Built-Up HVAC Controls Optimization-Supermarket- HtPmpHt-Retro	260,000	0.07	8
	110/10	Built-Up HVAC Controls Optimization-Restaurant-	200,000	0.07	0
90 Non-Res	HVAC	HtPmpHt-Retro Built-Up HVAC Controls Optimization-Lodging-	260,000	0.10	8
91 Non-Res	HVAC	HtPmpHt-Retro	260,000	0.06	8
		Built-Up HVAC Controls Optimization-Hospital-	200.000	0.05	0
92 Non-Res	HVAC	HtPmpHt-Retro Built-Up HVAC Controls Optimization-OtherHealth-	260,000	0.05	8
93 Non-Res	HVAC	HtPmpHt-Retro	260,000	0.05	8
94 Non-Res	HVAC	Built-Up HVAC Controls Optimization-Other- HtPmpHt-Retro	260,000	0.17	8
115 Non-Res	IIVAO	Controls Commission-New	21,960	0.07	12
		Replace 12 inch Red Incandescent Left Turn Bay			
117 Non-Res	Traffic Lights	with 12 inch Red LED module	208,000	0.02	5
118 Non-Res	Traffic Lights	Replace 12 inch Green Incandescent Left Turn Bay with 12 inchGreen LED module	208,000	0.06	16
	-	Replace 12 inch Red Incandescent Thru Lane with			
119 Non-Res	Traffic Lights	12 inch Red LED module Replace 12 inch Green Incandescent Thru Lane	208,000	0.02	6
120 Non-Res	Traffic Lights	with 12 inch Green LED module	208,000	0.05	7
	Troffic Linkto	Replace 8 inch Red Incandescent Left Turn Bay	200.000	0.04	~
121 Non-Res	Traffic Lights	with 8 inch Red LED module Replace 8 inch Red Incandescent Thru Lane with 8	208,000	0.04	5
123 Non-Res	Traffic Lights	inch Red LED module	208,000	0.04	6
129 Non-Res	Lighting-CFL	INC to CFL-Large Off-New-ElecHt	163,800	0.01	15
132 Non-Res	Lighting-CFL	INC to CFL-Large Off-New-HtPmpHt	163,800	0.01	15
135 Non-Res	Lighting-CFL	INC to CFL-Large Off-New-GasHt	163,800	0.01	15
138 Non-Res	Lighting-CFL	INC to CFL-Medium Off-New-ElecHt	163,800	0.01	15
141 Non-Res	Lighting-CFL	INC to CFL-Medium Off-New-HtPmpHt	163,800	0.01	15

144 Non-Res	Lighting-CFL INC to CFL-Medium Off-New-GasHt	163,800	0.01 1	15
148 Non-Res	Lighting-CFL INC to CFL-Small Off-New-ElecHt	163,800	0.01 1	15
152 Non-Res	Lighting-CFL INC to CFL-Small Off-New-HtPmpHt	163,800	0.01 1	15
154 Non-Res	Lighting-T12TI F96T12 to T8HP-Small Off-New-GasHt	602,173	0.01 1	15
156 Non-Res	Lighting-CFL INC to CFL-Small Off-New-GasHt	163,800	0.02 1	15
159 Non-Res	Lighting-CFL INC to CMH-Big Box-New-ElecHt	81,900	0.04 1	15
161 Non-Res	Lighting-HID Large MH to T5HO-Big Box-New-ElecHt	441,447	0.00 1	15
163 Non-Res	Lighting-CFL INC to CMH-Big Box-New-HtPmpHt	81,900	0.03 1	15
165 Non-Res	Lighting-HID Large MH to T5HO-Big Box-New-HtPmpHt	441,447	0.00 1	15
167 Non-Res	Lighting-CFL INC to CMH-Big Box-New-GasHt	81,900	0.04 1	15
169 Non-Res	Lighting-HID Large MH to T5HO-Big Box-New-GasHt	441,447	0.01 1	15
173 Non-Res	Lighting-CFL INC to CMH-Small Box-New-ElecHt	81,900	0.06 1	15
178 Non-Res	Lighting-CFL INC to CMH-Small Box-New-HtPmpHt	81,900	0.04 1	15
180 Non-Res	Lighting-T12TI F96T12 to T8HP-Small Box-New-GasHt	602,173	0.01 1	15
183 Non-Res	Lighting-CFL INC to CMH-Small Box-New-GasHt	81,900		15
184 Non-Res	Lighting-HID Med MH to T8HP-Small Box-New-GasHt	441,447		15
187 Non-Res	Lighting-CFL INC to CMH-High End-New-ElecHt	81,900		15
192 Non-Res	Lighting-CFL INC to CMH-High End-New-HtPmpHt	81,900		15
195 Non-Res	Lighting-T12T{T12-3 to T8HP-2-High End-New-GasHt	602,173		15
197 Non-Res	Lighting-CFL INC to CMH-High End-New-GasHt	81,900		15
		01,000	0.00	10
208 Non-Res	Lighting-T12T{F96T12 to T8HP-Anchor-New-GasHt	602,173	0.01 1	15
211 Non-Res	Lighting-HID Med MH to T8HP-Anchor-New-GasHt	441,447	0.01 1	15
214 Non-Res	Lighting-CFL INC to CFL-K-12-New-ElecHt	145,600	0.02 1	15
218 Non-Res	Lighting-CFL INC to CFL-K-12-New-HtPmpHt	145,600		15
222 Non-Res	Lighting-CFL INC to CFL-K-12-New-GasHt	145,600		15
225 Non-Res	Lighting-CFL INC to CMH-University-New-ElecHt	145,600		15
228 Non-Res	Lighting-CFL INC to CMH-University-New-HtPmpHt	145,600		15
231 Non-Res	Lighting-CFL INC to CMH-University-New-GasHt	145,600		15
235 Non-Res	Lighting-CFL INC to CFL-Warehouse-New-ElecHt	655,200		15
237 Non-Res	Lighting-HID Large MH to T5HO-Warehouse-New-ElecHt	441,447		15
240 Non-Res	Lighting-CFL INC to CFL-Warehouse-New-HtPmpHt	655,200		15
242 Non-Res	Lighting-HID Large MH to T5HO-Warehouse-New-HtPmpHt	441,447		15
243 Non-Res	Lighting-T12T F96T12 to T8HP-Warehouse-New-GasHt	602,173		15
245 Non-Res	Lighting-CFL INC to CFL-Warehouse-New-GasHt	655,200		15
247 Non-Res	Lighting-HID Large MH to T5HO-Warehouse-New-GasHt	441,447		15
252 Non-Res	Lighting-HID Med MH to T5HO-Supermarket-New-ElecHt	441,447		15
257 Non-Res	Lighting-HID Med MH to T5HO-Supermarket-New-HtPmpHt	441,447		15
	Lighting-T12T F96T12 to T8HP-Supermarket-New-GasHt	602,173		15
262 Non-Res	Lighting-HID Med MH to T5HO-Supermarket-New-GasHt	441,447		
265 Non-Res	Lighting-CFL INC to CMH-MIniMart-New-ElecHt	81,900		15 15
	Lighting-CFL INC to CMH-MIniMart-New-HtPmpHt			15 15
269 Non-Res	Lighting-T12T{F96T12 to T8HP-MIniMart-New-GasHt	81,900		15
271 Non-Res	Lighting-CFL INC to CMH-MIniMart-New-GasHt	602,173		15
273 Non-Res		81,900		15
278 Non-Res	Lighting-CFL INC to CFL-Restaurant-New-ElecHt	72,800		15
283 Non-Res	Lighting-CFL INC to CFL-Restaurant-New-HtPmpHt	72,800		15
285 Non-Res	Lighting-T12T F96T12 to T8HP-Restaurant-New-GasHt	602,173		15
288 Non-Res	Lighting-CFL INC to CFL-Restaurant-New-GasHt	72,800		15
292 Non-Res	Lighting-CFL INC to CFL-Lodging-New-ElecHt	218,400		15
297 Non-Res	Lighting-CFL INC to CFL-Lodging-New-HtPmpHt	218,400		15
300 Non-Res	Lighting-T12Tł F96T12 to T8HP-Lodging-New-GasHt	602,173		15
302 Non-Res	Lighting-CFL INC to CFL-Lodging-New-GasHt	218,400		15
307 Non-Res	Lighting-CFL INC to CFL-Hospital-New-ElecHt	9,100		15
311 Non-Res	Lighting-CFL INC to CFL-Hospital-New-HtPmpHt	9,100		15
313 Non-Res	Lighting-T12Tl F96T12 to T8HP-Hospital-New-GasHt	602,173		15
315 Non-Res	Lighting-CFL INC to CFL-Hospital-New-GasHt	9,100		15
316 Non-Res	Lighting-HID Med MH to T8HP-Hospital-New-GasHt	441,447	0.02 1	15

319 Non-Res	Lighting-CFL INC to CFL-OtherHealth-New-ElecHt	9,100	0.01	15
324 Non-Res	Lighting-CFL INC to CFL-OtherHealth-New-HtPmpHt	9,100	0.01	15
329 Non-Res	Lighting-CFL INC to CFL-OtherHealth-New-GasHt	9,100	0.01	15
331 Non-Res	Lighting-HID Med MH to T8HP-OtherHealth-New-GasHt	441,447	0.00	15
334 Non-Res	Lighting-CFL INC to CFL-Other-New-ElecHt	145,600	0.01	15
335 Non-Res	Lighting-HID Med MH to T5HO-Other-New-ElecHt	441,447	0.01	15
336 Non-Res	Lighting-HID Large MH to T5HO-Other-New-ElecHt	441,447	0.00	15
339 Non-Res	Lighting-CFL INC to CFL-Other-New-HtPmpHt	145,600	0.01	15
340 Non-Res	Lighting-HID Med MH to T5HO-Other-New-HtPmpHt	441,447	0.01	15
341 Non-Res	Lighting-HID Large MH to T5HO-Other-New-HtPmpHt	441,447	0.00	15
344 Non-Res	Lighting-CFL INC to CFL-Other-New-GasHt	145,600	0.01	15
345 Non-Res	Lighting-HID Med MH to T5HO-Other-New-GasHt	441,447	0.02	15
346 Non-Res	Lighting-HID Large MH to T5HO-Other-New-GasHt	441,447	0.01	15
347 Non-Res	Lighting-T12TI T12-4 to T8HP-2-Large Off-Retro-ElecHt-PRE1987	602,173	0.02	15
350 Non-Res	Lighting-CFL INC to CFL-Large Off-Retro-ElecHt-PRE1987	163,800	0.03	15
351 Non-Res	Lighting-T12T F96T12 to T8HP-Large Off-Retro-ElecHt-PRE1987	602,173	0.08	15
	T12-4 to T8HP-2-Large Off-Retro-HtPmpHt-	, , ,		
352 Non-Res	5 i	602,173	0.01	15
002 1001 1000		002,170	0.01	10
355 Non-Res	Lighting-CFL INC to CFL-Large Off-Retro-HtPmpHt-PRE1987	163,800	0.03	15
356 Non Pos	F96T12 to T8HP-Large Off-Retro-HtPmpHt- Lighting-T12Tł PRE1987	602,173	0.07	15
330 NOII-RES		002,175	0.07	15
357 Non-Res	Lighting-T12TI T12-4 to T8HP-2-Large Off-Retro-GasHt-PRE1987	602,173	0.02	15
360 Non-Res	Lighting-CFL INC to CFL-Large Off-Retro-GasHt-PRE1987	163,800	0.02	15
		100,000	0.00	10
361 Non-Res	Lighting-T12Tł F96T12 to T8HP-Large Off-Retro-GasHt-PRE1987 T12-4 to T8HP-2-Medium Off-Retro-ElecHt-	602,173	0.07	15
362 Non-Res	Lighting-T12T{PRE1987	602,173	0.02	15
365 Non-Res	Lighting-CFL INC to CFL-Medium Off-Retro-ElecHt-PRE1987	163,800	0.04	15
	F96T12VHO to T8HP-4-Medium Off-Retro-ElecHt-			
366 Non-Res	Lighting-T12T{PRE1987	602,173	0.01	15
	T12-4 to T8HP-2-Medium Off-Retro-HtPmpHt-			
368 Non-Res	Lighting-T12T PRE1987	602,173	0.02	15
371 Non-Res	Lighting-CFL INC to CFL-Medium Off-Retro-HtPmpHt-PRE1987	163,800	0.03	15
	F96T12VHO to T8HP-4-Medium Off-Retro-			
372 Non-Res	Lighting-T12T{HtPmpHt-PRE1987	602,173	0.01	15
	T12-4 to T8HP-2-Medium Off-Retro-GasHt-			
374 Non-Res	Lighting-T12T PRE1987	602,173	0.02	15
377 Non-Res	Lighting-CFL INC to CFL-Medium Off-Retro-GasHt-PRE1987	163,800	0.04	15
070 N D	F96T12VHO to T8HP-4-Medium Off-Retro-GasHt-	000 170	0.00	4 -
378 Non-Res	Lighting-T12T PRE1987	602,173	0.02	15
	Linking T40T/T12.4 to T9UD 2. Small Off Dates Float th DDF1097	000 170	0.00	45
380 Non-Res	Lighting-T12TI T12-4 to T8HP-2-Small Off-Retro-ElecHt-PRE1987 Lighting-CFL INC to CFL-Small Off-Retro-ElecHt-PRE1987	602,173	0.03	15
383 Non-Res	F96T12VHO to T8HP-4-Small Off-Retro-ElecHt-	163,800	0.06	15
384 Non-Res	Lighting-T12T/ PRE1987	602,173	0.02	15
304 NUII-RES	T12-4 to T8HP-2-Small Off-Retro-HtPmpHt-	002,175	0.02	15
386 Non-Res	Lighting-T12T/ PRE1987	602,173	0.02	15
389 Non-Res	Lighting-CFL INC to CFL-Small Off-Retro-HtPmpHt-PRE1987	163,800	0.02	15
	F96T12VHO to T8HP-4-Small Off-Retro-HtPmpHt-		0.07	10
390 Non-Res	Lighting-T12T{PRE1987	602,173	0.02	15
300			0.02	
392 Non-Res	Lighting-T12Tt T12-4 to T8HP-2-Small Off-Retro-GasHt-PRE1987	602,173	0.03	15

395 Non-Res	Lighting-CFL INC to CFL-Small Off-Retro-GasHt-PRE1987	163,800	0.05	15
396 Non-Res	F96T12VHO to T8HP-4-Small Off-Retro-GasHt- Lighting-T12T≀PRE1987	602,173	0.03	15
398 Non-Res	Lighting-T12TI T12-3 to T8HP-3-Big Box-Retro-ElecHt-PRE1987	602,173	0.04	15
401 Non-Res	Lighting-HID Large MH to T5HO-Big Box-Retro-ElecHt-PRE1987	441,447	0.05	15
402 Non-Res	Lighting-T12TI T12-3 to T8HP-3-Big Box-Retro-HtPmpHt-PRE1987	602,173	0.03	15
405 Non-Res	Large MH to T5HO-Big Box-Retro-HtPmpHt- Lighting-HID PRE1987	441,447	0.04	15
406 Non-Res	Lighting-T12TI T12-3 to T8HP-3-Big Box-Retro-GasHt-PRE1987	602,173	0.04	15
409 Non-Res	Lighting-HID Large MH to T5HO-Big Box-Retro-GasHt-PRE1987	441,447	0.05	15
410 Non-Res	Lighting-T12TI T12-4 to T8HP-3-Small Box-Retro-ElecHt-PRE1987	602,173	0.03	15
412 Non-Res	Lighting-T12TI F96T12 to T8HP-Small Box-Retro-ElecHt-PRE1987	602,173	0.12	15
414 Non-Res	Med MH to T8HP-Small Box-Retro-ElecHt- Lighting-HID PRE1987	441,447	0.13	15
415 Non-Res	T12-4 to T8HP-3-Small Box-Retro-HtPmpHt- Lighting-T12T≀PRE1987	602,173	0.02	15
417 Non-Res	F96T12 to T8HP-Small Box-Retro-HtPmpHt- Lighting-T12T{PRE1987	602,173	0.09	15
419 Non-Res	Med MH to T8HP-Small Box-Retro-HtPmpHt- Lighting-HID PRE1987	441,447	0.09	15
420 Non-Res	Lighting-T12TI T12-4 to T8HP-3-Small Box-Retro-GasHt-PRE1987	602,173	0.03	15
422 Non-Res	Lighting-T12TI F96T12 to T8HP-Small Box-Retro-GasHt-PRE1987	602,173	0.09	15
424 Non-Res	Lighting-HID Med MH to T8HP-Small Box-Retro-GasHt-PRE1987	441,447	0.10	15
425 Non-Res	Lighting-T12TI T12-3 to T8HP-3-High End-Retro-ElecHt-PRE1987	602,173	0.05	15
427 Non-Res	Lighting-CFL INC to CMH-High End-Retro-ElecHt-PRE1987 T12-3 to T8HP-3-High End-Retro-HtPmpHt-	81,900	0.09	15
430 Non-Res	Lighting-T12T PRE1987	602,173	0.04	15
432 Non-Res	Lighting-CFL INC to CMH-High End-Retro-HtPmpHt-PRE1987	81,900	0.07	15
	Lighting-T12T{ T12-3 to T8HP-3-High End-Retro-GasHt-PRE1987	602,173	0.05	15
437 Non-Res	Lighting-CFL INC to CMH-High End-Retro-GasHt-PRE1987	81,900	0.08	15
440 Non-Res	Lighting-T12T{T12-4 to T8HP-3-Anchor-Retro-ElecHt-PRE1987	602,173	0.03	15
442 Non-Res	Lighting-T12T F96T12 to T8HP-Anchor-Retro-ElecHt-PRE1987	602,173	0.11	15
445 Non-Res	Lighting-T12T{T12-4 to T8HP-3-Anchor-Retro-HtPmpHt-PRE1987	602,173	0.02	15
447 Non-Res	Lighting-T12T F96T12 to T8HP-Anchor-Retro-HtPmpHt-PRE1987	602,173	0.08	15
450 Non-Res	Lighting-T12TI T12-4 to T8HP-3-Anchor-Retro-GasHt-PRE1987	602,173	0.03	15
452 Non-Res	Lighting-T12Tł F96T12 to T8HP-Anchor-Retro-GasHt-PRE1987 F96T12VHO to T8HP-4-K-12-Retro-ElecHt-	602,173	0.08	15
455 Non-Res	Lighting-T12T/ PRE1987	602,173	0.03	15
	Lighting-CFL INC to CFL-K-12-Retro-ElecHt-PRE1987	145,600	0.09	15
	Lighting-HID Med MH to T8HP-K-12-Retro-ElecHt-PRE1987	441,447	0.25	15

	F96T12VHO to T8HP-4-K-12-Retro-HtPmpHt-			
460 Non-Res	Lighting-T12TI PRE1987	602,173	0.02	15
463 Non-Res	Lighting-CFL INC to CFL-K-12-Retro-HtPmpHt-PRE1987	145,600	0.06	15
464 Non-Res	Lighting-HID Med MH to T8HP-K-12-Retro-HtPmpHt-PRE1987	441,447	0.16	15
	F96T12VHO to T8HP-4-K-12-Retro-GasHt-			
465 Non-Res	Lighting-T12T{PRE1987	602,173	0.03	15
468 Non-Res	Lighting-CFL INC to CFL-K-12-Retro-GasHt-PRE1987	145,600	0.07	15
469 Non-Res	Lighting-HID Med MH to T8HP-K-12-Retro-GasHt-PRE1987	441,447	0.16	15
470 Non-Res	Lighting-T12TI F96T12 to T8HP-University-Retro-ElecHt-PRE1987	602,173	0.15	15
473 Non-Res	Lighting-CFL INC to CFL-University-Retro-ElecHt-PRE1987	145,600	0.15	15
	F96T12 to T8HP-University-Retro-HtPmpHt-	110,000	0.00	10
475 Non-Res	Lighting-T12T{PRE1987	602,173	0.11	15
478 Non-Res	Lighting-CFL INC to CFL-University-Retro-HtPmpHt-PRE1987	145,600	0.04	15
480 Non-Res	Lighting-T12TI F96T12 to T8HP-University-Retro-GasHt-PRE1987	602,173	0.11	15
483 Non-Res	Lighting-CFL INC to CFL-University-Retro-GasHt-PRE1987	145,600	0.05	15
485 Non-Res	F96T12 to T8HP-Warehouse-Retro-ElecHt- Lighting-T12Tł PRE1987	602,173	0.14	15
405 NUII-Res	F96T12VHO to T8HP-4-Warehouse-Retro-ElecHt-	002,173	0.14	15
487 Non-Res	Lighting-T12T{PRE1987	602,173	0.02	15
	Large MH to T5HO-Warehouse-Retro-ElecHt-	00_,0	0.02	
489 Non-Res	Lighting-HID PRE1987	441,447	0.09	15
	F96T12 to T8HP-Warehouse-Retro-HtPmpHt-			
490 Non-Res	Lighting-T12T PRE1987	602,173	0.11	15
	F96T12VHO to T8HP-4-Warehouse-Retro-HtPmpHt-			
492 Non-Res	Lighting-T12TI PRE1987	602,173	0.02	15
	Large MH to T5HO-Warehouse-Retro-HtPmpHt- Lighting-HID PRE1987	444 447	0.07	45
494 Non-Res	Lighting-HID PRE1987 F96T12 to T8HP-Warehouse-Retro-GasHt-	441,447	0.07	15
495 Non-Res	Lighting-T12T/ PRE1987	602,173	0.10	15
	F96T12VHO to T8HP-4-Warehouse-Retro-GasHt-	00_,0	0110	
497 Non-Res	Lighting-T12T{PRE1987	602,173	0.03	15
	Large MH to T5HO-Warehouse-Retro-GasHt-			
499 Non-Res	Lighting-HID PRE1987	441,447	0.07	15
500 Non-Res	T12-3 to T8HP-3-Supermarket-Retro-ElecHt- Lighting-T12T} PRE1987	602,173	0.02	15
500 NOII-RES		002,175	0.03	15
502 Non-Res	Lighting-CFL INC to CMH-Supermarket-Retro-ElecHt-PRE1987	81,900	0.04	15
	T12-3 to T8HP-3-Supermarket-Retro-HtPmpHt-			
504 Non-Res	Lighting-T12T PRE1987	602,173	0.02	15
	INC to CMH-Supermarket-Retro-HtPmpHt-			
506 Non-Res	Lighting-CFL PRE1987	81,900	0.04	15
FOO New Dee	T12-3 to T8HP-3-Supermarket-Retro-GasHt-	000 470	0.00	45
508 Non-Res	Lighting-T12T PRE1987	602,173	0.03	15
510 Non-Res	Lighting-CFL INC to CMH-Supermarket-Retro-GasHt-PRE1987	81,900	0.04	15
		01,000	0.01	10
512 Non-Res	Lighting-T12T{ T12-3 to T8HP-3-MIniMart-Retro-ElecHt-PRE1987	602,173	0.03	15
514 Non-Res	Lighting-CFL INC to CMH-MIniMart-Retro-ElecHt-PRE1987	81,900	0.05	15
	T12-3 to T8HP-3-MIniMart-Retro-HtPmpHt-			
515 Non-Res	Lighting-T12T{PRE1987	602,173	0.02	15
517 Non-Res	Lighting-CFL INC to CMH-MIniMart-Retro-HtPmpHt-PRE1987	81,900	0.04	15
518 Non-Res	Lighting-T12TI T12-3 to T8HP-3-MIniMart-Retro-GasHt-PRE1987	602,173	0.04	15
520 Non-Res	Lighting-CFL INC to CMH-MIniMart-Retro-GasHt-PRE1987	81,900	0.04	15 15
020 1001-1165	T12-3 to T8HP-3-Restaurant-Retro-ElecHt-	51,000	0.00	10
521 Non-Res	Lighting-T12Ti PRE1987	602,173	0.07	15
522 Non-Res	Lighting-CFL INC to CFL-Restaurant-Retro-ElecHt-PRE1987	72,800	0.06	15

523 Non-Res	T12-3 to T8HP-3-Restaurant-Retro-HtPmpHt- Lighting-T12T{PRE1987	602,173	0.04	15
524 Non-Res	Lighting-CFL INC to CFL-Restaurant-Retro-HtPmpHt-PRE1987	72,800	0.03	15
525 Non-Res	T12-3 to T8HP-3-Restaurant-Retro-GasHt- Lighting-T12T{ PRE1987	602,173	0.05	15
526 Non-Res	Lighting-CFL INC to CFL-Restaurant-Retro-GasHt-PRE1987	72,800	0.05	15
527 Non-Res	Lighting-T12T F96T12 to T8HP-Lodging-Retro-ElecHt-PRE1987	602,173	0.12	15
529 Non-Res	Lighting-CFL INC to CFL-Lodging-Retro-ElecHt-PRE1987	218,400	0.05	15
530 Non-Res	Lighting-T12T F96T12 to T8HP-Lodging-Retro-HtPmpHt-PRE1987	602,173	0.10	15
532 Non-Res	Lighting-CFL INC to CFL-Lodging-Retro-HtPmpHt-PRE1987	218,400	0.04	15
533 Non-Res	Lighting-T12T F96T12 to T8HP-Lodging-Retro-GasHt-PRE1987	602,173	0.09	15
535 Non-Res	Lighting-CFL INC to CFL-Lodging-Retro-GasHt-PRE1987	218,400	0.05	15
536 Non-Res	Lighting-T12TI F96T12 to T8HP-Hospital-Retro-ElecHt-PRE1987	602,173	0.18	15
538 Non-Res	Lighting-CFL INC to CFL-Hospital-Retro-ElecHt-PRE1987	9,100	0.07	15
	F96T12 to T8HP-Hospital-Retro-HtPmpHt-			
539 Non-Res	Lighting-T12T{ PRE1987	602,173	0.08	15
541 Non-Res	Lighting-CFL INC to CFL-Hospital-Retro-HtPmpHt-PRE1987	9,100	0.03	15
542 Non-Res	Lighting-T12TI F96T12 to T8HP-Hospital-Retro-GasHt-PRE1987	602,173	0.08	15
544 Non-Res	Lighting-CFL INC to CFL-Hospital-Retro-GasHt-PRE1987 T12-3 to T8HP-3-OtherHealth-Retro-ElecHt-	9,100	0.05	15
545 Non-Res	Lighting-T12T PRE1987	602,173	0.04	15
547 Non-Res	Lighting-CFL INC to CFL-OtherHealth-Retro-ElecHt-PRE1987 T12-3 to T8HP-3-OtherHealth-Retro-HtPmpHt-	9,100	0.04	15
548 Non-Res	Lighting-T12T{PRE1987	602,173	0.04	15
550 Non-Res	Lighting-CFL INC to CFL-OtherHealth-Retro-HtPmpHt-PRE1987 T12-3 to T8HP-3-OtherHealth-Retro-GasHt-	9,100	0.03	15
551 Non-Res	Lighting-T12T{PRE1987	602,173	0.04	15
553 Non-Res	Lighting-CFL INC to CFL-OtherHealth-Retro-GasHt-PRE1987	9,100	0.04	15
554 Non-Res	Lighting-T12T F96T12 to T8HP-Other-Retro-ElecHt-PRE1987	602,173	0.09	15
556 Non-Res	Lighting-T12Tt T12-2 to T8HP-1-Other-Retro-ElecHt-PRE1987	602,173	0.03	15
557 Non-Res	Lighting-CFL INC to CFL-Other-Retro-ElecHt-PRE1987	145,600	0.04	15
558 Non-Res	Lighting-HID Large MH to T5HO-Other-Retro-ElecHt-PRE1987	441,447	0.06	15
559 Non-Res	Lighting-T12T{F96T12 to T8HP-Other-Retro-HtPmpHt-PRE1987	602,173	0.08	15
561 Non-Res	Lighting-T12TI T12-2 to T8HP-1-Other-Retro-HtPmpHt-PRE1987	602,173	0.02	15
562 Non-Res	Lighting-CFL INC to CFL-Other-Retro-HtPmpHt-PRE1987	145,600	0.03	15
563 Non-Res	Lighting-HID Large MH to T5HO-Other-Retro-HtPmpHt-PRE1987	441,447	0.05	15
564 Non-Res	Lighting-T12T F96T12 to T8HP-Other-Retro-GasHt-PRE1987	602,173	0.08	15
566 Non-Res	Lighting-T12TI T12-2 to T8HP-1-Other-Retro-GasHt-PRE1987	602,173	0.03	15
567 Non-Res	Lighting-CFL INC to CFL-Other-Retro-GasHt-PRE1987	145,600	0.04	15
568 Non-Res	Lighting-HID Large MH to T5HO-Other-Retro-GasHt-PRE1987 T12-4 to T8HP-2-Large Off-Retro-ElecHt-	441,447	0.05	15
569 Non-Res	Lighting-T12T{V1987_1994	602,173	0.02	15
572 Non-Res	Lighting-CFL INC to CFL-Large Off-Retro-ElecHt-V1987_1994 F96T12VHO to T8HP-4-Large Off-Retro-ElecHt-	163,800	0.03	15
573 Non-Res	Lighting-T12T{V1987_1994	602,173	0.01	15

574 Non-Res	Lighting-HID	Med MH to T8HP-Large Off-Retro-ElecHt- V1987_1994	441,447	0.08	15
	0 0	T12-4 to T8HP-2-Large Off-Retro-HtPmpHt-			
5/5 Non-Res	Lighting-T12T	1 1987_1994	602,173	0.01	15
578 Non-Res	Lighting-CFL	INC to CFL-Large Off-Retro-HtPmpHt-V1987_1994 F96T12VHO to T8HP-4-Large Off-Retro-HtPmpHt-	163,800	0.03	15
579 Non-Res	Lighting-T12T	V1987_1994 Med MH to T8HP-Large Off-Retro-HtPmpHt-	602,173	0.01	15
580 Non-Res	Lighting-HID	V1987_1994 T12-4 to T8HP-2-Large Off-Retro-GasHt-	441,447	0.08	15
581 Non-Res	Lighting-T12T	-	602,173	0.02	15
584 Non-Res	Lighting-CFL	INC to CFL-Large Off-Retro-GasHt-V1987_1994 F96T12VHO to T8HP-4-Large Off-Retro-GasHt-	163,800	0.03	15
585 Non-Res	Lighting-T12T		602,173	0.02	15
586 Non-Res	Lighting-HID	V1987_1994 T12-4 to T8HP-2-Medium Off-Retro-ElecHt-	441,447	0.08	15
587 Non-Res	Lighting-T12T		602,173	0.02	15
589 Non-Res	Lighting-T12T		602,173	0.01	15
590 Non-Res	Lighting-CFL	INC to CFL-Medium Off-Retro-ElecHt-V1987_1994 Med MH to T8HP-Medium Off-Retro-ElecHt-	163,800	0.04	15
591 Non-Res	Lighting-HID	V1987_1994	441,447	0.10	15
592 Non-Res	Lighting-T12T		602,173	0.02	15
594 Non-Res	Lighting-T12T	F96T12VHO to T8HP-4-Medium Off-Retro- HtPmpHt-V1987_1994	602,173	0.01	15
595 Non-Res	Lighting-CFL		163,800	0.03	15
596 Non-Res	Lighting-HID	Med MH to T8HP-Medium Off-Retro-HtPmpHt- V1987_1994	441,447	0.09	15
597 Non-Res	Lighting-T12T	—	602,173	0.02	15
599 Non-Res	Lighting-T12T	F96T12VHO to T8HP-4-Medium Off-Retro-GasHt- V1987_1994	602,173	0.02	15
600 Non-Res	Lighting-CFL	INC to CFL-Medium Off-Retro-GasHt-V1987_1994	163,800	0.04	15
601 Non-Res	Lighting-HID		441,447	0.09	15
602 Non-Res	Lighting-T12T		602,173	0.03	15
604 Non-Res	Lighting-T12T	F96T12VHO to T8HP-4-Small Off-Retro-ElecHt- V1987_1994	602,173	0.02	15
605 Non-Res	Lighting-CFL	INC to CFL-Small Off-Retro-ElecHt-V1987_1994	163,800	0.06	15
606 Non-Res	Lighting-T12T		602,173	0.14	15
608 Non-Res	Lighting-T12T		602,173	0.02	15
610 Non-Res	Lighting-T12T	F96T12VHO to T8HP-4-Small Off-Retro-HtPmpHt- V1987_1994	602,173	0.02	15
611 Non-Res	Lighting-CFL	INC to CFL-Small Off-Retro-HtPmpHt-V1987_1994	163,800	0.04	15
612 Non-Res	Lighting-T12T	F96T12 to T8HP-Small Off-Retro-HtPmpHt- V1987_1994	602,173	0.10	15

	T12-4 to T8HP-2-Small Off-Retro-GasHt-			
614 Non-Res	Lighting-T12T{ V1987_1994 F96T12VHO to T8HP-4-Small Off-Retro-GasHt-	602,173	0.03	15
616 Non-Res	Lighting-T12T{ V1987_1994	602,173	0.03	15
617 Non-Res	Lighting-CFL INC to CFL-Small Off-Retro-GasHt-V1987_1994 F96T12 to T8HP-Small Off-Retro-GasHt-	163,800	0.05	15
618 Non-Res	Lighting-T12T{ V1987_1994 T12-4 to T8HP-3-Big Box-Retro-ElecHt-	602,173	0.10	15
620 Non-Res	Lighting-T12T{ V1987_1994 F96T12 to T8HP-Big Box-Retro-ElecHt-	602,173	0.02	15
622 Non-Res	Lighting-T12T{ V1987_1994 Large MH to T5HO-Big Box-Retro-ElecHt-	602,173	0.07	15
624 Non-Res		441,447	0.05	15
625 Non-Res	Lighting-T12T{ V1987_1994 F96T12 to T8HP-Big Box-Retro-HtPmpHt-	602,173	0.01	15
627 Non-Res	Lighting-T12T{ V1987_1994 Large MH to T5HO-Big Box-Retro-HtPmpHt-	602,173	0.06	15
629 Non-Res	Lighting-HID V1987_1994 T12-4 to T8HP-3-Big Box-Retro-GasHt-	441,447	0.04	15
630 Non-Res	Lighting-T12T{V1987_1994	602,173	0.02	15
632 Non-Res	Lighting-T12Tł F96T12 to T8HP-Big Box-Retro-GasHt-V1987_19 Large MH to T5HO-Big Box-Retro-GasHt-	994 602,173	0.06	15
634 Non-Res	Lighting-HID V1987_1994 F96T12 to T8HP-Small Box-Retro-ElecHt-	441,447	0.04	15
635 Non-Res	Lighting-T12T{V1987_1994	602,173	0.11	15
637 Non-Res	Lighting-CFL INC to CMH-Small Box-Retro-ElecHt-V1987_199 Med MH to T8HP-Small Box-Retro-ElecHt-	4 81,900	0.09	15
638 Non-Res	Lighting-HID V1987_1994 F96T12 to T8HP-Small Box-Retro-HtPmpHt-	441,447	0.12	15
639 Non-Res	Lighting-T12T{ V1987_1994 INC to CMH-Small Box-Retro-HtPmpHt-	602,173	0.08	15
641 Non-Res	Lighting-CFL V1987_1994 Med MH to T8HP-Small Box-Retro-HtPmpHt-	81,900	0.06	15
642 Non-Res		441,447	0.09	15
643 Non-Res	Lighting-T12T{V1987_1994	602,173	0.09	15
645 Non-Res	Lighting-CFL INC to CMH-Small Box-Retro-GasHt-V1987_199 Med MH to T8HP-Small Box-Retro-GasHt-	4 81,900	0.07	15
646 Non-Res		441,447	0.09	15
647 Non-Res	Lighting-T12T{ V1987_1994 F96T12 to T8HP-High End-Retro-ElecHt-	602,173	0.05	15
649 Non-Res	Lighting-T12T{ V1987_1994	602,173	0.11	15
650 Non-Res	Lighting-CFL INC to CMH-High End-Retro-ElecHt-V1987_1994 Med MH to T8HP-High End-Retro-ElecHt-	81,900	0.09	15
652 Non-Res		441,447	0.12	15
653 Non-Res	Lighting-T12T{ V1987_1994 F96T12 to T8HP-High End-Retro-HtPmpHt-	602,173	0.04	15
655 Non-Res	Lighting-T12T{V1987_1994	602,173	0.09	15
656 Non-Res	Lighting-CFL INC to CMH-High End-Retro-HtPmpHt-V1987_19	994 81,900	0.07	15

658 Non-Res	Lighting-HID	Med MH to T8HP-High End-Retro-HtPmpHt- V1987_1994	441,447	0.10	15
	0 0	T12-3 to T8HP-3-High End-Retro-GasHt-			
659 Non-Res	Lighting-T12T	F96T12 to T8HP-High End-Retro-GasHt-	602,173	0.06	15
661 Non-Res	Lighting-T127		602,173	0.10	15
662 Non-Res	Lighting-CFL	INC to CMH-High End-Retro-GasHt-V1987_1994 Med MH to T8HP-High End-Retro-GasHt-	81,900	0.08	15
664 Non-Res	Lighting-HID	V1987_1994	441,447	0.11	15
665 Non-Res	Lighting-T127	TT12-3 to T8HP-3-Anchor-Retro-ElecHt-V1987_1994	602,173	0.05	15
667 Non-Res	Lighting-T121	F86T12 to T8HP-Anchor-Retro-ElecHt-V1987_1994	602,173	0.10	15
668 Non-Res		INC to CMH-Anchor-Retro-ElecHt-V1987_1994	81,900	0.08	15
670 Non Doo	Lighting LUD	Med MH to T8HP-Anchor-Retro-ElecHt-	444 447	0.11	15
	Lighting-HID	V1987_1994 T12-3 to T8HP-3-Anchor-Retro-HtPmpHt-	441,447	0.11	15
671 Non-Res	Lighting-T121	₩ V1987_1994 F96T12 to T8HP-Anchor-Retro-HtPmpHt-	602,173	0.03	15
673 Non-Res	Lighting-T12T	•	602,173	0.08	15
674 Non-Res	Lighting-CFL	INC to CMH-Anchor-Retro-HtPmpHt-V1987_1994 Med MH to T8HP-Anchor-Retro-HtPmpHt-	81,900	0.06	15
676 Non-Res	Lighting-HID	V1987_1994	441,447	0.08	15
677 Non-Res	Lighting-T12T	TT12-3 to T8HP-3-Anchor-Retro-GasHt-V1987_1994	602,173	0.06	15
679 Non-Res	Liahtina-T12T	F{F96T12 to T8HP-Anchor-Retro-GasHt-V1987_1994	602,173	0.09	15
680 Non-Res		INC to CMH-Anchor-Retro-GasHt-V1987_1994	81,900	0.07	15
		Med MH to T8HP-Anchor-Retro-GasHt-			
682 Non-Res	Lighting-HID	V1987_1994	441,447	0.10	15
683 Non-Res	Lighting-T12T	T{T12-3 to T8HP-2-K-12-Retro-ElecHt-V1987_1994	602,173	0.05	15
686 Non-Res	Lighting-CFL	INC to CFL-K-12-Retro-ElecHt-V1987_1994	145,600	0.09	15
		F96T12VHO to T8HP-4-K-12-Retro-ElecHt-			
687 Non-Res	Lighting-T12T	101987_1994	602,173	0.03	15
688 Non-Res	Lighting-HID	Med MH to T8HP-K-12-Retro-ElecHt-V1987_1994	441,447	0.24	15
	0 0	T{T12-3 to T8HP-2-K-12-Retro-HtPmpHt-V1987_1994	602,173	0.04	15
692 Non-Res	Lighting-CFL	INC to CFL-K-12-Retro-HtPmpHt-V1987_1994 F96T12VHO to T8HP-4-K-12-Retro-HtPmpHt-	145,600	0.06	15
693 Non-Res	Lighting-T12T	r{V1987_1994	602,173	0.02	15
694 Non-Res	Lighting-HID	Med MH to T8HP-K-12-Retro-HtPmpHt- V1987_1994	441,447	0.16	15
695 Non-Res	Liahtina-T121	r{T12-3 to T8HP-2-K-12-Retro-GasHt-V1987_1994	602,173	0.05	15
698 Non-Res		INC to CFL-K-12-Retro-GasHt-V1987_1994	145,600	0.07	15
699 Non-Res	Lighting-T12T	F96T12VHO to T8HP-4-K-12-Retro-GasHt- ⊓≀V1987_1994	602,173	0.04	15
700 Non-Res	Lighting-HID	Med MH to T8HP-K-12-Retro-GasHt-V1987_1994	441,447	0.15	15
701 Non-Res	Lighting-T12T	—	602,173	0.07	15
705 Non-Res	Lighting-HID	Med MH to T8HP-University-Retro-ElecHt- V1987_1994 T12-3 to T8HP-3-University-Retro-HtPmpHt-	441,447	0.16	15
706 Non-Res	Lighting-T127		602,173	0.05	15

		Mod MH to T8HD University Potro HtPmpHt			
710 Non-Res	Lighting-HID	Med MH to T8HP-University-Retro-HtPmpHt- V1987_1994	441,447	0.11	15
711 Non-Res	Lighting-T12T		602,173	0.06	15
715 Non-Res	Lighting-HID	Med MH to T8HP-University-Retro-GasHt- V1987_1994	441,447	0.11	15
716 Non-Res	Lighting-T12T		602,173	0.14	15
718 Non-Res	Lighting-T12T		602,173	0.02	15
720 Non-Res	Lighting-HID	Large MH to T5HO-Warehouse-Retro-ElecHt- V1987_1994	441,447	0.09	15
721 Non-Res	Lighting-T12T	F96T12 to T8HP-Warehouse-Retro-HtPmpHt- V1987_1994 F96T12VHO to T8HP-4-Warehouse-Retro-HtPmpHt-	602,173	0.10	15
723 Non-Res	Lighting-T12T		602,173	0.02	15
725 Non-Res	Lighting-HID		441,447	0.07	15
726 Non-Res	Lighting-T12T		602,173	0.10	15
728 Non-Res	Lighting-T12T		602,173	0.03	15
730 Non-Res	Lighting-HID	V1987_1994 T12-4 to T8HP-2-Supermarket-Retro-ElecHt-	441,447	0.07	15
731 Non-Res	Lighting-T12T	1	602,173	0.01	15
733 Non-Res	Lighting-T12T		602,173	0.01	15
734 Non-Res	Lighting-CFL		81,900	0.04	15
737 Non-Res	Lighting-T127		602,173	0.01	15
739 Non-Res	Lighting-T127	INC to CMH-Supermarket-Retro-HtPmpHt-	602,173	0.01	15
740 Non-Res	Lighting-CFL		81,900	0.04	15
743 Non-Res	Lighting-T127	•	602,173	0.03	15
745 Non-Res	Lighting-T127	•	602,173	0.02	15
746 Non-Res	Lighting-CFL		81,900	0.05	15
749 Non-Res	Lighting-T12T		602,173	0.01	15
751 Non-Res 752 Non-Res		INC to CMH-MIniMart-Retro-ElecHt-V1987_1994	602,173 81,900	0.01 0.05	15 15
754 Non-Res		Med MH to T8HP-MIniMart-Retro-ElecHt- V1987_1994	441,447	0.07	15
	Lighting-T121	T12-4 to T8HP-2-MIniMart-Retro-HtPmpHt-	602,173	0.01	15
	Lighting-T12T	F96T12VHO to T8HP-4-MIniMart-Retro-HtPmpHt-	602,173	0.01	15
		INC to CMH-MIniMart-Retro-HtPmpHt-V1987_1994	81,900	0.04	15
760 Non-Res		Med MH to T8HP-MIniMart-Retro-HtPmpHt- V1987_1994	441,447	0.05	15
	Lighting-T12T	T12-4 to T8HP-2-MIniMart-Retro-GasHt-	602,173	0.03	15
	gg 2 .			0.00	

	F96T12VHO to T8HP-4-MIniMart-Retro-	GasHt-		
763 Non-Res	Lighting-T12Tł V1987_1994	602,173	0.03 15	;
764 Non-Res	Lighting-CFL INC to CMH-MIniMart-Retro-GasHt-V198 Med MH to T8HP-MIniMart-Retro-GasHt	87_1994 81,900	0.05 15	
766 Non-Res	Lighting-HID V1987_1994 T12-3 to T8HP-3-Restaurant-Retro-Elecl	441,447	0.07 15	
767 Non-Res	Lighting-T12TI V1987_1994	602,173	0.06 15	i
768 Non-Res	Lighting-CFL INC to CFL-Restaurant-Retro-ElecHt-V1		0.06 15	i
770 Non-Res	T12-3 to T8HP-3-Restaurant-Retro-HtPn Lighting-T12T{ V1987_1994	602,173	0.04 15	i
771 Non-Res	INC to CFL-Restaurant-Retro-HtPmpHt- Lighting-CFL V1987_1994	72,800	0.03 15	i
773 Non-Res	T12-3 to T8HP-3-Restaurant-Retro-Gash Lighting-T12T{V1987_1994	602,173	0.06 15	1
774 Non-Res	Lighting-CFL INC to CFL-Restaurant-Retro-GasHt-V19 F96T12 to T8HP-Lodging-Retro-ElecHt-	987_1994 72,800	0.05 15	
776 Non-Res	Lighting-T12T{V1987_1994	602,173	0.12 15	
778 Non-Res	Lighting-CFL INC to CFL-Lodging-Retro-ElecHt-V1987		0.05 15	
110 NON-INCES	F96T12 to T8HP-Lodging-Retro-HtPmpF	-	0.05 15	
779 Non-Res	Lighting-T12T/V1987_1994	602,173	0.09 15	i
781 Non-Res	Lighting-CFL INC to CFL-Lodging-Retro-HtPmpHt-V19 F96T12 to T8HP-Lodging-Retro-GasHt-	987_1994 218,400	0.04 15	
782 Non-Res	Lighting-T12T{ V1987_1994	602,173	0.09 15	
784 Non-Res	Lighting-CFL INC to CFL-Lodging-Retro-GasHt-V1987 F96T12 to T8HP-Hospital-Retro-ElecHt-		0.05 15	
785 Non-Res	Lighting-T12T{ V1987_1994	602,173	0.17 15	,
787 Non-Res	Lighting-CFL INC to CFL-Hospital-Retro-ElecHt-V1987	,	0.07 15	
	F96T12 to T8HP-Hospital-Retro-HtPmpH			
788 Non-Res	Lighting-T12T{ V1987_1994	602,173	0.08 15	i
790 Non-Res	Lighting-CFL INC to CFL-Hospital-Retro-HtPmpHt-V19 F96T12 to T8HP-Hospital-Retro-GasHt-	987_1994 9,100	0.03 15	
791 Non-Res	Lighting-T12T{ V1987_1994	602,173	0.08 15	,
793 Non-Res	Lighting-CFL INC to CFL-Hospital-Retro-GasHt-V1987 T12-3 to T8HP-3-OtherHealth-Retro-Elect		0.05 15	
794 Non-Res	Lighting-T12T{ V1987_1994	602,173	0.04 15	i
796 Non-Res	Lighting-CFL INC to CFL-OtherHealth-Retro-ElecHt-V T12-3 to T8HP-3-OtherHealth-Retro-HtP		0.04 15	,
797 Non-Res	Lighting-T12T{V1987_1994 INC to CFL-OtherHealth-Retro-HtPmpHt	602,173	0.04 15	i
799 Non-Res	Lighting-CFL V1987_1994 T12-3 to T8HP-3-OtherHealth-Retro-Gas	9,100	0.03 15	,
800 Non-Res	Lighting-T12T{V1987_1994	602,173	0.04 15	,
802 Non-Res	Lighting-CFL INC to CFL-OtherHealth-Retro-GasHt-V	1987_1994 9,100	0.04 15	,
803 Non-Res	Lighting-T12Tł F96T12 to T8HP-Other-Retro-ElecHt-V1 Large MH to T5HO-Other-Retro-ElecHt-	987_1994 602,173	0.08 15	1
807 Non-Res	Lighting-HID V1987_1994 F96T12 to T8HP-Other-Retro-HtPmpHt-	441,447	0.05 15	,
808 Non-Res	Lighting-T12T{V1987_1994 Large MH to T5HO-Other-Retro-HtPmpH	602,173 It-	0.07 15	1
812 Non-Res		441,447	0.05 15	1
813 Non-Res	Lighting-T12TI F96T12 to T8HP-Other-Retro-GasHt-V1	987_1994 602,173	0.08 15	1

		Large MH to T5HO-Other-Retro-GasHt-			
817 Non-Res	Lighting-HID	V1987_1994 F96T12 to T8HP-Large Off-Retro-ElecHt-	441,447	0.05	15
818 Non-Res	Lighting-T12T	°{V1995_2001	602,173	0.07	15
821 Non-Res	Lighting-CFL	INC to CFL-Large Off-Retro-ElecHt-V1995_2001 Med MH to T8HP-Large Off-Retro-ElecHt-	163,800	0.03	15
822 Non-Res	Lighting-HID	V1995_2001	441,447	0.08	15
823 Non-Res	Lighting-T12T	F96T12 to T8HP-Large Off-Retro-HtPmpHt- V1995_2001	602,173	0.07	15
826 Non-Res	Lighting-CFL	INC to CFL-Large Off-Retro-HtPmpHt-V1995_2001 Med MH to T8HP-Large Off-Retro-HtPmpHt-	163,800	0.03	15
827 Non-Res	Lighting-HID	V1995_2001 F96T12 to T8HP-Large Off-Retro-GasHt-	441,447	0.08	15
828 Non-Res	Lighting-T12T		602,173	0.07	15
831 Non-Res	Lighting-CFL	INC to CFL-Large Off-Retro-GasHt-V1995_2001 Med MH to T8HP-Large Off-Retro-GasHt-	163,800	0.03	15
832 Non-Res	Lighting-HID	V1995_2001	441,447	0.08	15
833 Non-Res	Lighting-T12T	F96T12 to T8HP-Medium Off-Retro-ElecHt- V1995_2001	602,173	0.09	15
836 Non-Res	Lighting-CFL	INC to CFL-Medium Off-Retro-ElecHt-V1995_2001	163,800	0.04	15
837 Non-Res	Lighting-HID	Med MH to T8HP-Medium Off-Retro-ElecHt- V1995_2001 F96T12 to T8HP-Medium Off-Retro-HtPmpHt-	441,447	0.10	15
838 Non-Res	Lighting-T12T	'aV1995_2001	602,173	0.08	15
841 Non-Res	Lighting-CFL	INC to CFL-Medium Off-Retro-HtPmpHt- V1995_2001 Med MH to T8HP-Medium Off-Retro-HtPmpHt-	163,800	0.03	15
842 Non-Res	Lighting-HID	V1995_2001	441,447	0.09	15
843 Non-Res	Lighting-T12T	F96T12 to T8HP-Medium Off-Retro-GasHt- V1995_2001	602,173	0.08	15
846 Non-Res	Lighting-CFL	INC to CFL-Medium Off-Retro-GasHt-V1995_2001 Med MH to T8HP-Medium Off-Retro-GasHt-	163,800	0.04	15
847 Non-Res	Lighting-HID	V1995_2001 T12-3 to T8HP-2-Small Off-Retro-ElecHt-	441,447	0.09	15
848 Non-Res	Lighting-T12T		602,173	0.03	15
851 Non-Res	Lighting-CFL	INC to CFL-Small Off-Retro-ElecHt-V1995_2001 T12-3 to T8HP-2-Small Off-Retro-HtPmpHt-	163,800	0.06	15
853 Non-Res	Lighting-T12T	•	602,173	0.03	15
856 Non-Res	Lighting-CFL	INC to CFL-Small Off-Retro-HtPmpHt-V1995_2001 T12-3 to T8HP-2-Small Off-Retro-GasHt-	163,800	0.04	15
858 Non-Res	Lighting-T12T	ŧV1995_2001	602,173	0.04	15
861 Non-Res	Lighting-CFL	INC to CFL-Small Off-Retro-GasHt-V1995_2001 F96T12 to T8HP-Big Box-Retro-ElecHt-	163,800	0.05	15
863 Non-Res	Lighting-T12T		602,173	0.07	15 15
865 Non-Res		Large MH to T5HO-Big Box-Retro-ElecHt-	81,900	0.06	15
867 Non-Res	Lighting-HID	V1995_2001 F96T12 to T8HP-Big Box-Retro-HtPmpHt-	441,447	0.05	15
868 Non-Res	Lighting-T12T	- · ·	602,173	0.06	15
870 Non-Res	Lighting-CFL	INC to CMH-Big Box-Retro-HtPmpHt-V1995_2001	81,900	0.05	15

872 Non-Res	Lighting-HID	Large MH to T5HO-Big Box-Retro-HtPmpHt- V1995_2001	441,447	0.04	15
873 Non-Res 875 Non-Res		FF96T12 to T8HP-Big Box-Retro-GasHt-V1995_2001 INC to CMH-Big Box-Retro-GasHt-V1995_2001	602,173 81,900	0.06 0.05	15 15
877 Non-Res	Lighting-HID	Large MH to T5HO-Big Box-Retro-GasHt- V1995_2001	441,447	0.04	15
878 Non-Res	Lighting-T127	F96T12 to T8HP-Small Box-Retro-ElecHt- V1995_2001	602,173	0.10	15
881 Non-Res	Lighting-CFL	INC to CMH-Small Box-Retro-ElecHt-V1995_2001 Med MH to T8HP-Small Box-Retro-ElecHt-	81,900	0.08	15
882 Non-Res	Lighting-HID	V1995_2001 F96T12 to T8HP-Small Box-Retro-HtPmpHt-	441,447	0.12	15
883 Non-Res	Lighting-T127		602,173	0.08	15
886 Non-Res	Lighting-CFL	V1995_2001 Med MH to T8HP-Small Box-Retro-HtPmpHt-	81,900	0.06	15
887 Non-Res	Lighting-HID	V1995_2001 F96T12 to T8HP-Small Box-Retro-GasHt-	441,447	0.09	15
888 Non-Res	Lighting-T127		602,173	0.08	15
891 Non-Res	Lighting-CFL	INC to CMH-Small Box-Retro-GasHt-V1995_2001 Med MH to T8HP-Small Box-Retro-GasHt-	81,900	0.07	15
892 Non-Res	Lighting-HID	V1995_2001 T12-3 to T8HP-2-High End-Retro-ElecHt-	441,447	0.09	15
893 Non-Res	Lighting-T127		602,173	0.03	15
895 Non-Res	Lighting-CFL	INC to CMH-High End-Retro-ElecHt-V1995_2001 T12-3 to T8HP-2-High End-Retro-HtPmpHt-	81,900	0.08	15
898 Non-Res	Lighting-T127	o .	602,173	0.02	15
900 Non-Res	Lighting-CFL	INC to CMH-High End-Retro-HtPmpHt-V1995_2001 T12-3 to T8HP-2-High End-Retro-GasHt-	81,900	0.07	15
903 Non-Res	Lighting-T127	0	602,173	0.04	15
905 Non-Res	Lighting-CFL	INC to CMH-High End-Retro-GasHt-V1995_2001	81,900	0.08	15
908 Non-Res	Lighting-T127	RF96T12 to T8HP-Anchor-Retro-ElecHt-V1995_2001 Med MH to T8HP-Anchor-Retro-ElecHt-	602,173	0.10	15
911 Non-Res	Lighting-HID		441,447	0.11	15
912 Non-Res	Lighting-T127	•	602,173	0.08	15
915 Non-Res	Lighting-HID	V1995_2001	441,447	0.08	15
916 Non-Res	Lighting-T127	RF96T12 to T8HP-Anchor-Retro-GasHt-V1995_2001 Med MH to T8HP-Anchor-Retro-GasHt-	602,173	0.09	15
919 Non-Res	Lighting-HID	V1995_2001	441,447	0.10	15
920 Non-Res 923 Non-Res		F8F96T12 to T8HP-K-12-Retro-ElecHt-V1995_2001 INC to CFL-K-12-Retro-ElecHt-V1995_2001	602,173 145,600	0.21 0.08	15 15
924 Non-Res	Lighting-HID	Med MH to T8HP-K-12-Retro-ElecHt-V1995_2001	441,447	0.23	15
925 Non-Res 928 Non-Res		F8F96T12 to T8HP-K-12-Retro-HtPmpHt-V1995_2001 INC to CFL-K-12-Retro-HtPmpHt-V1995_2001 Med MH to T8HP-K-12-Retro-HtPmpHt-	602,173 145,600	0.14 0.06	15 15
929 Non-Res	Lighting-HID	V1995_2001	441,447	0.16	15

930 Non-Res 933 Non-Res		F96T12 to T8HP-K-12-Retro-GasHt-V1995_2001 INC to CFL-K-12-Retro-GasHt-V1995_2001	602,173 145,600	0.14 0.06	15 15
934 Non-Res	Lighting-HID	Med MH to T8HP-K-12-Retro-GasHt-V1995_2001 F96T12 to T8HP-University-Retro-ElecHt-	441,447	0.15	15
935 Non-Res	Lighting-T12T		602,173	0.14	15
937 Non-Res	Lighting-CFL	INC to CFL-University-Retro-ElecHt-V1995_2001 F96T12 to T8HP-University-Retro-HtPmpHt-	145,600	0.06	15
939 Non-Res	Lighting-T12T		602,173	0.10	15
941 Non-Res	Lighting-CFL	INC to CFL-University-Retro-HtPmpHt-V1995_2001 F96T12 to T8HP-University-Retro-GasHt-	145,600	0.04	15
943 Non-Res	Lighting-T12T	2	602,173	0.10	15
945 Non-Res	Lighting-CFL	INC to CFL-University-Retro-GasHt-V1995_2001 F96T12 to T8HP-Warehouse-Retro-ElecHt-	145,600	0.05	15
947 Non-Res	Lighting-T12T		602,173	0.14	15
949 Non-Res	Lighting-CFL	INC to CFL-Warehouse-Retro-ElecHt-V1995_2001 Large MH to T5HO-Warehouse-Retro-ElecHt-	655,200	0.06	15
951 Non-Res	Lighting-HID	V1995_2001 F96T12 to T8HP-Warehouse-Retro-HtPmpHt-	441,447	0.09	15
952 Non-Res	Lighting-T12T	V1995_2001	602,173	0.10	15
954 Non-Res	Lighting-CFL	INC to CFL-Warehouse-Retro-HtPmpHt- V1995_2001 Large MH to T5HO-Warehouse-Retro-HtPmpHt-	655,200	0.04	15
956 Non-Res	Lighting-HID	V1995_2001	441,447	0.07	15
957 Non-Res	Lighting-T12T	F96T12 to T8HP-Warehouse-Retro-GasHt- V1995_2001	602,173	0.10	15
959 Non-Res	Lighting-CFL	INC to CFL-Warehouse-Retro-GasHt-V1995_2001 Large MH to T5HO-Warehouse-Retro-GasHt-	655,200	0.05	15
961 Non-Res	Lighting-HID	V1995_2001 F96T12 to T8HP-Supermarket-Retro-ElecHt-	441,447	0.07	15
962 Non-Res	Lighting-T12T	V1995_2001	602,173	0.05	15
966 Non-Res	Lighting-HID	Med MH to T8HP-Supermarket-Retro-ElecHt- V1995_2001	441,447	0.06	15
967 Non-Res	Lighting-T12T		602,173	0.05	15
971 Non-Res	Lighting-HID	Med MH to T8HP-Supermarket-Retro-HtPmpHt- V1995_2001	441,447	0.05	15
972 Non-Res	Lighting-T12T	—	602,173	0.06	15
976 Non-Res	Lighting-HID	Med MH to T8HP-Supermarket-Retro-GasHt- V1995_2001	441,447	0.06	15
977 Non-Res	Lighting-T12T	F96T12 to T8HP-MIniMart-Retro-ElecHt- V1995_2001	602,173	0.06	15
979 Non-Res	Lighting-CFL	INC to CMH-MIniMart-Retro-ElecHt-V1995_2001 Med MH to T8HP-MIniMart-Retro-ElecHt-	81,900	0.05	15
980 Non-Res	Lighting-HID	V1995_2001 F96T12 to T8HP-MIniMart-Retro-HtPmpHt-	441,447	0.07	15
981 Non-Res	Lighting-T12T		602,173	0.05	15
983 Non-Res	Lighting-CFL	INC to CMH-MIniMart-Retro-HtPmpHt-V1995_2001 Med MH to T8HP-MIniMart-Retro-HtPmpHt-	81,900	0.04	15
984 Non-Res	Lighting-HID	V1995_2001	441,447	0.05	15

		F96T12 to T8HP-MIniMart-Retro-GasHt-			
095 Non Boo	Lighting-T12T		602 172	0.07	15
985 Non-Res		INC to CMH-MIniMart-Retro-GasHt-V1995_2001	602,173	0.07	15 15
987 Non-Res	Lighting-CFL	Med MH to T8HP-MIniMart-Retro-GasHt-	81,900	0.05	15
099 Non Doo	Lighting UID	V1995_2001	444 447	0.07	15
988 Non-Res	Lighting-HID	—	441,447	0.07	15
000 Nee Dee	Linhting T10T	F96T12 to T8HP-Restaurant-Retro-ElecHt-	000 470	0.14	45
989 Non-Res	Lighting-T12T	(*1995_2001	602,173	0.14	15
992 Non-Res	Lighting CEI	INC to CFL-Restaurant-Retro-ElecHt-V1995_2001	72,800	0.06	15
992 NUII-Res	Lighting-CFL	—	72,000	0.00	15
004 Non Doo	Lighting-T12T	F96T12 to T8HP-Restaurant-Retro-HtPmpHt-	602,173	0.09	15
994 Non-Res	Lighting-1121		002,175	0.08	15
997 Non-Res	Lighting-CFL	INC to CFL-Restaurant-Retro-HtPmpHt-	72,800	0.03	15
997 NUII-Res	Lighting-CFL	F96T12 to T8HP-Restaurant-Retro-GasHt-	72,000	0.03	15
999 Non-Res	Lighting-T12T		602,173	0.00	15
999 NOII-Res	Lighting-1121	(1995_2001	602,175	0.09	15
1002 Non-Res	Lighting CEI	INC to CFL-Restaurant-Retro-GasHt-V1995_2001	72,800	0.05	15
1002 Non-Res	Lighting-CFL	F96T12 to T8HP-Lodging-Retro-ElecHt-	72,000	0.05	15
1004 Non-Res	Lighting-T12T	0 0	602,173	0.12	15
					15 15
1006 Non-Res	Lighting-CFL	INC to CFL-Lodging-Retro-ElecHt-V1995_2001	218,400	0.05	15
1000 Nee Dee	Linhting T10T	F96T12 to T8HP-Lodging-Retro-HtPmpHt-	000 470	0.00	45
1008 Non-Res	Lighting-T12T	1995_2001	602,173	0.09	15
1010 Non-Res	Lighting CEI	INC to CFL-Lodging-Retro-HtPmpHt-V1995_2001	218,400	0.04	15
TO TO NOTI-Res	Lighting-CFL	F96T12 to T8HP-Lodging-Retro-GasHt-	210,400	0.04	15
1012 Non-Res	Lighting-T12T		602,173	0.09	15
		INC to CFL-Lodging-Retro-GasHt-V1995_2001	-		
1014 Non-Res	Lighting-CFL	F96T12 to T8HP-Hospital-Retro-ElecHt-	218,400	0.05	15
1016 Non-Res	Lighting-T12T		602,173	0.17	15
1018 Non-Res		INC to CFL-Hospital-Retro-ElecHt-V1995_2001	9,100	0.17	15
IUTO NUII-Res	Lighting-CFL	Med MH to T8HP-Hospital-Retro-ElecHt-	9,100	0.07	15
1010 Non Doo	Lighting UID	·	444 447	0.10	15
1019 Non-Res	Lighting-HID		441,447	0.19	15
1020 Non-Res	Lighting-T12T	F96T12 to T8HP-Hospital-Retro-HtPmpHt-	602,173	0.08	15
1020 1001-1165	Lighting-1121	(*1555_2001	002,175	0.08	15
1022 Non-Res	Lighting_CEI	INC to CFL-Hospital-Retro-HtPmpHt-V1995_2001	9,100	0.03	15
1022 1001-1163		Med MH to T8HP-Hospital-Retro-HtPmpHt-	3,100	0.05	15
1023 Non-Res	Lighting-HID	V1995_2001	441,447	0.08	15
1023 1011-1163	Lighting-i iiD	F96T12 to T8HP-Hospital-Retro-GasHt-	++1,++1	0.00	15
1024 Non-Res	Lighting-T12T		602,173	0.08	15
1024 Non-Res		INC to CFL-Hospital-Retro-GasHt-V1995_2001	9,100	0.05	15
1020 1001-1163		Med MH to T8HP-Hospital-Retro-GasHt-	3,100	0.05	15
1027 Non-Res	Lighting-HID	V1995_2001	441,447	0.09	15
1027 10011100	Lighting The	F96T12 to T8HP-OtherHealth-Retro-ElecHt-		0.00	10
1028 Non-Res	Lighting-T12T		602,173	0.09	15
1020 1001 100			002,170	0.00	10
1030 Non-Res	Lighting-CEI	INC to CFL-OtherHealth-Retro-ElecHt-V1995_2001	9,100	0.04	15
		Med MH to T8HP-OtherHealth-Retro-ElecHt-	0,100	0.01	10
1031 Non-Res	Lighting-HID	V1995_2001	441,447	0.10	15
	Lighting The	F96T12 to T8HP-OtherHealth-Retro-HtPmpHt-	,	0.10	10
1032 Non-Res	Lighting-T12T		602,173	0.08	15
		INC to CFL-OtherHealth-Retro-HtPmpHt-	002,110	0.00	10
1034 Non-Res	Lighting-CFL		9,100	0.03	15
		Med MH to T8HP-OtherHealth-Retro-HtPmpHt-	0,100	0.00	10
1035 Non-Res	Lighting-HID	V1995_2001	441,447	0.09	15
	<u></u>	F96T12 to T8HP-OtherHealth-Retro-GasHt-	,	0.00	
1036 Non-Res	Lighting-T12T		602,173	0.08	15
		- <u>-</u>		5.00	
1038 Non-Res	Lighting-CFL	INC to CFL-OtherHealth-Retro-GasHt-V1995_2001	9,100	0.04	15
	5 5 =	······································	-,		-

1042 Non-Res Lighting-CFL INC to CFL-Other-Retro-ElecHt-V1995_2001 145,600 0.03 1 1043 Non-Res Lighting-HID Med MH to T8HP-Other-Retro-ElecHt-V1995_2001 441,447 0.09 1 1044 Non-Res Lighting-T12Ti V1995_2001 602,173 0.07 1 1046 Non-Res Lighting-CFL INC to CFL-Other-Retro-HtPmpHt- 602,173 0.07 1 1047 Non-Res Lighting-T12Ti V1995_2001 145,600 0.03 1 1048 Non-Res Lighting-T12Ti F96T12 to T8HP-Other-Retro-HtPmpHt- 0.07 1 1048 Non-Res Lighting-T12Ti F96T12 to T8HP-Other-Retro-GasHt-V1995_2001 602,173 0.07 1 1050 Non-Res Lighting-GEL INC to CFL-Other-Retro-GasHt-V1995_2001 602,173 0.07 1 1058 Non-Res Lighting-Signs Outdoor Sign Ballast - Night 546,000 0.01 1 1058 Non-Res Lighting-Signs Outdoor Sign Ballast - 24 546,000 0.01 1 1061 Non-Res Lighting-Signs Outdoor Sign Ballast - 24 546,000 0.01 1 1065 Non-Res EE Reach-In Refrigerator from E-Star Baseline 189,800 0.03 1	15 15 15 15 15 15 15 15 15 15 7 13 7 9 9 9
1042 Non-Res Lighting-CFL INC to CFL-Other-Retro-ElecHt-V1995_2001 145,600 0.03 1 1043 Non-Res Lighting-HID Med MH to T8HP-Other-Retro-ElecHt-V1995_2001 441,447 0.09 1 1044 Non-Res Lighting-T12Ti V1995_2001 602,173 0.07 1 1046 Non-Res Lighting-GEL INC to CFL-Other-Retro-HtPmpHt-V1995_2001 145,600 0.03 1 1047 Non-Res Lighting-HID V1995_2001 602,173 0.07 1 1048 Non-Res Lighting-HID V1995_2001 602,173 0.07 1 1048 Non-Res Lighting-GEL to CFL-Other-Retro-GasHt-V1995_2001 602,173 0.07 1 1050 Non-Res Lighting-CFL INC to CFL-Other-Retro-GasHt-V1995_2001 602,173 0.07 1 1051 Non-Res Lighting-Signs Outdoor Sign Ballast - Night 546,000 0.01 1 1058 Non-Res Lighting-Signs Outdoor Sign Ballast - 24 546,000 0.01 1 1061 Non-Res Lighting-Signs Outdoor Sign Ballast - 24 - Retro 546,000 0.01 1 1065 Non-Res EE Reach-In Refrigerator from E-Star Baseline 18	15 15 15 15 15 15 15 13 7 3 7 9 9
1043 Non-Res Lighting-HID Med MH to T8HP-Other-Retro-HtPmpHt- 0.09 1 1044 Non-Res Lighting-T12Ti V1995_2001 602,173 0.07 1 1046 Non-Res Lighting-CFL INC to CFL-Other-Retro-HtPmpHt-V1995_2001 145,600 0.03 1 1047 Non-Res Lighting-T12Ti P6T12 to T8HP-Other-Retro-HtPmpHt- 141,447 0.08 1 1048 Non-Res Lighting-T12Ti F9GT12 to T8HP-Other-Retro-GasHt-V1995_2001 441,447 0.08 1 1048 Non-Res Lighting-T12Ti F9GT12 to T8HP-Other-Retro-GasHt-V1995_2001 602,173 0.07 1 1050 Non-Res Lighting-GFL INC to CFL-Other-Retro-GasHt-V1995_2001 441,447 0.08 1 1051 Non-Res Lighting-Signs Outdoor Sign Ballast - Night 546,000 0.01 1 1058 Non-Res Lighting-Signs Outdoor Sign Ballast - Night - Retro 546,000 0.01 1 1061 Non-Res Lighting-Signs Outdoor Sign Ballast - 24 Retro 546,000 0.01 1 1061 Non-Res EE Reach-In Refrigerator from E-Star Baseline 138,800 0.03 1 1065 Non-Res EE Reach-In Refrigerator from Average Baseline 146,00	15 15 15 15 15 15 15 13 7 13 7 9 9
F96T12 to T8HP-Other-Retro-HtPmpHt- 1044 Non-Res Lighting-T12Ti V1995_2001 602,173 0.07 1 1046 Non-Res Lighting-CFL INC to CFL-Other-Retro-HtPmpHt-V1995_2001 145,600 0.03 1 1047 Non-Res Lighting-HID V1995_2001 441,447 0.08 1 1048 Non-Res Lighting-T12Ti F96T12 to T8HP-Other-Retro-GasHt-V1995_2001 602,173 0.07 1 1050 Non-Res Lighting-CFL INC to CFL-Other-Retro-GasHt-V1995_2001 602,173 0.07 1 1058 Non-Res Lighting-GFL INC to CFL-Other-Retro-GasHt-V1995_2001 441,447 0.08 1 1059 Non-Res Lighting-Signs Outdoor Sign Ballast - Night 546,000 0.01 1 1060 Non-Res Lighting-Signs Outdoor Sign Ballast - 24 546,000 0.01 1 1061 Non-Res Lighting-Signs Outdoor Sign Ballast - Night - Retro 546,000 0.01 1 1061 Non-Res EE Reach-In Refrigerator from E-Star Baseline 189,800 0.03 1 1070 Non-Res EE Reach-In FemP E-Star Baseline 189,800 0.01<	15 15 15 15 15 15 13 7 9 9
1046 Non-Res Lighting-CFL INC to CFL-Other-Retro-HtPmpHt-V1995_2001 145,600 0.03 1 1047 Non-Res Lighting-HID V1995_2001 441,447 0.08 1 1048 Non-Res Lighting-HID V1995_2001 602,173 0.07 1 1050 Non-Res Lighting-CFL INC to CFL-Other-Retro-GasHt-V1995_2001 602,173 0.07 1 1051 Non-Res Lighting-HID Med MH to T8HP-Other-Retro-GasHt-V1995_2001 441,447 0.08 1 1058 Non-Res Lighting-Signs Outdoor Sign Ballast - Night 546,000 0.01 1 1059 Non-Res Lighting-Signs Outdoor Sign Ballast - 24 546,000 0.01 1 1061 Non-Res Lighting-Signs Outdoor Sign Ballast - 24 546,000 0.03 1 1061 Non-Res EE Reach-In Refrigerator from E-Star Baseline 189,800 0.03 1 1067 Non-Res EE Reach-In Refrigerator from E-Star Baseline 351,800 0.01 1 1070 Non-Res EE Vending Machine from Average Baseline 147,056 0.04 1 1071 Non-Res EE Vending Machine from E-Star Baseline 15,544 0.02 1	15 15 15 15 15 13 7 13 7 9 9
Med MH to T8HP-Other-Retro-HtPmpHt- 1047 Non-ResLighting-HIDV1995_2001441,4470.0811048 Non-ResLighting-T12Ti F96T12 to T8HP-Other-Retro-GasHt-V1995_2001602,1730.0711050 Non-ResLighting-CFLINC to CFL-Other-Retro-GasHt-V1995_2001145,6000.0311051 Non-ResLighting-HIDMed MH to T8HP-Other-Retro-GasHt-V1995_2001441,4470.0811058 Non-ResLighting-Signs Outdoor Sign Ballast - Night546,0000.0111059 Non-ResLighting-Signs Outdoor Sign Ballast - Night - Retro546,0000.0111061 Non-ResLighting-Signs Outdoor Sign Ballast - Night - Retro546,0000.0111061 Non-ResLighting-Signs Outdoor Sign Ballast - 24 - Retro546,0000.0111061 Non-ResEE Reach-In Refrigerator from E-Star Baseline189,8000.0311070 Non-ResEE Reach-In Freezer from E-Star Baseline351,8000.0111071 Non-ResEE Vending Machine from Average Baseline147,0560.0411072 Non-ResEE Vending Machine from Average Baseline115,5440.0211146 Non-ResLighting-Daylig Large Off-ElecHt60,6670.082Perimeter Day lighting Controls (Advanced)-New-1148 Non-ResLighting-Daylig Large Off-GasHt60,6670.0821149 Non-ResLighting-Daylig Medium Off-ElecHt60,6670.0822Perimeter Day lighting Controls (Advanced)-New-1149 Non-ResLigh	15 15 15 13 7 13 7 9 9
1047 Non-Res Lighting-HID V1995_2001 441,447 0.08 1 1048 Non-Res Lighting-T12Ti F96T12 to T8HP-Other-Retro-GasHt-V1995_2001 602,173 0.07 1 1050 Non-Res Lighting-CFL INC to CFL-Other-Retro-GasHt-V1995_2001 145,600 0.03 1 1051 Non-Res Lighting-HID Med MH to T8HP-Other-Retro-GasHt-V1995_2001 441,447 0.08 1 1058 Non-Res Lighting-Signs Outdoor Sign Ballast - Night 546,000 0.01 1 1059 Non-Res Lighting-Signs Outdoor Sign Ballast - 24 546,000 0.01 1 1060 Non-Res Lighting-Signs Outdoor Sign Ballast - 24 - Retro 546,000 0.01 1 1061 Non-Res Lighting-Signs Outdoor Sign Ballast - 24 - Retro 546,000 0.03 1 1067 Non-Res EE Reach-In Refrigerator from E-Star Baseline 189,800 0.03 1 1070 Non-Res EE Lee Maker from FEMP Baseline 82,043 0.07 1 1071 Non-Res EE Vending Machine from Average Baseline 147,056 0.04 1 1072 Non-Res	15 15 13 7 13 7 9 9
1048 Non-ResLighting-T12Ti F96T12 to T8HP-Other-Retro-GasHt-V1995_2001602,1730.0711050 Non-ResLighting-CFLINC to CFL-Other-Retro-GasHt-V1995_2001145,6000.0311051 Non-ResLighting-HIDMed MH to T8HP-Other-Retro-GasHt-V1995_2001441,4470.0811058 Non-ResLighting-Signs Outdoor Sign Ballast - Night546,0000.0111059 Non-ResLighting-Signs Outdoor Sign Ballast - 24546,0000.0111060 Non-ResLighting-Signs Outdoor Sign Ballast - 24546,0000.0111061 Non-ResLighting-Signs Outdoor Sign Ballast - 24 - Retro546,0000.090.031065 Non-ResEE Reach-In Refrigerator from E-Star Baseline189,8000.030.011070 Non-ResEE Reach-In Refrom FEMP Baseline351,8000.010.071071 Non-ResEE Vending Machine from Average Baseline147,0560.041072 Non-ResEE Vending Machine from Average Baseline147,0560.041072 Non-ResEE Vending Machine from C-Star Baseline15,5440.021146 Non-ResLighting-Daylig Large Off-ElecHt60,6670.082Perimeter Day lighting Controls (Advanced)-New-1148 Non-ResLighting-Daylig Large Off-GasHt60,6670.0821149 Non-ResLighting-Daylig Large Off-GasHt60,6670.132Perimeter Day lighting Controls (Advanced)-New-1149 Non-ResLighting-Daylig Medium Off-ElecHt60,6670.132Perimeter Day lighting Contro	15 15 13 7 13 7 9 9
1050 Non-ResLighting-CFLINC to CFL-Other-Retro-GasHt-V1995_2001145,6000.0311051 Non-ResLighting-Signs Outdoor Sign Ballast - Night546,0000.0111058 Non-ResLighting-Signs Outdoor Sign Ballast - Night546,0000.0111059 Non-ResLighting-Signs Outdoor Sign Ballast - 24546,0000.0111060 Non-ResLighting-Signs Outdoor Sign Ballast - 24546,0000.0911061 Non-ResLighting-Signs Outdoor Sign Ballast - 24 - Retro546,0000.091065 Non-ResEE Reach-In Refrigerator from E-Star Baseline189,8000.031067 Non-ResEE Reach-In Freezer from E-Star Baseline351,8000.011070 Non-ResEE loe Maker from FEMP Baseline82,0430.071071 Non-ResEE Vending Machine from Average Baseline147,0560.041072 Non-ResEE Vending Machine from C-Star Baseline115,5440.021146 Non-ResLighting-Daylig Large Off-ElecHt60,6670.082Perimeter Day lighting Controls (Advanced)-New-1148 Non-ResLighting-Daylig Large Off-GasHt60,6670.0821149 Non-ResLighting-Daylig Large Off-GasHt60,6670.1322Perimeter Day lighting Controls (Advanced)-New-1149 Non-ResLighting-Daylig Medium Off-ElecHt60,6670.1321140 Non-ResLighting-Daylig Medium Off-ElecHt60,6670.1322Perimeter Day lighting Controls (Advanced)-New-1149 Non-ResLighting-D	15 13 7 13 7 9 9
1051 Non-ResLighting-HIDMed MH to T8HP-Other-Retro-GasHt-V1995_2001441,4470.0811058 Non-ResLighting-Signs Outdoor Sign Ballast - Night546,0000.0111059 Non-ResLighting-Signs Outdoor Sign Ballast - 24546,0000.011060 Non-ResLighting-Signs Outdoor Sign Ballast - Night - Retro546,0000.111061 Non-ResLighting-Signs Outdoor Sign Ballast - 24 - Retro546,0000.091065 Non-ResEE Reach-In Refrigerator from E-Star Baseline189,8000.031067 Non-ResEE Reach-In Freezer from E-Star Baseline351,8000.011070 Non-ResEE Vending Machine from Average Baseline147,0560.041072 Non-ResEE Vending Machine from Average Baseline147,0560.041072 Non-ResEE Vending Machine from E-Star Baseline115,5440.02Perimeter Day lighting Controls (Advanced)-New-1146 Non-ResLighting-Daylig Large Off-ElecHt60,6670.082Perimeter Day lighting Controls (Advanced)-New-1148 Non-ResLighting-Daylig Large Off-GasHt60,6670.082Perimeter Day lighting Controls (Advanced)-New-1149 Non-ResLighting-Daylig Medium Off-ElecHt60,6670.132Perimeter Day lighting Controls (Advanced)-New-1149 Non-ResLighting-Daylig Medium Off-ElecHt60,6670.132Perimeter Day lighting Controls (Advanced)-New-1150 Non-ResLighting-Daylig Medium Off-HtPmpHt60,6670.132Perimeter Day lighting Controls (Advanced)-New-	15 13 7 13 7 9 9
1058 Non-ResLighting-Signs Outdoor Sign Ballast - Night546,0000.0111059 Non-ResLighting-Signs Outdoor Sign Ballast - 24546,0000.011060 Non-ResLighting-Signs Outdoor Sign Ballast - Night - Retro546,0000.011061 Non-ResLighting-Signs Outdoor Sign Ballast - 24 - Retro546,0000.091065 Non-ResEE Reach-In Refrigerator from E-Star Baseline189,8000.031067 Non-ResEE Reach-In Freezer from E-Star Baseline351,8000.011070 Non-ResEE loe Maker from FEMP Baseline82,0430.071071 Non-ResEE Vending Machine from Average Baseline147,0560.041072 Non-ResEE Vending Machine from E-Star Baseline115,5440.02Perimeter Day lighting Controls (Advanced)-New-Perimeter Day lighting Controls (Advanced)-New-1146 Non-ResLighting-Dayliç Large Off-ElecHt1148 Non-ResLighting-Dayliç Large Off-GasHt60,6670.082Perimeter Day lighting Controls (Advanced)-New-1149 Non-ResLighting-Dayliç Medium Off-ElecHt60,6670.1321149 Non-ResLighting-Dayliç Medium Off-ElecHt60,6670.1322Perimeter Day lighting Controls (Advanced)-New-1149 Non-ResLighting-Dayliç Medium Off-ElecHt60,6670.1321150 Non-ResLighting-Dayliç Medium Off-HtPmpHt60,6670.1222Perimeter Day lighting Controls (Advanced)-New-1150 Non-ResLighting-Dayliç Medium Off-HtPmpHt60,6670.122P	13 7 13 7 9 9
1058 Non-ResLighting-Signs Outdoor Sign Ballast - Night546,0000.0111059 Non-ResLighting-Signs Outdoor Sign Ballast - 24546,0000.011060 Non-ResLighting-Signs Outdoor Sign Ballast - Night - Retro546,0000.011061 Non-ResLighting-Signs Outdoor Sign Ballast - 24 - Retro546,0000.091065 Non-ResEE Reach-In Refrigerator from E-Star Baseline189,8000.031067 Non-ResEE Reach-In Freezer from E-Star Baseline351,8000.011070 Non-ResEE loe Maker from FEMP Baseline82,0430.071071 Non-ResEE Vending Machine from Average Baseline147,0560.041072 Non-ResEE Vending Machine from E-Star Baseline115,5440.02Perimeter Day lighting Controls (Advanced)-New-Perimeter Day lighting Controls (Advanced)-New-1146 Non-ResLighting-Dayliç Large Off-ElecHt1148 Non-ResLighting-Dayliç Large Off-GasHt60,6670.082Perimeter Day lighting Controls (Advanced)-New-1149 Non-ResLighting-Dayliç Medium Off-ElecHt60,6670.1321149 Non-ResLighting-Dayliç Medium Off-ElecHt60,6670.1322Perimeter Day lighting Controls (Advanced)-New-1149 Non-ResLighting-Dayliç Medium Off-ElecHt60,6670.1321150 Non-ResLighting-Dayliç Medium Off-HtPmpHt60,6670.1222Perimeter Day lighting Controls (Advanced)-New-1150 Non-ResLighting-Dayliç Medium Off-HtPmpHt60,6670.122P	13 7 13 7 9 9
1059 Non-ResLighting-Signs Outdoor Sign Ballast - 24546,0000.011060 Non-ResLighting-Signs Outdoor Sign Ballast - Night - Retro546,0000.1111061 Non-ResLighting-Signs Outdoor Sign Ballast - 24 - Retro546,0000.091065 Non-ResEE Reach-In Refrigerator from E-Star Baseline189,8000.031067 Non-ResEE Reach-In Freezer from E-Star Baseline351,8000.011070 Non-ResEE lce Maker from FEMP Baseline82,0430.071071 Non-ResEE Vending Machine from Average Baseline147,0560.041072 Non-ResEE Vending Machine from E-Star Baseline115,5440.021071 Non-ResEE Vending Machine from E-Star Baseline115,5440.021072 Non-ResEE Vending Machine from E-Star Baseline115,5440.021146 Non-ResLighting-Daylic Large Off-ElecHt60,6670.082Perimeter Day lighting Controls (Advanced)-New-1148 Non-ResLighting-Daylic Large Off-HtPmpHt60,6670.0821148 Non-ResLighting-Daylic Large Off-GasHt60,6670.082Perimeter Day lighting Controls (Advanced)-New-1149 Non-ResLighting-Daylic Medium Off-HtPmpHt60,6670.1321150 Non-ResLighting-Daylic Medium Off-HtPmpHt60,6670.122Perimeter Day lighting Controls (Advanced)-New-1150 Non-ResLighting-Daylic Medium Off-HtPmpHt60,6670.122Perimeter Day lighting Controls (Advanced)-New-1150 Non-ResLighting-Daylic Medium O	7 13 7 9 9
1060 Non-ResLighting-Signs Outdoor Sign Ballast - Night - Retro546,0000.1111061 Non-ResLighting-Signs Outdoor Sign Ballast - 24 - Retro546,0000.091065 Non-ResEE Reach-In Refrigerator from E-Star Baseline189,8000.031067 Non-ResEE Reach-In Freezer from E-Star Baseline351,8000.011070 Non-ResEE Lee Maker from FEMP Baseline82,0430.071071 Non-ResEE Vending Machine from Average Baseline147,0560.041072 Non-ResEE Vending Machine from E-Star Baseline115,5440.021071 Non-ResEE Vending Machine from E-Star Baseline115,5440.021072 Non-ResEE Vending Machine from E-Star Baseline115,5440.021146 Non-ResLighting-Daylic Large Off-ElecHt60,6670.082Perimeter Day lighting Controls (Advanced)-New-1147 Non-ResLighting-Daylic Large Off-GasHt60,6670.082Perimeter Day lighting Controls (Advanced)-New-1149 Non-ResLighting-Daylic Medium Off-ElecHt60,6670.132Perimeter Day lighting Controls (Advanced)-New-1149 Non-ResLighting-Daylic Medium Off-ElecHt60,6670.132Perimeter Day lighting Controls (Advanced)-New-1150 Non-ResLighting-Daylic Medium Off-HtPmpHt60,6670.122Perimeter Day lighting Controls (Advanced)-New-1150 Non-ResLighting-Daylic Medium Off-HtPmpHt60,6670.122Perimeter Day lighting Controls (Advanced)-New-1150 Non-ResLighting-Daylic Mediu	13 7 9 9
1061 Non-ResLighting-Signs Outdoor Sign Ballast - 24 - Retro546,0000.091065 Non-ResEE Reach-In Refrigerator from E-Star Baseline189,8000.031067 Non-ResEE Reach-In Freezer from E-Star Baseline351,8000.011070 Non-ResEE lee Maker from FEMP Baseline82,0430.071071 Non-ResEE Vending Machine from Average Baseline147,0560.041072 Non-ResEE Vending Machine from E-Star Baseline115,5440.021071 Non-ResEE Vending Machine from E-Star Baseline115,5440.021072 Non-ResEE Vending Machine from E-Star Baseline115,5440.021146 Non-ResLighting-Daylic Large Off-ElecHt60,6670.082Perimeter Day lighting Controls (Advanced)-New-1148 Non-ResLighting-Daylic Large Off-GasHt60,6670.082Perimeter Day lighting Controls (Advanced)-New-1149 Non-ResLighting-Daylic Medium Off-ElecHt60,6670.132Perimeter Day lighting Controls (Advanced)-New-1150 Non-ResLighting-Daylic Medium Off-HtPmpHt60,6670.122Perimeter Day lighting Controls (Advanced)-New-115	7 9 9
1065Non-ResEE Reach-In Refrigerator from E-Star Baseline189,8000.031067Non-ResEE Reach-In Freezer from E-Star Baseline351,8000.011070Non-ResEE Ice Maker from FEMP Baseline82,0430.071071Non-ResEE Vending Machine from Average Baseline147,0560.041072Non-ResEE Vending Machine from E-Star Baseline115,5440.02Perimeter Day lighting Controls (Advanced)-New-1146Non-ResLighting-Daylic Large Off-ElecHt60,6670.081147Non-ResLighting-Daylic Large Off-HtPmpHt60,6670.082Perimeter Day lighting Controls (Advanced)-New-1148Non-ResLighting-Daylic Large Off-GasHt60,6670.082Perimeter Day lighting Controls (Advanced)-New-1149Non-ResLighting-Daylic Medium Off-ElecHt60,6670.132Perimeter Day lighting Controls (Advanced)-New-1149Non-ResLighting-Daylic Medium Off-ElecHt60,6670.132Perimeter Day lighting Controls (Advanced)-New-1150Non-ResLighting-Daylic Medium Off-HtPmpHt60,6670.122Perimeter Day lighting Controls (Advanced)-New-1150Non-ResLighting-Daylic Medium Off-HtPmpHt60,6670.122Perimeter Day lighting Controls (Advanced)-New-1150Non-ResLighting-Daylic Medium Off-HtPmpHt60,6670.122Perimeter Day lighting Controls (Advanced)-New-1150Non-ResLighting-Daylic Medium Off-HtPmpHt60	9 9
1067 Non-ResEE Reach-In Freezer from E-Star Baseline351,8000.011070 Non-ResEE Ice Maker from FEMP Baseline82,0430.071071 Non-ResEE Vending Machine from Average Baseline147,0560.041072 Non-ResEE Vending Machine from E-Star Baseline147,0560.041072 Non-ResEE Vending Machine from E-Star Baseline115,5440.02Perimeter Day lighting Controls (Advanced)-New-1146 Non-ResLighting-Daylic Large Off-ElecHt60,6670.082Perimeter Day lighting Controls (Advanced)-New-1147 Non-ResLighting-Daylic Large Off-GasHt60,6670.082Perimeter Day lighting Controls (Advanced)-New-1148 Non-ResLighting-Daylic Medium Off-ElecHt60,6670.132Perimeter Day lighting Controls (Advanced)-New-1149 Non-ResLighting-Daylic Medium Off-ElecHt60,6670.132Perimeter Day lighting Controls (Advanced)-New-1150 Non-ResLighting-Daylic Medium Off-HtPmpHt60,6670.122Perimeter Day lighting Controls (Advanced)-New-1150 Non-ResLighting-Daylic Medium Off-HtPmpHt60,6670.122Perimeter Day lighting Controls (Advanced)-New-1150 Non-ResLighting-Daylic Medium Off-HtPmpHt60,6670.122Perimeter Day lighting Controls (Advanced)-New-1150 Non-ResLighting-Daylic Medium Off-HtPmpHt60,6670.122	9
1070 Non-ResEE Ice Maker from FEMP Baseline82,0430.071071 Non-ResEE Vending Machine from Average Baseline147,0560.041072 Non-ResEE Vending Machine from E-Star Baseline147,0560.041072 Non-ResEE Vending Machine from E-Star Baseline115,5440.02Perimeter Day lighting Controls (Advanced)-New-60,6670.0921146 Non-ResLighting-Daylic Large Off-ElecHt60,6670.082Perimeter Day lighting Controls (Advanced)-New-60,6670.0821147 Non-ResLighting-Daylic Large Off-GasHt60,6670.082Perimeter Day lighting Controls (Advanced)-New-1148 Non-ResLighting-Daylic Medium Off-ElecHt60,6670.132Perimeter Day lighting Controls (Advanced)-New-1150 Non-ResLighting-Daylic Medium Off-HtPmpHt60,6670.122Perimeter Day lighting Controls (Advanced)-New-1150 Non-ResLighting-Daylic Medium Off-HtPmpHt60,6670.122Perimeter Day lighting Controls (Advanced)-New-1150 Non-ResLighting-Daylic Medium Off-HtPmpHt60,6670.122	
1071 Non-ResEE Vending Machine from Average Baseline147,0560.041072 Non-ResEE Vending Machine from E-Star Baseline115,5440.02Perimeter Day lighting Controls (Advanced)-New-115,5440.091146 Non-ResLighting-Dayliç Large Off-ElecHt60,6670.09Perimeter Day lighting Controls (Advanced)-New-60,6670.0821147 Non-ResLighting-Dayliç Large Off-HtPmpHt60,6670.082Perimeter Day lighting Controls (Advanced)-New-1148 Non-ResLighting-Dayliç Large Off-GasHt60,6670.082Perimeter Day lighting Controls (Advanced)-New-1149 Non-ResLighting-Dayliç Medium Off-ElecHt60,6670.132Perimeter Day lighting Controls (Advanced)-New-1150 Non-ResLighting-Dayliç Medium Off-HtPmpHt60,6670.122Perimeter Day lighting Controls (Advanced)-New-1150 Non-ResNon-ResNon-ResNon-ResNon-ResNon-ResNon-ResNon-ResNon-ResNon-ResNon-ResNon-Res	9
1072 Non-Res EE Vending Machine from E-Star Baseline Perimeter Day lighting Controls (Advanced)-New- 115,544 0.02 1146 Non-Res Lighting-Dayliç Large Off-ElecHt Perimeter Day lighting Controls (Advanced)-New- 60,667 0.09 2 1147 Non-Res Lighting-Dayliç Large Off-HtPmpHt Perimeter Day lighting Controls (Advanced)-New- 60,667 0.08 2 1148 Non-Res Lighting-Dayliç Large Off-GasHt Perimeter Day lighting Controls (Advanced)-New- 60,667 0.08 2 1149 Non-Res Lighting-Dayliç Medium Off-ElecHt Perimeter Day lighting Controls (Advanced)-New- 60,667 0.13 2 1149 Non-Res Lighting-Dayliç Medium Off-HtPmpHt 60,667 0.12 2 Perimeter Day lighting Controls (Advanced)-New- 1150 Non-Res Lighting-Dayliç Medium Off-HtPmpHt 60,667 0.12 2	0
Perimeter Day lighting Controls (Advanced)-New- 1146 Non-Res Lighting-Dayliç Large Off-ElecHt 60,667 0.09 2 Perimeter Day lighting Controls (Advanced)-New- 1147 Non-Res Lighting-Dayliç Large Off-HtPmpHt 60,667 0.08 2 1147 Non-Res Lighting-Dayliç Large Off-GasHt 60,667 0.08 2 Perimeter Day lighting Controls (Advanced)-New- 1148 Non-Res Lighting-Dayliç Large Off-GasHt 60,667 0.08 2 Perimeter Day lighting Controls (Advanced)-New- 1149 Non-Res Lighting-Dayliç Medium Off-ElecHt 60,667 0.13 2 Perimeter Day lighting Controls (Advanced)-New- 1150 Non-Res Lighting-Dayliç Medium Off-HtPmpHt 60,667 0.12 2 Perimeter Day lighting Controls (Advanced)-New- 1150 Non-Res Lighting-Dayliç Medium Off-HtPmpHt 60,667 0.12 2	9
1146 Non-ResLighting-Dayliç Large Off-ElecHt Perimeter Day lighting Controls (Advanced)-New-60,6670.0921147 Non-ResLighting-Dayliç Large Off-HtPmpHt Perimeter Day lighting Controls (Advanced)-New-60,6670.0821148 Non-ResLighting-Dayliç Large Off-GasHt Perimeter Day lighting Controls (Advanced)-New-60,6670.0821149 Non-ResLighting-Dayliç Medium Off-ElecHt Perimeter Day lighting Controls (Advanced)-New-60,6670.1321150 Non-ResLighting-Dayliç Medium Off-HtPmpHt Perimeter Day lighting Controls (Advanced)-New-60,6670.122Perimeter Day lighting Controls (Advanced)-New-60,6670.122	9
1146 Non-ResLighting-Dayliç Large Off-ElecHt Perimeter Day lighting Controls (Advanced)-New-60,6670.0921147 Non-ResLighting-Dayliç Large Off-HtPmpHt Perimeter Day lighting Controls (Advanced)-New-60,6670.0821148 Non-ResLighting-Dayliç Large Off-GasHt Perimeter Day lighting Controls (Advanced)-New-60,6670.0821149 Non-ResLighting-Dayliç Medium Off-ElecHt Perimeter Day lighting Controls (Advanced)-New-60,6670.1321150 Non-ResLighting-Dayliç Medium Off-HtPmpHt Perimeter Day lighting Controls (Advanced)-New-60,6670.122Perimeter Day lighting Controls (Advanced)-New-60,6670.122	
Perimeter Day lighting Controls (Advanced)-New- 1147 Non-Res Lighting-Dayliç Large Off-HtPmpHt 60,667 0.08 2 Perimeter Day lighting Controls (Advanced)-New- 1148 Non-Res Lighting-Dayliç Large Off-GasHt 60,667 0.08 2 1148 Non-Res Lighting-Dayliç Large Off-GasHt 60,667 0.08 2 Perimeter Day lighting Controls (Advanced)-New- 60,667 0.13 2 1149 Non-Res Lighting-Dayliç Medium Off-ElecHt 60,667 0.13 2 Perimeter Day lighting Controls (Advanced)-New- 1150 Non-Res Lighting-Dayliç Medium Off-HtPmpHt 60,667 0.12 2 Perimeter Day lighting Controls (Advanced)-New- 1150 Non-Res Lighting-Dayliç Medium Off-HtPmpHt 60,667 0.12 2	21
1147 Non-ResLighting-Dayliç Large Off-HtPmpHt60,6670.082Perimeter Day lighting Controls (Advanced)-New-60,6670.0821148 Non-ResLighting-Dayliç Large Off-GasHt60,6670.082Perimeter Day lighting Controls (Advanced)-New-60,6670.1321149 Non-ResLighting-Dayliç Medium Off-ElecHt60,6670.132Perimeter Day lighting Controls (Advanced)-New-1150 Non-ResLighting-Dayliç Medium Off-HtPmpHt60,6670.122Perimeter Day lighting Controls (Advanced)-New-60,6670.122	
1148 Non-Res Lighting-Dayliç Large Off-GasHt 60,667 0.08 2 Perimeter Day lighting Controls (Advanced)-New- 60,667 0.13 2 1149 Non-Res Lighting-Dayliç Medium Off-ElecHt 60,667 0.13 2 Perimeter Day lighting Controls (Advanced)-New- 1150 Non-Res Lighting-Dayliç Medium Off-HtPmpHt 60,667 0.12 2 Perimeter Day lighting Controls (Advanced)-New- 1150 Non-Res Lighting-Dayliç Medium Off-HtPmpHt 60,667 0.12 2	21
1148 Non-Res Lighting-Dayliç Large Off-GasHt 60,667 0.08 2 Perimeter Day lighting Controls (Advanced)-New- 60,667 0.13 2 1149 Non-Res Lighting-Dayliç Medium Off-ElecHt 60,667 0.13 2 Perimeter Day lighting Controls (Advanced)-New- 1150 Non-Res Lighting-Dayliç Medium Off-HtPmpHt 60,667 0.12 2 Perimeter Day lighting Controls (Advanced)-New- 1150 Non-Res Lighting-Dayliç Medium Off-HtPmpHt 60,667 0.12 2	
1149 Non-Res Lighting-Dayliç Medium Off-ElecHt 60,667 0.13 2 Perimeter Day lighting Controls (Advanced)-New- 1150 Non-Res Lighting-Dayliç Medium Off-HtPmpHt 60,667 0.12 2 Perimeter Day lighting Controls (Advanced)-New- 60,667 0.12 2	21
Perimeter Day lighting Controls (Advanced)-New- 1150 Non-Res Lighting-Daylic Medium Off-HtPmpHt 60,667 0.12 Perimeter Day lighting Controls (Advanced)-New-	
1150 Non-ResLighting-Daylic Medium Off-HtPmpHt60,6670.122Perimeter Day lighting Controls (Advanced)-New-	21
Perimeter Day lighting Controls (Advanced)-New-	
	21
1151 Non-Res Lighting-Davlic Medium Off-CasHt 60.667 0.11 3	
1151 Non-Res Lighting-Daylic Medium Off-GasHt 60,667 0.11 2	21
Perimeter Day lighting Controls (Advanced)-New-	
1152 Non-Res Lighting-Daylic Small Off-ElecHt 60,667 0.18 2	21
Perimeter Day lighting Controls (Advanced)-New-	
	21
Perimeter Day lighting Controls (Advanced)-New-	
	21
Perimeter Day lighting Controls (Advanced)-New-K-	
	21
Perimeter Day lighting Controls (Advanced)-New-K-	
	21
Perimeter Day lighting Controls (Advanced)-New-K-	
	21
Perimeter Day lighting Controls (Advanced)-New-	
	21
Perimeter Day lighting Controls (Advanced)-New-	
	21
Perimeter Day lighting Controls (Advanced)-New-	
	24
Perimeter Day lighting Controls (Advanced)-New-	21
1161 Non-ResLighting-Daylic OtherHealth-ElecHt60,6670.112	

	Perimeter Day lighting Controls (Advanced)-New-			
1162 Non-Res	Lighting-Daylic OtherHealth-HtPmpHt	60,667	0.10	21
1163 Non-Res	Perimeter Day lighting Controls (Advanced)-New- Lighting-Daylic OtherHealth-GasHt	60,667	0.10	21
1164 Non-Res	Perimeter Day lighting Controls (Advanced)-NR- Lighting-Daylic Large Off-ElecHt	60,667	0.09	21
1165 Non-Res	Perimeter Day lighting Controls (Advanced)-NR- Lighting-Daylic Large Off-HtPmpHt	60,667	0.08	21
1166 Non-Res	Perimeter Day lighting Controls (Advanced)-NR- Lighting-Daylic Large Off-GasHt	60,667	0.08	21
1167 Non-Res	Perimeter Day lighting Controls (Advanced)-NR- Lighting-Dayliç Medium Off-ElecHt	60,667	0.13	21
1168 Non-Res	Perimeter Day lighting Controls (Advanced)-NR- Lighting-Dayliç Medium Off-HtPmpHt	60,667	0.12	21
1169 Non-Res	Perimeter Day lighting Controls (Advanced)-NR- Lighting-Dayliç Medium Off-GasHt	60,667	0.11	21
1170 Non-Res	Perimeter Day lighting Controls (Advanced)-NR- Lighting-Daylic Small Off-ElecHt	60,667	0.18	21
1171 Non-Res	Perimeter Day lighting Controls (Advanced)-NR- Lighting-Daylic Small Off-HtPmpHt	60,667	0.13	21
1172 Non-Res	Perimeter Day lighting Controls (Advanced)-NR- Lighting-Dayliç Small Off-GasHt	60,667	0.11	21
1173 Non-Res	Perimeter Day lighting Controls (Advanced)-NR-K- Lighting-Daylic 12-ElecHt	60,667	0.23	21
1174 Non-Res	Perimeter Day lighting Controls (Advanced)-NR-K- Lighting-Daylic 12-HtPmpHt	60,667	0.15	21
1175 Non-Res	Perimeter Day lighting Controls (Advanced)-NR-K- Lighting-Daylic 12-GasHt	60,667	0.13	21
1176 Non-Res	Perimeter Day lighting Controls (Advanced)-NR- Lighting-Daylic University-ElecHt	60,667	0.18	21
1177 Non-Res	Perimeter Day lighting Controls (Advanced)-NR- Lighting-Daylic University-HtPmpHt	60,667	0.13	21
1178 Non-Res	Perimeter Day lighting Controls (Advanced)-NR- Lighting-Daylic University-GasHt	60,667	0.11	21
1179 Non-Res	Perimeter Day lighting Controls (Advanced)-NR- Lighting-Daylic OtherHealth-ElecHt	60,667	0.11	21
	Perimeter Day lighting Controls (Advanced)-NR-			
1180 Non-Res	Lighting-Dayliç OtherHealth-HtPmpHt Perimeter Day lighting Controls (Advanced)-NR-	60,667	0.10	21
1181 Non-Res	Lighting-Daylic OtherHealth-GasHt Vending Machine Controller-Large Machine	60,667	0.10	21
1290 Non-Res	Appliances w/Illuminated Front Vending Machine Controller-Small Machine or	49,920	0.02	10
1291 Non-Res	Appliances Machine without Illuminated Front	33,280	0.03	10

2009

Electric Integrated Resource Plan

Appendix G – Avista Distribution System Efficiencies Program

August 31, 2009

Avista Distribution System Efficiencies Program

Programs to Reduce Energy Loss across Avista's Distribution System

System Efficiencies Team Heather Cummins Mark Weiss Rodney Pickett Dave Defelice Curt Kirkeby Ross Taylor Greg Smith Jill Ham Will Stone John McClain

Authored by:

John Gibson

Date 4/21/2009

Executive Summary

Avista's Distribution System consists of approximately three hundred and thirty feeders covering a geographical area of 30,000 square miles. The distribution feeders range in distribution voltage from 4.16 kV to 34.5 kV phase to phase and are typically rated to meet 10 MVA load for the typical 13.2 kV feeder. The distribution feeders reside in urban, suburban and rural areas and can range in length from 3 to 73 miles. The distribution feeders are typically designed to provide service for approximately one to two thousand residential customers.

The engineering analysis summarized in this report determines losses across the distribution system for the following program areas: 1) Conductor losses, 2) Distribution Transformers, 3) Secondary Districts and 4) VAr compensation. Although additional programs like phase balancing and Conservation Voltage Reduction (CVR) could have been included in the analysis, they were intentionally left out since daily operational activity may negate the energy savings. The energy loss, capital investment and reduction in O&M costs resulting from the individual efficiencies programs were combined on a per feeder basis. This approach provided a means to rank and compare energy savings and net resource cost for each feeder.

The efficiency analysis of the distribution feeders evaluated the existing energy losses and energy savings resulting from implementing the program upgrades. The study identified the existing distribution system losses to be approximately 3.6%. Assuming, all of the distribution feeders studied were economically viable to upgrade, the resulting system energy losses would be reduced by 2%. The total energy savings corresponding to the implementation of the upgrades would correspond to an energy savings of approximately 29.2 MW on peak and 13.5 MW on average.

Although it may not be prudent to upgrade all of the distribution feeders, this study ranks the feeders by diminishing economic return. The economic metric used to rank feeders was net resource cost. The net resource cost for each feeder was determined for O&M offsets forecasted on a five, ten and fifteen year time horizon. This variable O&M forecast provided a means to filter on or off the number of economically viable feeder upgrades. Other criteria used to reduce the number of viable feeder upgrade projects included capital investment greater then \$0.5 million and net resource cost less then \$100 per Mwh.

The feeder upgrade program by itself falls short of being a strategic vision. However, it can be used as a first step towards a broader strategic view to be included in programs like capital budgeting, energy efficiency, and O&M reduction. A more robust corporate strategic vision for aging infrastructure rehabilitation would need to incorporate the following elements: 1) Movement of bulk power across our transmission system, 2) Optimum distribution topologies, 3) Substation size, locations and architectures, and 4) Reliable forecasts of geographical centered load growth. Once these elements are incorporated into the existing feeder upgrade program, a long term plan for Avista's electric infrastructure can be developed to move infrastructure upgrades from a tactical or reactive approach to a planned replacement strategy.

Introduction

Objective

The objective of the system efficiency analysis was to obtain a first order of magnitude assessment of energy savings across Avista's electric distribution system. The analysis was constructed to address the following two questions: 1) How much energy savings is available across Avista's distribution system? 2) Which feeders provide the most cost-effective for the least investment across the system?

Concession

The analysis did not include operational or design options to assist in refining cost estimates or selecting feeders for upgrade. Also, this analysis focused solely on the distribution system and did not consider system changes which may incorporate the installation of substations or new transmission lines.

Background

Avista's electric distribution system consists of approximately three hundred and thirty feeders covering a geographical area of 30,000 square miles. The distribution feeders range in voltage from 4.16 kV to 34.5 kV phase to phase and are typically rated to meet 10 MVA load for a typical 13.2 kV feeder. The distribution feeders reside in urban, suburban and rural areas and can range in length from 3 to 73 miles. The distribution feeders are typically designed to provide service from one to two thousand residential customers.

Past efficiency studies on Avista's distribution system have typically focused on either individual reinforcement projects or specific equipment upgrades. This current analysis differs from past analysis by combining several efficiency programs across most of Avista's distribution feeders. The results of the analysis provided an overall assessment of the energy savings on a per feeder basis. Also, this analysis incorporated capital, operational and maintenance costs into the economic assessment in order to determine the net resource value.

Analysis Tool Set

To determine efficiency gains associated with upgrading the distribution feeders, an analysis framework was developed by combining complementary technologies existing at Avista. For example, the SynerGEE Electric tool and its corresponding analysis engine Solver was leveraged to perform power flow analysis. Avista's Facility Management (AFM) system and Major Equipment Tracking (MET) system were queried to obtain the number, age and sizes of transformers on the distribution feeders. In addition, Avista's Substation Control and Data Acquisition (SCADA) system provided annual peak load and VAr consumption at the substation buses. Finally, the economic analysis of the annual Operation and Maintenance (O&M) forecast was approximated by Asset Managements Isograph Availability Workbench.

Engineering Analysis Methodology

The engineering analysis evaluated losses across the distribution system for the following program areas: 1) Conductor losses, 2) Distribution Transformers, 3) Secondary Districts and 4) VAr compensation. The energy losses, capital investment and reduction in O&M costs resulting from the individual efficiencies programs were combined on a per feeder basis. This analysis approach provided a means to rank and compare energy savings, along with return on investment, for each feeder. The individual programs methodology and assumptions are summarized in the descriptions below.

Reconductoring

The Distribution Engineering Group builds and maintains the SynerGEE distribution databases. The SynerGEE databases require material size, type and network topology for Avista's distribution feeders as provided by the Avista Facilities Management (AFM) system. These databases provide a network model from which a power flow analysis can be performed to evaluate thermal and voltage performance of each feeder. The power flow analysis accuracy is dependent upon these SynerGEE databases being both current and accurate. The internal work processes used to maintain the SynerGEE models are summarized below.

- Avista's AFM system is maintained by applications which support the design of new facilities, outages, operations and maintenance activities on the distribution system.
- An internally developed AFM application called Model Builder is used to upload the AFM data into a SynerGEE Model database
- Distribution Engineering reviews the SynerGEE Models and performs system calibration of the models.
- At the distribution feeder bus, a peak current meter read is recorded and inputted by Distribution *Planning*.

In order to perform a power flow analysis for all three hundred plus feeders, in this system efficiency analysis, the process was automated by utilizing Advantica's Solver engine. By using Solver, a scripting tool was developed to run multiple power flow iterations utilizing the SynerGEE models. The first iteration evaluated the energy loss with existing conductor and flagged conductor which did not adhere to Distribution Engineering's new economic conductor standard summarized in Table 1. The second iteration updated the flagged conductor with the new conductor standard and evaluated the energy loss.

Ampacity Range Selected Conductor				
0 to 25 Amps	2ACSR			
26 to 100 Amps	4/0AAC			
101 to 250 Amps	556AAC			
251 to 700 Amps	795AAC			

Table 1 Economic Conductor Standard

The incremental energy savings resulting from reconductoring the feeder was determined by evaluating the peak loss of KW for the existing conductor versus the new conductor standards. Once the peak incremental loss was determined between the two runs, an average energy loss was calculated. The average energy loss was determined by multiplying the peak loss by a loss factor. The loss factor was determined by squaring the load factor. The assumptions used in the analysis are summarized in the list below.

- The load factor for the distribution feeders were approximated by evaluating the load factor at several of the substation buses with hourly SCADA data
- The load factor used for the distribution analysis was 50 percent
- The loss factor used for the distribution analysis was 25 percent

Overhead Transformers

Between 1986 and 1987, Distribution Engineering conducted a set of no-load tests on approximately two hundred overhead transformers of various sizes, types and vintages. From the tests, a set of curves were developed to approximate the no-load losses for a transformer rating and age class (see Appendix). As a result, the no-load curves showed the loss for a particular transformer could be categorized into the following three vintages of transformers: 1) Pre-1960, 2) 1960 – 1983, 3) Post 1983.

In 2008, Distribution Engineering implemented a new design standard for overhead transformers which is based on a life-cycle cost analysis and recently established an avoided cost of energy value of \$66/MW. Consequently, the new transformer design standards specify transformers with no-load losses less then recently enacted Department of Energy (DOE) transformer efficiency standards. Upgrading the older overhead transformers accounted for a significant incremental energy savings in no-load losses.

A software script was developed within the AFM system to retrieve the number, size and vintage of transformers located on distribution feeders. The analysis assumed the overhead transformers would be replaced in-kind with the new lower no load loss overhead transformers. The difference between the no-load loss of the old and new transformer accounts for the incremental energy savings. The overhead transformer no-load loss occurs every hour of the year and is independent of the actual load. Therefore, the incremental energy savings are an average value. The transformer population for particular vintage classes is summarized in Table 2, for overhead transformers only.

Table 2 Overhead Transformer vintages				
VintagePopulation Number				
Pre1963	10,416			
1963 - 1983	32,788			
Post 1983	43,204			

Table 2 Overhead Transformer Vintages

Secondary Districts

Up to the late 1960's, Avista designed and constructed large secondary districts in residential neighborhoods. A secondary district is designed with a distribution transformer and a three wire secondary lines which provided service tie positions for up to thirty customers. At the time of construction, these districts were economically viable since they increased the customer to transformer ratio. Due to the increased cost of energy and associated operational O&M costs, the elimination or redesign of the secondary districts were evaluated for efficiency gains.

To determine the number of secondary districts on a feeder, an AFM script was written to identify the number of customers connected to a distribution transformer. To support the analysis, a secondary district was defined as an overhead transformer with twelve or more service premises. Using this classification, the ten feeders with the most secondary districts returned from the AFM query is summarized in Table 3.

Tuble 5 Teeder Becondury Districts				
Feeder Name	Number of Secondary Districts			
Ross Park 12F1	56			
Ross Park 12F6	55			
Ross Park 12F5	53			
Sunset 12F3	52			
Lyons & Standard 12F2	49			
Francis & Cedar 12F1	47			
Fort Wright 12F1	43			
Beacon 12F5	40			
Collage & Walnut 12F5	39			
Third & Hatch 12F2	37			

Table 3 Feeder Secondary Districts

In order to evaluate the reduction in energy losses, a SynerGEE power flow analysis was performed on some typical secondary districts. To improve the efficiency of the secondary districts, two options were considered: 1) Reduce the district length by the addition of a transformer, 2) Reconductoring the district with insulated triplex conductor. The power flow analysis concluded districts with more then twenty two service premises should be reduced in length by the addition of an overhead transformer, while districts with less then twenty two service premises should be replaced using overhead triplex wire.

The secondary district analysis only reviewed the reduction of energy loss and did not consider other design considerations such as flicker and reliability. Although an operational case could be made to eliminate districts by the addition of transformers for every four services, the energy loss in the transformers exceed the energy savings in the elimination of the district. The average KW loss associated with the district types is summarized in Table 4 below.

Table 4 Secondary District Type					
Secondary District Type Average KW Loss					
10-12	.234				
12-22	.356				
22 and up	1.03				

	Table 4 Secondar	y District Type
--	------------------	-----------------

VAr Compensation

Another efficiency program evaluated the reduction of current on the line by offsetting the reactive load with the installation of switched capacitors. A VAr controller operates the switched capacitor to respond to adverse reactive loading on a feeder. The amount of energy savings associated with the installation of switched capacitors depends upon the feeder power factor. To a large extent, motor loading required for air conditioning drives the reactive loading on a feeder. Consequently, the number of hours a switched capacitor operates is seasonal. The analysis methodology developed for evaluating the energy savings associated for a feeder is described below.

The Ninth and Central feeders were modeled to determine the size and type of switched capacitors as well as the annual hours of operation. A SCADA point located at Ninth and Central provided the amount of MVAr loading on a substation transformer on a per hour basis. A load duration curve developed from

this data determined the capacitor size and hours of operation. Once sized, SynerGEE's capacitor placement application optimized both the peak power savings and the ideal placement of the capacitor. The energy savings obtained by installing the capacitor was determined by multiplying the number of hours of operation by the KW savings to MVAr ratio.

This analysis methodology was simplified for the rest of the feeders by assuming the KW to MVAr ratio for all distribution feeders. The capacitor size for the rest of the feeders was assumed to be a single 900 KVAr bank. The hours of operation for the 900 KVAr were based on the load duration curve.

Economic Analysis

The economic analysis for the feeder upgrade programs estimated the capital investment, calculated the energy savings and forecasted operational and maintenance expense and interim capital investments. The capital investment required to implement the efficiencies programs were obtained from engineering estimates described below. The energy savings for a feeder upgrade was determined by the efficiency programs described previously. Finally, Asset Management modeled the feeders using their tools and forecasted the reduction in operational and maintenance expense resulting from the feeder upgrade, also described below.

Engineering Estimate

Reconductoring

The material and labor estimate were performed by Distribution Engineering in conjunction with Planning and are based on 2008 material and labor costs. The reconductoring estimate was based on whether the conductor was being replaced or whether new construction was necessary to install the conductor. The assumptions made in the unit pricing for each case are summarized in the list below.

New Construction

- New Pole
- New Anchors
- New Cross Arms

Replacement

• 40 % replacement of the poles, cross arms and anchors

The conductor replacement unit price is summarized in the Table 5 below.

Table 5 Conductor Unit Price						
CONDUCTOR_TYPE	New Construction \$/Per Mile					
795AAC	\$60,000	\$85,000				
556AAC	\$45,000	\$71,000				
4/0AAC	\$35,000	\$52,000				
2ACSR	\$30,000	\$42,000				

Table 5 Conductor Unit Price

Distribution Transformers

The engineering estimates for distribution transformers were obtained from Purchasing and are based on 2008 material and labor costs. The overhead transformers met the new design requirements for no-load losses. The estimated unit prices for various sized overhead transformers are summarized in Table 6.

Table & Overhead Transformers				
Overhead Transformers	Installed Cost			
15 KVA	\$1,014			
25 KVA	\$1,301			
37.5 KVA	\$1,952			
75 KVA	\$2,519			
100 KVA	\$3,278			
150 KVA	\$3,430			
225 KVA	\$3,936			
300 KVA	\$4,310			

Table 6 Overhead Transformers

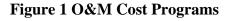
Secondary Districts

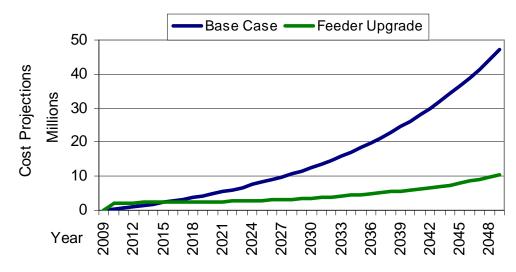
The engineering estimates to redesign secondary districts were determined for three distinct archetypes. The secondary district archetypes were based on the number of customers attached to overhead transformers. The labor and material costs to redesign the secondary districts for the distinct archetypes are listed in Table 7.

Table 7 Secondary Districts

Secondary District Archetypes	Cost
10-12 Customer Service Points	\$5,728 - \$8,687
13-22 Customer Service Points	\$6,181 - \$8,820
>22 Customer Service Points	\$7,539 - \$10,498

VAr Compensation


The labor and material estimate for switched capacitors were based on recently purchased and installed capacitors. The cost for the purchased and installed capacitors for a 900 KVAr bank was \$11,000.


Asset Management

The Asset Management team developed the Availability Workbench Model for six distribution feeders. The Availability Workbench Model combines input from the following areas: 1) system performance, 2) facility data, 3) manager and crafts 4) industry data, and 5) key performance indicators. From these inputs, the workbench application generates a forecasted annualized O&M and Capital cost model. The cost model is generated by comparing O&M expense resulting after a feeder upgrade versus the O&M expense for a base case. Asset Managements base case assumes the equipment will be replaced upon failure.

The Asset Management analysis results indicated that upgrading the feeders reduces forecasted O&M expense when compared to the base case. The feeder upgrade program replaces aged equipment with new equipment to improve system efficiencies and reliability. The replacement of equipment reduces future O&M expenditures which is an economic benefit to the project and is included in the analysis. The reduction and avoidance of future increases in O&M expenditures are illustrated in Figure 1. The base case curve shows an exponential growth in O&M costs resulting from failure of the aging equipment failing. The feeder upgrade curve shows an initial increase in revenue requirement corresponding to the cost of the upgrade but shows how the revenue requirement rises slower due to the replacement of the aging facility.

The Asset Management program conducted an O&M analysis for the following six feeders: 1) 9CE12F4, 2) SUN12F3, 3) SUN12F1, 4) SUN12F2, 5) COL12F2, 6) KET12F2. The Asset Management team estimated the time to develop a Workbench model to determine the O&M expenditure was approximately thirty hours per feeder. To reduce the time to perform the analysis, the O&M expenditure curve determined for the six feeders was used to interpolate the expenditure for the other feeders. The linear interpolation was based on a strong correlation between the O&M expense and the length of the feeders analyzed.

In order to limit the interpolation, the O&M expense was generated only for feeders with lengths between 12.5 miles (SUN12F3) and149 miles (KET12F2). Consequently, feeders with lengths outside this range were not included in the net resource cost analysis. Although the feeders were not included in the analysis the may still be economically viable. One example is the ORI12F3 feeder which ranks first in energy savings as shown Table 12. However, the feeder was not included in the net resource cost analysis since its length of 170 miles exceeded the maximum mileage criteria used for the analysis.

Energy Results

The efficiency analysis of the distribution feeders evaluated the existing energy losses and energy savings resulting from implementing the program upgrades. The study identified the existing distribution system losses to be approximately 3.6%. Assuming, all of the distribution feeders studied were economically viable to upgrade, the resulting system energy losses would be reduced by 2%. The total energy savings corresponding to the implementation of the upgrades would correspond to an energy savings of approximately 29.2 MW on peak and 13.5 MW on average. The energy savings break down across each program is described below.

Reconductoring

The reconductoring program as mentioned previously used the SynerGEE application to determine the conductor losses across our feeders. The distribution conductor operating at twenty percent or greater of its rated ampacity was upgraded to the new distribution standard, if warranted. The analysis was run again to determine the incremental reduction in conductor losses corresponding to the conductor upgrade. The results of the analysis are summarized in Table 8.

Tuble o Reconductoring Tower Suvings					
Number of FeedersPeak Loss KWAverage Loss KWPeak Loss Savings KWAverage Loss Savings KW					
302	35,676	8,919	14,973	3,743	

Table 8 Reconductoring Power Savings

Overhead Transformers

The efficiency analysis evaluated the no-load losses across the existing transformer population to determine the average no-load transformer loss on Avista's distribution feeders. The incremental energy savings was determined by taking the difference between the no-load losses of the new transformer standard versus the older vintage transformers. The results of the analysis are summarized in Table 9.

Table 9 Overhead Transformer Fower Savings						
Vintage	Total number ofAverage LossAverage Loss					
Transformers KW Savings KW						
Pre1963	10,416	4700	1,907			
1963 To 1983	32,788	9470	5,710			

Table 9 Overhead Transformer Power Savings

Secondary Districts

The energy losses corresponding to the secondary districts were categorized by the number of service premises connected to the district. The incremental energy savings from the redesign of these districts was determined by taking the difference between the existing losses and the new designed district losses. The results of the analysis are summarized in Table 10.

Archetypes	Number of Districts	Peak Loss KW	Avg. Power Loss KW	Peak Loss Savings KW	Avg. Power Savings KW
10 - 12 Customer Service Points	3,414	5,516	1,379	3,196	799
13 - 22 Customer Service Points	1,302	3,156	789	1,856	464
> 22 Customer Service Points	32	196	49	132	33
TOTAL	4,748	8,868	2,217	5,184	1,296

Table 10 Secondary Districts Power Savings

VAr Compensation

A VAr duration curve across Avista's load was developed from the electric transmission SCADA data. This load duration curve helped to book mark the amount of reactive load on Avista's system. The analysis assumed approximately 100 MVAr of reactive load could be offset in the distribution system. It was also assumed that standard switched bank installation of 900 KVAr would be deployed for a single feeder. Therefore, approximately 112 feeders would have switched capacitors installed. Finally, as mentioned previously the ratio between kilowatts savings for megavar compensation was determined by evaluating several distribution feeders. The results of the savings are shown in Table 11.

Number of Feeders	Bank Size	KW Savings	Average Hours Operation		Avg Power Savings KW
112	900 KVAr	13	5100	1456	847

Table 11 VAr Compensation Power Savings

In addition to reviewing the individual programs for energy savings, the programs were combined on a per feeder basis. This allowed the feeders to be ranked on the total amount of energy savings available on a per feeder basis. Table 12 provides the number of feeders which would provided power savings over one hundred kilowatts. The list of feeders and corresponding power savings is listed in Table 12.

	-	Total Average
Feeder Name	Total Cost	kW
ORI12F3	\$1,170,357	201
CHW12F3	\$1,682,503	184
SPI12F1	\$1,243,066	172
WIL12F2	\$1,705,623	155
KET12F2	\$968,669	143
STM631	\$1,211,798	139
CLV34F1	\$1,765,413	127
F&C12F1	\$1,499,055	123
ROX751	\$1,069,310	120
BEA12F2	\$1,423,808	116
SUN12F3	\$1,224,379	113
GIF34F2	\$1,253,973	112
BEA12F1	\$1,221,446	111
COB12F2	\$822,727	109
RAT231	\$1,111,882	108
ORO1281	\$669,953	107
CLV12F4	\$907,259	105
ROS12F1	\$1,428,530	104
ROS12F6	\$1,316,652	102
L&S12F2	\$1,101,072	101
BEA12F5	\$1,210,094	101

Table 12 Top Feeder Power Savings

Economic Ranking

Although it may not be prudent to upgrade all of the distribution feeders, this study ranks the feeders by diminishing economic return. The economic metric used to rank feeders was net resource cost. The net resource cost for each feeder was determined for O&M offsets forecasted on a five, ten and fifteen year time horizon. This variable O&M forecast provided a means to filter on or off the number of economically viable feeder upgrades. Other criteria used to reduce the number of viable feeder upgrade projects included capital investment greater then \$0.5 million and net resource cost less then \$100 per MW.

The ranking of the most viable economic feeder upgrades are illustrated in the following three tables. Table 13, Table 14 and Table 15 is based on a five, ten and fifteen year O&M time horizon respectively.

Feeder	Net Resource Cost \$/Mwh	Capital Investment	ĸw
KET12F2	\$55.00	\$968,669.0	142.99
SPI12F1	\$67.73	\$1,243,065.8	171.98
ORO1281	\$68.58	\$669,953.1	106.53
COL12F2	\$74.92	\$822,726.8	108.96
COB12F2	\$74.92	\$822,726.8	108.96
LF34F1	\$76.29	\$595,875.0	72.71
COB12F1	\$82.87	\$671,737.4	77.55
PVW241	\$89.40	\$528,985.4	53.68
CLV12F4	\$89.83	\$907,259.4	105.03
L&R512	\$94.53	\$546,237.7	55.02
OLD721	\$94.87	\$608,545.7	67.75
ARD12F2	\$95.35	\$817,711.5	82.33
STM631	\$97.26	\$1,211,797.7	139.36
ROX751	\$99.44	\$1,069,309.6	120.48

 Table 13 Net Resource Cost - Five Year O&M

Table 14 Net Resource Cost – Ten Year O&M

Feeder	Net Resource Cost \$/Mwh	Capital Investment	ĸw	
KET12F2	\$31.00	\$968,669.0	142.99	
SPI12F1	\$49.19	\$1,243,065.8	171.98	
LF34F1	\$51.54	\$595,875.0	72.71	
PVW241	\$56.55	\$528,985.4	53.68	
ORO1281	\$56.75	\$669,953.1	106.53	
COL12F2	\$57.56	\$822,726.8	108.96	
COB12F2	\$57.56	\$822,726.8	108.96	
COB12F1	\$59.29	\$671,737.4	77.55	
CHW12F2	\$60.29	\$600,325.8	41.95	
L&R512	\$63.81	\$546,237.7	55.02	
ARD12F2	\$70.17	\$817,711.5	82.33	

Feeder	Net Resource Cost \$/Mwh Capital Investment		ĸw	
CLV12F4	\$72.60	\$907,259.4	105.03	
GIF34F2	\$72.61	\$1,253,972.5	112.27	
OLD721	\$73.12	\$608,545.7	67.75	
MIS431	\$79.16	\$780,915.9	57.44	
F&C12F2	\$80.57	\$610,746.1	65.07	
RDN12F1	\$81.47	\$519,904.7	34.81	
ORI12F1	\$81.53	\$832,306.2	75.82	
FOR12F1	\$81.55	\$560,782.7	39.13	
CKF711	\$83.62	\$912,659.4	88.03	
STM631	\$85.11	\$1,211,797.7	139.36	
PF213	\$85.38	\$579,843.8	55.23	
PRA222	\$85.48	\$543,659.3	51.64	
NE12F2	\$85.54	\$508,476.3	45.31	
ROX751	\$86.10	\$1,069,309.6	120.48	
RAT231	\$86.36	\$1,111,881.6	108.16	
PUL112	\$86.42	\$528,311.9	44.24	
SE12F2	\$86.66	\$714,903.4	69.83	
TEN1256	\$87.12	\$789,201.9	85.49	
GLN12F2	\$88.33	\$584,770.4	51.32	
LIB12F3	\$88.64 \$529,971.6		46.50	
CLV12F2	\$88.87 \$904,207.9		90.25	
PUL116	\$89.22 \$537,639.7		45.27	
CRG1261	\$89.84 \$561,702.8		44.85	
APW112	\$91.22	\$522,196.7	45.53	
WAK12F1	\$93.01	\$560,901.0	48.81	
DEE12F2	\$93.14	\$743,960.8	69.63	
GRV1274	\$94.16	\$671,626.1	66.96	
PDL1202	\$94.22	\$581,246.6	55.32	
SUN12F5	\$95.38	\$642,722.3	52.58	
LIB12F2	\$95.47	\$726,778.1	58.98	
DAL131	\$97.14	\$870,985.5	84.97	
SAG741	\$97.29	\$634,916.4	44.82	
BKR12F1	\$98.20	\$683,595.8	64.18	
DEE12F1	\$98.39	\$996,523.0	67.68	
M15515	\$99.16	\$540,077.6	44.53	
SE12F4	\$99.42	\$686,532.3	59.34	
M15512	\$99.50	\$531,004.8	43.84	

Table 15 Net Resource Cost - Fifteen Year O&M

Feeder	Net Resource Cost \$/Mwh	Capital Investment	ĸw
CHW12F2	\$2.9	\$600,325.8	41.95
KET12F2	\$4.6	\$968,669.0	142.99
PVW241	\$23.3	\$528,985.4	53.68

Feeder	Net Resource Cost \$/Mwh	Capital Investment	ĸw
LF34F1	\$26.4	\$595,875.0	72.71
SPI12F1	\$28.9	\$1,243,065.8	171.98
RDN12F1	\$29.4	\$519,904.7	34.81
L&R512	\$32.8	\$546,237.7	55.02
FOR12F1	\$34.0	\$560,782.7	39.13
MIS431	\$35.1	\$780,915.9	57.44
COB12F1	\$35.3	\$671,737.4	77.55
GIF34F2	\$39.5	\$1,253,972.5	112.27
COL12F2	\$39.9	\$822,726.8	108.96
COB12F2	\$39.9	\$822,726.8	108.96
ARD12F2	\$44.1	\$817,711.5	82.33
ORO1281	\$44.8	\$669,953.1	106.53
AIR12F1	\$48.7	\$615,395.6	49.12
OLD721	\$51.3	\$608,545.7	67.75
PUL112	\$51.6	\$528,311.9	44.24
CRG1261	\$54.0	\$561,702.8	44.85
ORI12F1	\$54.7	\$832,306.2	75.82
CLV12F4	\$55.1	\$907,259.4	105.03
NE12F2	\$55.5	\$508,476.3	45.31
PUL116	\$56.2	\$537,639.7	45.27
DEE12F1	\$56.5	\$996,523.0	67.68
SAG741	\$57.4	\$634,916.4	44.82
GLN12F2	\$58.3	\$584,770.4	51.32
LIB12F3	\$59.0	\$529,971.6	46.50
PF213	\$60.1	\$579,843.8	55.23
PRA222	\$60.3	\$543,659.3	51.64
F&C12F2	\$60.5	\$610,746.1	65.07
CKF711	\$61.5	\$912,659.4	88.03
ODN731	\$61.9	\$627,946.4	44.01
APW112	\$62.8	\$522,196.7	45.53
SE12F2	\$64.1	\$714,903.4	69.83
SUN12F5	\$64.6	\$642,722.3	52.58
WAK12F1	\$65.2	\$560,901.0	48.81
LIB12F2	\$65.8	\$726,778.1	58.98
RAT231	\$65.9	\$1,111,881.6	108.16
CLV12F2	\$70.0	\$904,207.9	90.25
M15515	\$70.7	\$540,077.6	44.53
DEE12F2	\$70.8	\$743,960.8	69.63
M15512	\$71.5	\$531,004.8	43.84
TEN1256	\$71.6	\$789,201.9	85.49
ROX751	\$72.7	\$1,069,309.6	120.48
STM631	\$72.8	\$1,211,797.7	139.36
SE12F4	\$72.8	\$686,532.3	59.34
PDL1202	\$74.6	\$581,246.6	55.32
SPT4S30	\$75.7	\$541,420.5	44.99
014000	φ/3./	ψ041,420.3	44.33

Feeder	Net Resource Cost Capital \$/Mwh Investment		KW	
CHE12F4	\$76.2	\$667,293.8	57.48	
OGA611	\$76.5	\$780,992.8	58.08	
GRV1274	\$77.5	\$671,626.1	66.96	
SOT522	\$77.7	\$632,142.6	51.02	
CFD1210	\$78.0	\$563,163.3	45.20	
SOT521	\$78.4	\$538,938.7	46.10	
BKR12F1	\$79.3	\$683,595.8	64.18	
NE12F1	\$79.6	\$687,832.8	62.33	
DAL131	\$79.8	\$870,985.5	84.97	
PDL1203	\$81.8	\$559,682.9	45.75	
CFD1211	\$82.4	\$734,775.9	65.51	
MIL12F3	\$82.8	\$619,499.7	55.10	
CDA123	\$83.5	\$672,854.8	56.29	
9CE12F1	\$83.5	\$616,123.8	54.88	
MEA12F2	\$83.7	\$750,315.2	63.99	
SIP12F4	\$84.3	\$634,440.7	53.05	
CHE12F1	\$84.3	\$629,576.6	54.28	
SOT523	\$84.9	\$1,023,389.6	89.92	
NW12F1	\$85.1	\$788,923.6	73.66	
WIL12F2	\$86.5	\$1,705,622.8	155.22	
TEN1254	\$86.6	\$582,980.2	48.35	
ECL222	\$86.7	\$686,592.4	60.28	
CDA124	\$86.8	\$641,838.7	55.52	
M15513	\$87.1	\$736,558.1	67.36	
F&C12F6	\$88.2	\$658,978.5	57.70	
TEN1255	\$89.2	\$607,926.6	50.49	
SLK12F1	\$89.4	\$854,712.8	72.56	
MIL12F4	\$89.6	\$831,468.1	75.37	
LOL1359	\$90.7	\$830,015.9	73.31	
CHE12F2	\$90.8	\$642,694.9	54.26	
SPU123	\$91.2	\$724,338.0	60.68	
9CE12F2	\$92.9	\$764,865.0	66.97	
CDA121	\$92.9	\$623,762.0	50.00	
TEN1257	\$93.0	\$740,138.0	65.15	
WAK12F2	\$93.6	\$765,628.4	67.80	
9CE12F4	\$93.7	\$774,787.7	68.61	
SLW1358	\$93.7	\$717,636.7	62.17	
CDA125	\$94.4	\$863,793.5	70.73	
EFM12F1	\$95.0	\$950,734.3	79.18	
NW12F3	\$96.7	\$746,886.7	62.10	
M23621	\$97.1	\$641,972.3	43.52	
MIL12F1	\$100.3	\$798,146.0	68.01	
SUN12F6	\$101.5	\$789,282.4	66.28	

Conclusion

The intent of this system efficiency analysis was to develop and implement a methodology to identify and quantify remedies to reducing losses across Avista's distribution system. The results of this analysis can then be folded into a broader infrastructure strategy. A program to systematically refresh feeders can be combined with existing internal programs like asset management and capital budgeting to identify synergistic work alignments. For example, a project schedule could be developed to upgrade feeders based on energy, operational, reliability and maintenance priorities. Today, capital work is typically driven by system capacity constraints. With the results obtained in this analysis, capital projects could be aligned with corporate economic goals of reducing energy loss and offsetting O&M expenditures.

The benefits identified in the feeder upgrade program assumed the upgrades would be deployed in a comprehensive manner. The temptation to implement individual efficiency program components across the system may compromise the performance of a feeder as an energy delivery system. The efficient and reliable delivery of electrical energy across the Avista feeders is best met by incorporating all of the electrical components in the upgrade. This systemic approach may help guide how programs should be implemented across the organization.

Today, Avista implements projects in fairly discrete work silos influenced by departmental task structure and budget constraints. Examples of these type of programs are joint use, pole test and treat, failed equipment, new revenue and specific capital project budgeting. Consequently, the programs are dispersed across multiple feeders resulting in different crews working on the same feeder at different times over multiple years. The feeder upgrade program could be used not only to achieve energy savings but also be used as a springboard to consolidate and coordinate work efforts. Rather than referring to work groups by departmental names like Distribution Engineering, Operations or Asset Management, they may be better served by being aligned with actual work processes like capital and operational feeder programs.

The feeder upgrade program by itself falls short of being a strategic vision. However, it can be used as a first step towards a broader strategic view to be included in programs like capital budgeting, energy efficiency, and O&M cost reduction. A more robust corporate strategic vision for aging infrastructure rehabilitation would need to incorporate the following elements: 1) Movement of bulk power across our transmission system, 2) Optimum distribution topologies, 3) Substation size, locations and architectures, and 4) Reliable forecasts of geographical centered load growth. Once these elements are incorporated into the existing feeder upgrade program, a long term plan for Avista's electric infrastructure can be developed to move infrastructure upgrades from a tactical or reactive approach to a planned replacement strategy.

2009

Electric Integrated Resource Plan

Appendix H – 2009 Electric IRP Avista New Resource Table

August 31, 2009

2009 Avista IRP

New Resource Table

	Resource	POR				Capacity	Year
Resource	Location	or Local Area	POD	Start	Stop	MW	Total
Lancaster CCCT	Rathdrum, ID	Bell/Westside	AVA System	1/1/2010	10/31/2026	125.0	
Lancaster CCCT	Rathdrum, ID	Mid-C	AVA System		10/31/2026	150.0	275.0
Noxon 3 (incremental)	Noxon, MT	Noxon, MT	AVA System	1/1/2010	Indefinite	14.0	14.0
Noxon 2 (incremental)	Noxon, MT	Noxon, MT	AVA System	1/1/2011	Indefinite	14.0	14.0
Noxon 4 (incremental)	Noxon, MT	Noxon, MT	AVA System	1/1/2012	Indefinite	14.0	
Nine Mile (incremental)	Nine Mile, WA	Nine Mile, WA	AVA System	1/1/2012	Indefinite	8.8	
Wind	Reardan, WA	Reardan, WA	AVA System	1/1/2012	Indefinite	90.0	
Wind	TBD	TBD	AVA System	1/1/2012	Indefinite	60.0	172.8
Little Falls (incremental)	Ford, WA	Little Falls, WA	AVA System	1/1/2013	Indefinite	1.0	1.0
Little Falls (incremental)	Ford, WA	Little Falls, WA	AVA System	1/1/2014	Indefinite	1.0	1.0
Little Falls (incremental)	Ford, WA	Little Falls, WA	AVA System	1/1/2016	Indefinite	1.0	1.0
Wind	TBD	TBD	AVA System	1/1/2019	Indefinite	150.0	
CCCT	TBD	Bell/Westside	AVA System	1/1/2019	Indefinite	250.0	400.0
Upper Falls (incremental)	Spokane, WA	Spokane, WA	AVA System	1/1/2020	Indefinite	2.0	2.0
Wind	TBD	TBD	AVA System	1/1/2022	Indefinite	50.0	50.0
СССТ	TBD	TBD	AVA System	1/1/2024	Indefinite	250.0	250.0
СССТ	TBD	TBD	AVA System	1/1/2027	Indefinite	250.0	250.0

Total 1431 1431

August 26, 2009