

Natural Gas Integrated Resource Plan

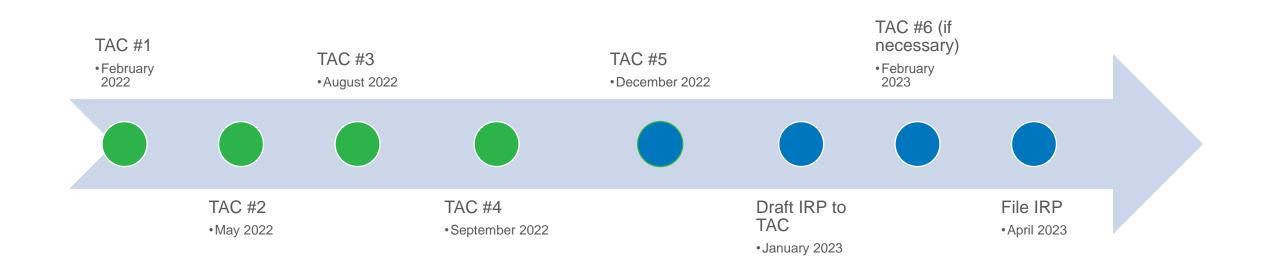
Technical Advisory Committee (TAC) # 5

December 15, 2022

Safe Harbor Statement

This document contains forward-looking statements. Such statements are subject to a variety of risks, uncertainties and other factors, most of which are beyond the Company's control, and many of which could have a significant impact on the Company's operations, results of operations and financial condition, and could cause actual results to differ materially from those anticipated.

For a further discussion of these factors and other important factors, please refer to the Company's reports filed with the Securities and Exchange Commission. The forward-looking statements contained in this document speak only as of the date hereof. The Company undertakes no obligation to update any forward-looking statement or statements to reflect events or circumstances that occur after the date on which such statement is made or to reflect the occurrence of unanticipated events. New risks, uncertainties and other factors emerge from time to time, and it is not possible for management to predict all of such factors, nor can it assess the impact of each such factor on the Company's business or the extent to which any such factor, or combination of factors, may cause actual results to differ materially from those contained in any forward-looking statement.



Agenda

Item	Time
Applied Energy Group – Demand Response	9:00am – 9:30am
Distribution	9:30am – 10:15am
Review Assumptions	10:15am – 10:30am
Break	10:30am – 10:40am
Preferred Resource Strategy and Scenario Results	10:40am – 11:30am
WA GRC Commitments - Action Plan - Next Steps	11:30am – 12:00pm

2023 – Avista Natural Gas IRP

Natural Gas Demand Response

Date: 12/15/2022 Prepared for: Avista Technical Advisory Committee

Program Options and Eligibility

DSM Option	States Eligible	Classes Eligible
Behavioral	WA	Res, Com
DLC Smart Thermostats - BYOT	WA, ID, OR	Res, Com
Time-of-Use	WA	Res, C&I
Variable Peak Pricing	WA	Res, C&I
Third Party Contracts	WA, ID, OR	C&I

Assumptions

Study Assumptions

⊙ The programs in this study target the peak hour of the peak day (Dekatherms)

⊘ Winter only

Program Impact and Cost assumptions

Our Serived primarily from other Gas DR Programs

- Smart Thermostat Program based on SoCalGas's Smart Therm Program
- Third Party Contracts Program based on National Grid and ConEdison Programs
- Oiverged where gaps in research exist
 - Customized for Avista's service territory
 - Pulled remaining assumptions from Electric DR Model and scaled down where appropriate

Advanced Metering Infrastructure (AMI) Assumptions

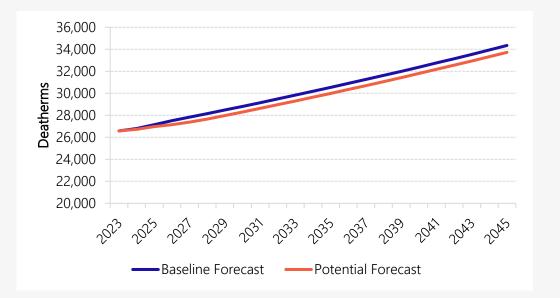
Some of the options require AMI

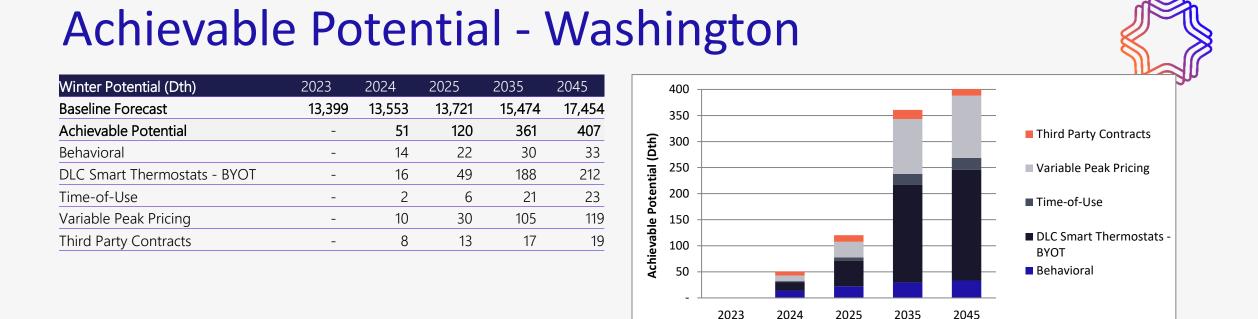
- OLC Options- No AMI Metering Required
- Oynamic Rates and Behavioral- require AMI for billing

Washington

⊙ Utilized current Avista AMI saturation rates by sector and held constant

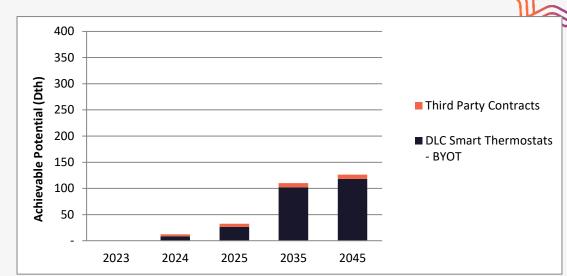
Idaho and Oregon


- ⊘ No AMI Projected
- Oynamic Rates and Behavioral Programs not estimated


Achievable Potential

Overall Potential

	2023	2024	2025	2035	2045
Baseline Forecast	26,574	26,801	27,145	30,533	34,338
Potential	-	72	176	545	614
Potential (%)	0%	0%	1%	2%	2%
Potential Forecast	26,574	26,729	26,969	29,988	33,724



Key Findings:

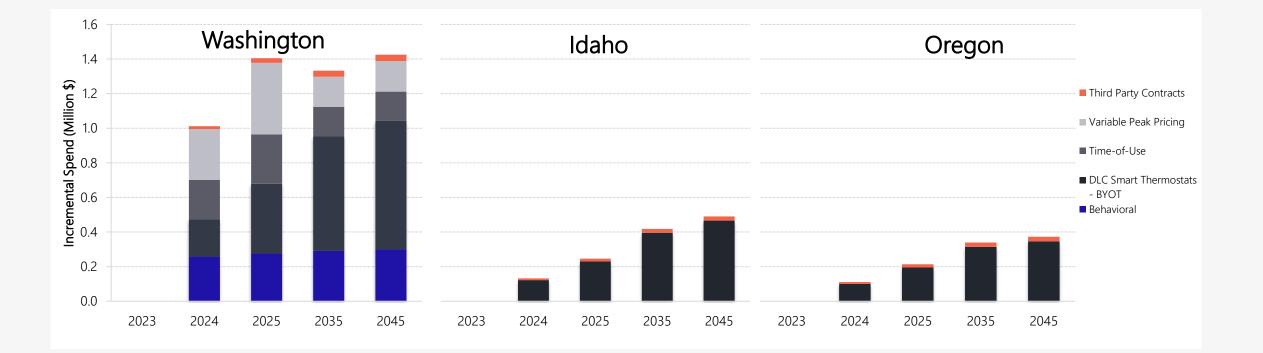
- All five options available due to AMI saturation
- Largest potential option is DLC Smart Thermostats BYOT (52% of potential)
- Next largest is VPP (29% of potential)

Achievable Potential - Idaho

Winter Potential (Dth)	2023	2024	2025	2035	2045
Baseline Forecast	6,877	6,909	7,026	8,077	9,273
Achievable Potential	-	12	32	110	126
Behavioral	-	-	-	-	-
DLC Smart Thermostats - BYOT	-	9	26	102	118
Time-of-Use	-	-	-	-	-
Variable Peak Pricing	-	-	-	-	-
Third Party Contracts	-	4	6	8	8

Key Findings:

- Rates and Behavioral options unavailable
- DLC Smart Thermostats BYOT (94% of potential)
- Third Party Contracts (6% of potential)



Key Findings:

- Rates and Behavioral options unavailable
- DLC Smart Thermostats BYOT (91% of potential)
- Third Party Contracts (9% of potential)

Program Costs by State

Gas DR Key Findings

Natural Gas DR is an emerging resource

- Small number of programs in existence

Program Potential

- Smart Thermostats − Gas Heating
 - Largest savings potential Available to all states
- ⊘ Variable Peak Pricing
 - Largest potential among rates WA only
- ⊘ Third Party Contracts
 - 6% of overall potential Third largest
 - Small amount of industrial gas customers
 - $\,\circ\,\,$ Not a lot of discretionary load to reduce

Thank You.

Kelly Marrin, Managing Director kmarrin@appliedenergygroup.com

Andy Hudson, Project Manager ahudson@appliedenergygroup.com

Eli Morris, Managing Director emorris@appliedenergygroup.com

Tommy Williams, Associate Consultant twilliams@appliedenergygroup.com

Modeled DR Inputs – Levelized

Idaho

Input into Plexos	Per Dth Price
Behavioral	\$0
DLC Water Heating	\$0
DLC Smart Thermostats - BYOT	\$5,754
Time-of-Use	\$0
Variable Peak Pricing	\$0
Third Party Contracts	\$137,045

Oregon

Input into Plexos	Per Dth Price
Behavioral	\$0
DLC Water Heating	\$0
DLC Smart Thermostats - BYOT	\$5,767
Time-of-Use	\$0
Variable Peak Pricing	\$0
Third Party Contracts	\$136,783

Washington

Input into Plexos	Per Dth Price
Behavioral	\$11,849
DLC Water Heating	\$0
DLC Smart Thermostats - BYOT	\$5,756
Time-of-Use	\$18,883
Variable Peak Pricing	\$4,474
Third Party Contracts	\$135,937

Distribution System Planning

Natural Gas Technical Advisory Committee

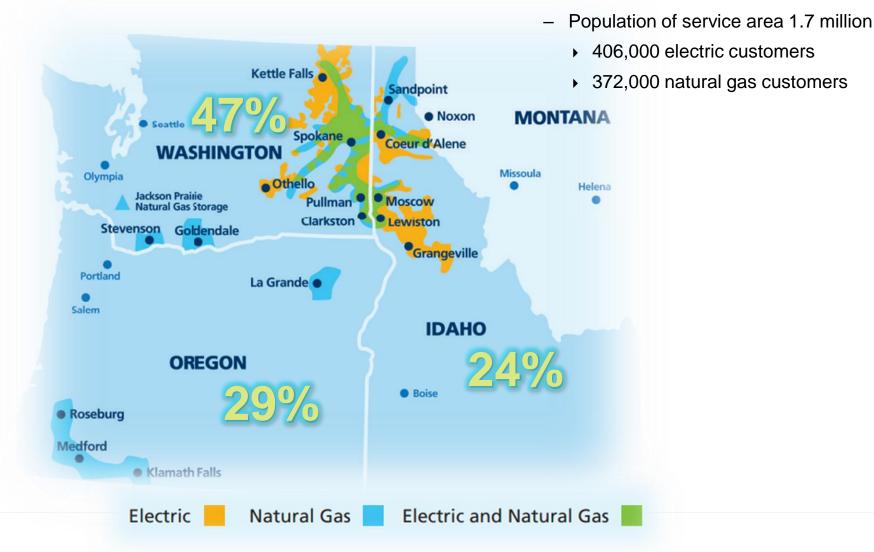
December 15, 2022

Terrence Browne PE, Senior Gas Planning Engineer

Mission

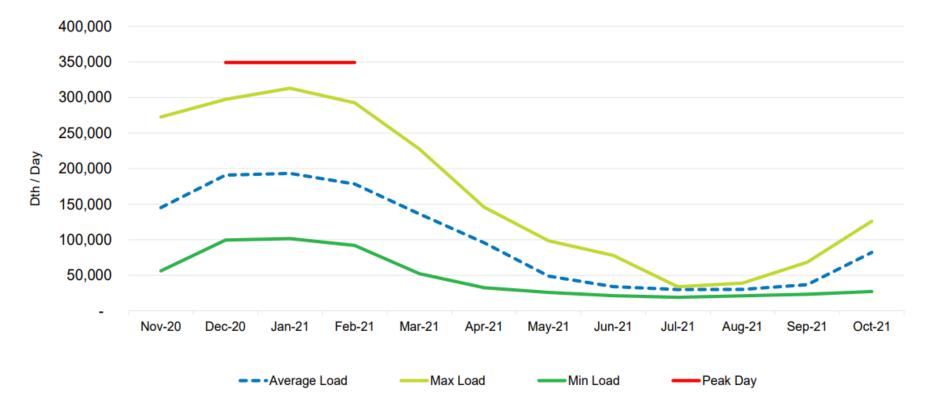
• Using technology to plan and design a safe, reliable, and economical distribution system

AVISTA


Gas Distribution Planning

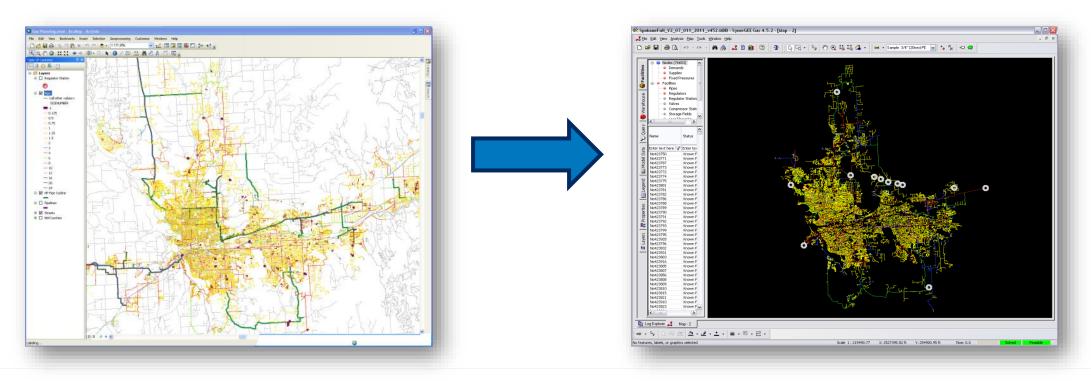
- Service Territory and Customer Overview
- Scope of Gas Distribution Planning
- SynerGi Load Study Tool
- Planning Criteria
- Interpreting Results
- Monitoring Our System
- Areas Currently Monitoring for Low Pressure and Proposed Solutions
- Gate Station Capacity Review
- Avista's Capability To Accommodate Hydrogen

Service Territory and Customer Overview

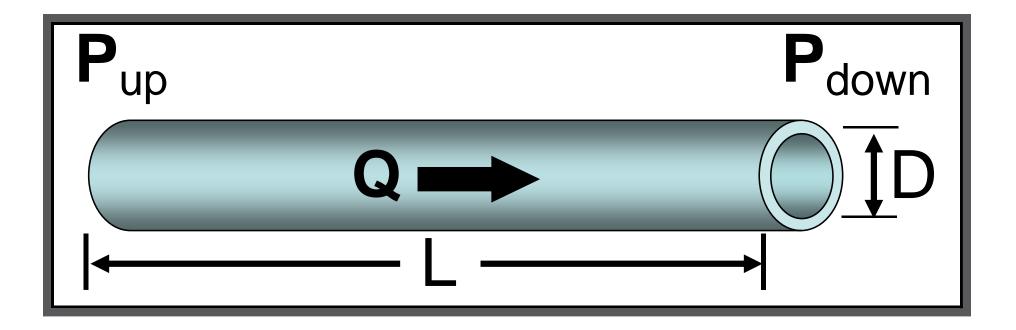

• Serves electric and natural gas customers in eastern Washington and northern Idaho, and natural gas customers in southern and eastern Oregon

Winter Peaking Profile

LDC - Total System Average Daily Load

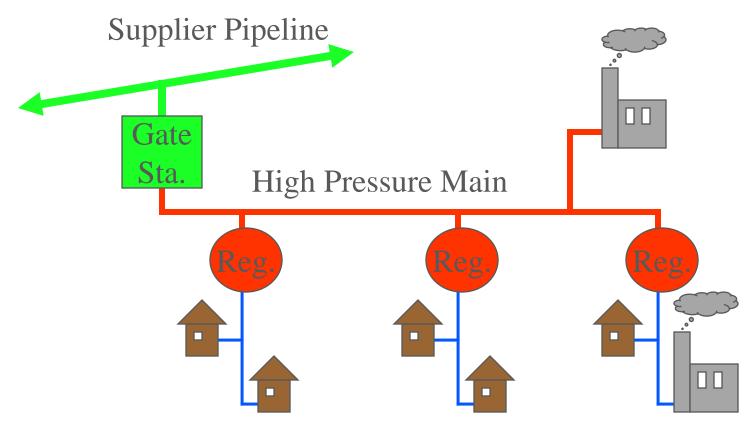

Technical Advisory Committee (TAC) # 1

February 16, 2022

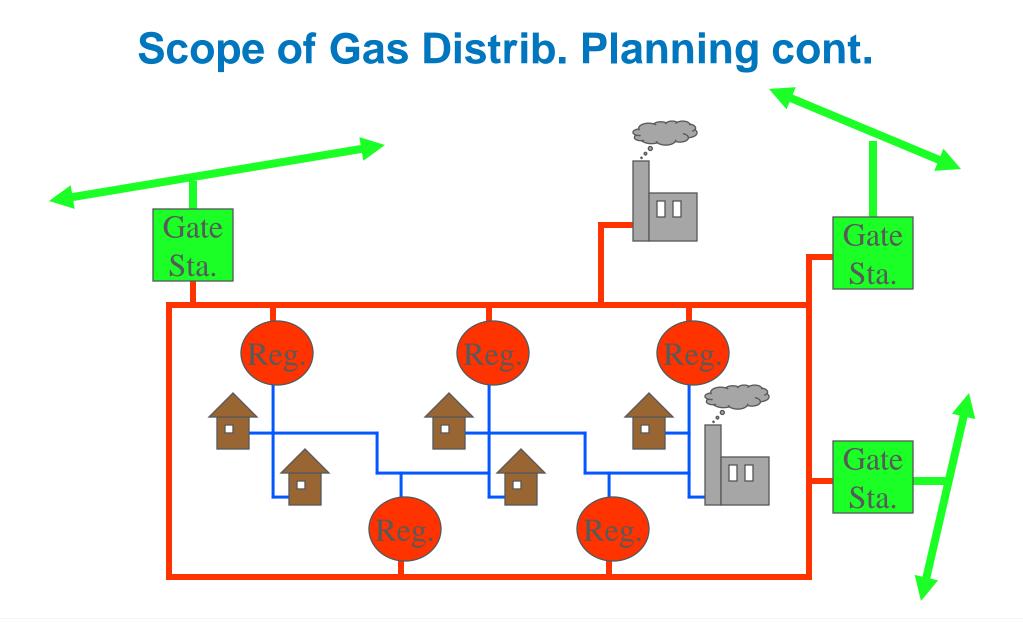


Our Planning Models

- 8,000 miles of distribution main
- 120 cities
- 40 load study models

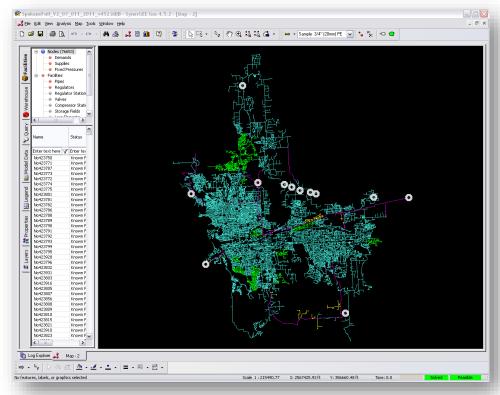


5 Variables for Any Given Pipe



Scope of Gas Distribution Planning

Distribution Main and Services



SynerGi (SynerGEE, Stoner) Load Study

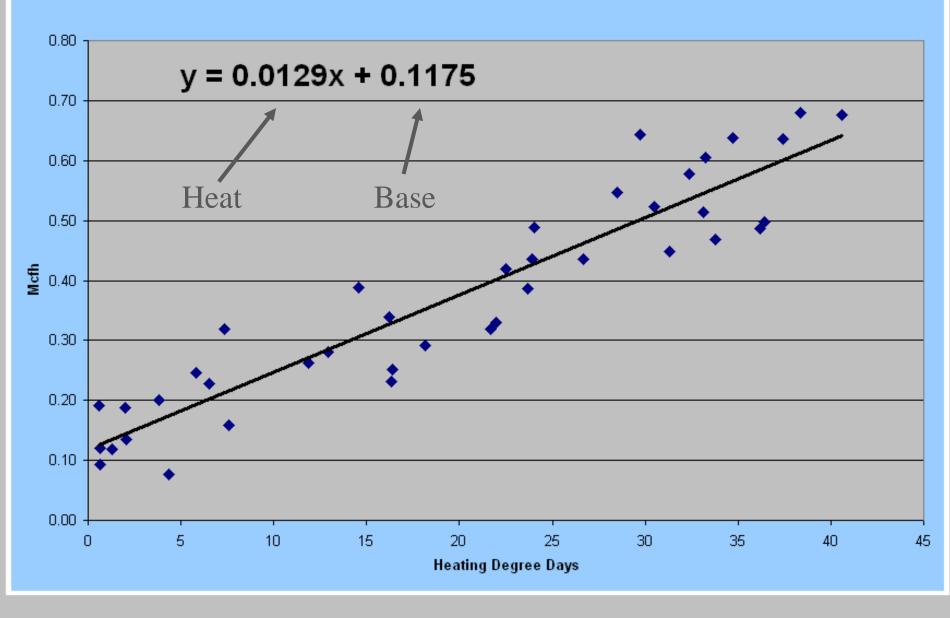
- Simulate distribution behavior
- Identify low pressure areas
- Test reinforcements against future growth/expansion
- Measure reliability

Preparing a Load Study

- Estimating Customer Usage
- Creating a Pipeline Network
- Join Customer Loads to Pipes
- Convert to Load Study

Estimating Customer Usage

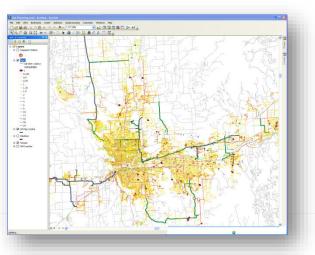
- Gathering Data
 - Days of service
 - Degree Days
 - Usage
 - Name, Address, Revenue Class, Rate Schedule...

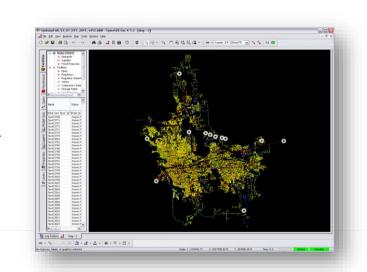

Estimating Customer Usage cont.

- Degree Days
 - Heating (HDD)
 - Cooling (CDD)
- Temperature Usage Relationship
 - Load vs. HDD's
 - Base Load (constant)
 - Heat Load (variable)
 - High correlation with residential

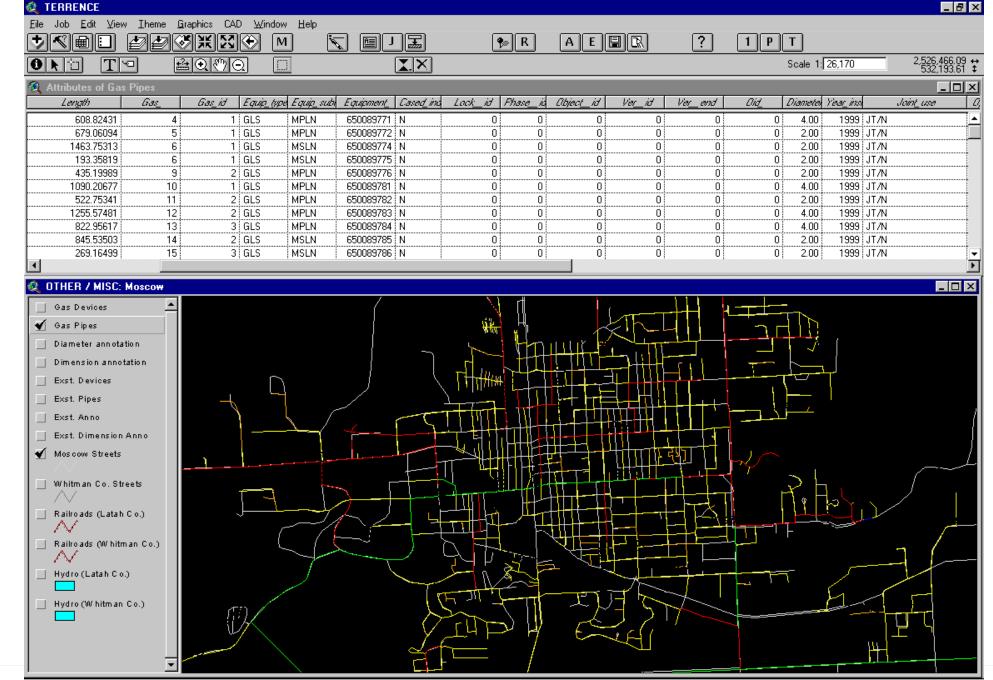
Avg. Daily	Heating	Cooling
	-	
Temperature		Degree Days
('Fahrenheit)	(HDD)	(CDD)
85		20
80		15
75		10
70		5
<u>65</u>	0	0
60	5	
55	10	
50	15	
45	20	
40	25	
35	30	
30	35	
25	40	
20	45	
15	50	
10	55	
5	60	
4	61	
0	65	
-5	70	
-10	75	
-15	80	

Load vs. Temperature

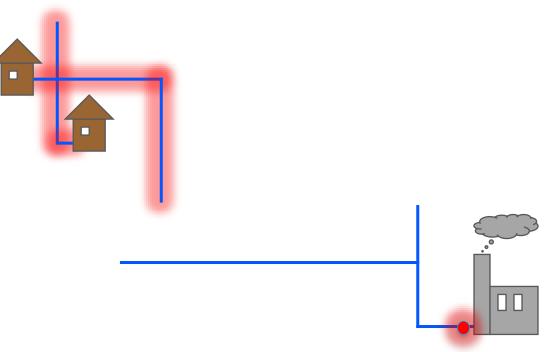



AVISTA

Summary / 109735 / 103678 / 114268 / 114279 Chart1 / 133049 / 156920 / 161549 / 208478 /


Creating a Pipeline Model

- Elements
 - Pipes, regulators, valves
 - Attributes: Length, internal diameter, roughness
- Nodes
 - Sources, usage points, pipe ends
 - Attributes: Flow, pressure

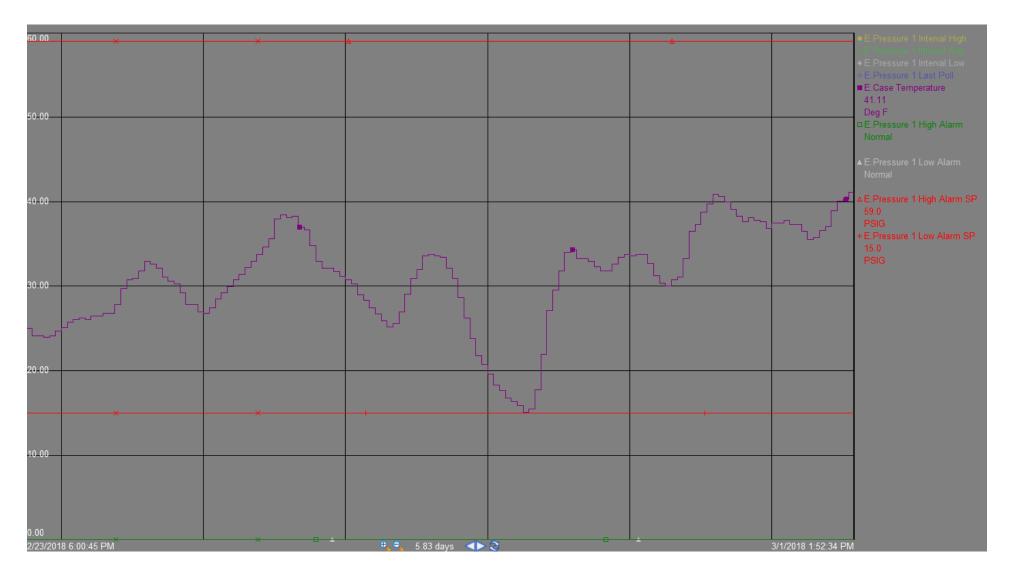


Join Customer Loads to a Model

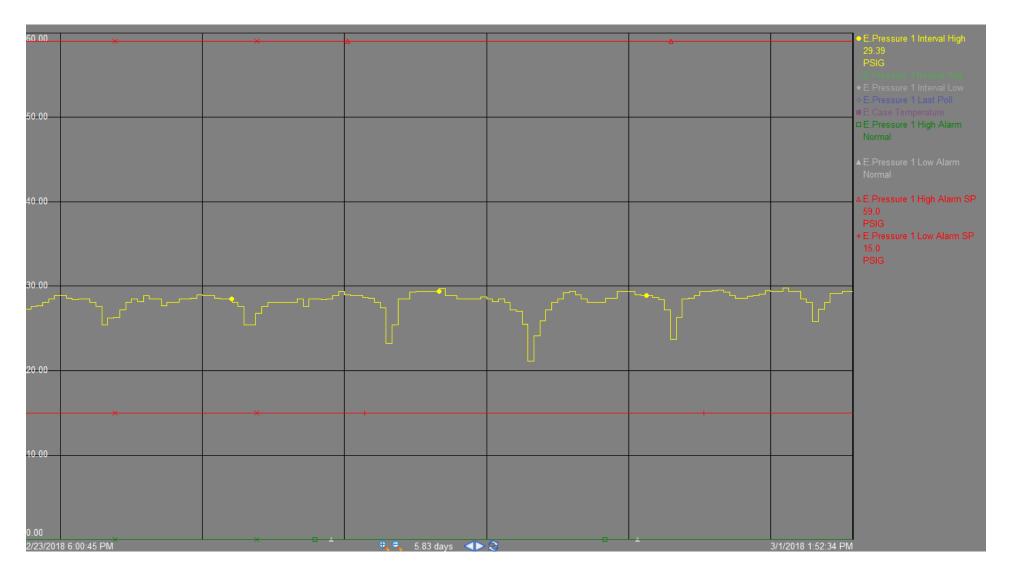
- Residential and commercial loads are assigned to *pipes*
- Industrial or other large loads are assigned to *nodes*
 - Model "firm" loads only for identifying reinforcements

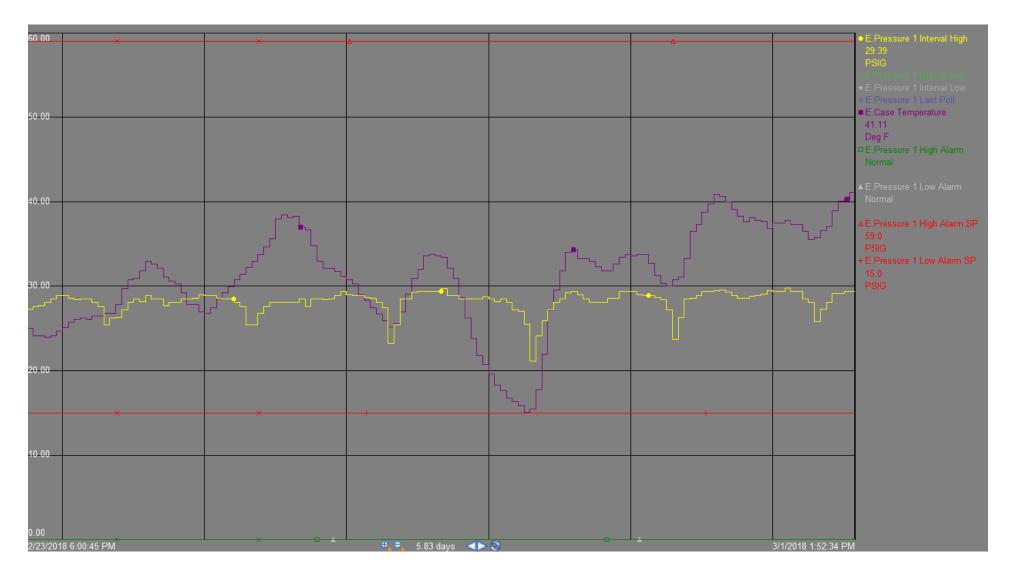
Balancing Model

- Simulate system for any temperature
 - HDD's
- Solve for pressure at all nodes



Validating Model





- Simulate recorded condition
- Electronic Pressure Recorders
 - Do calculated results match *field* data?
- Gate Station Telemetry
 - Do calculated results match *source* data?
- Possible Errors
 - Missing pipe
 - Source pressure changed
 - Industrial loads

Planning Criteria – 2022

- Reliability during design HDD
 - Spokane 76 HDD
 - Medford 49 HDD
 - Klamath Falls 72 HDD
 - La Grande 72 HDD
 - Roseburg 46 HDD

- Maintain minimum of 15 psig in system at all times
 - 5 psig in lower MAOP areas
 - 3 psig in Medford 6 psig systems

Planning Criteria – 2022

- Reliability during design HDD
 - Spokane 76 HDD (avg. daily temp. -11' F)
 - Medford 49 HDD (avg. daily temp. 16' F)
 - Klamath Falls **72 HDD** (avg. daily temp. -7' F)
 - La Grande 72 HDD (avg. daily temp. -7' F)
 - Roseburg 46 HDD (avg. daily temp. 19' F)

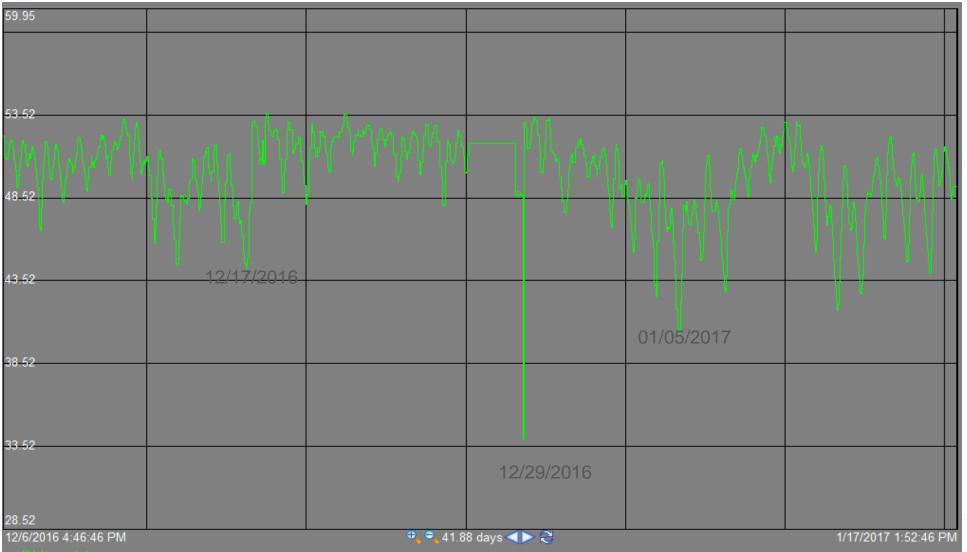
- Maintain minimum of 15 psig in system at all times
 - 5 psig in lower MAOP areas

42

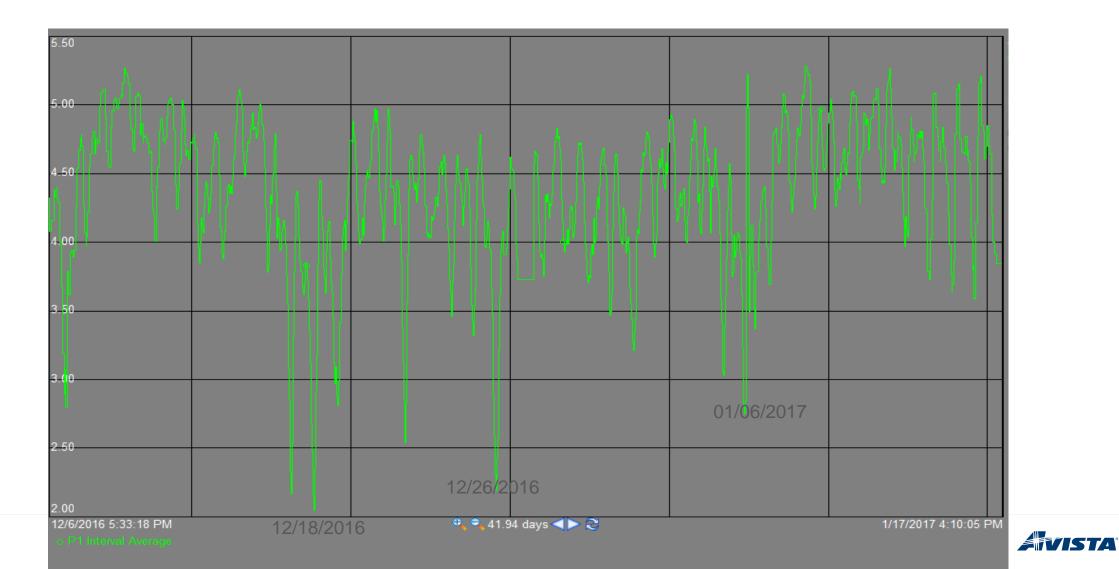
• 3 psig in Medford 6 psig systems

Interpreting Results

- Identify Low Pressure Areas
 - Number of feeds
 - Proximity to source
- Looking for Most Economical Solution
 - Length (minimize)
 - Construction obstacles (minimize)
 - Customer growth (maximize)


Monitoring Our System

- Electronic Pressure Recorders
 - Daily Feedback
 - Real time if necessary
- Validates our Load Studies



ERX #015: Loon Lake, WA

ERX #007: West Medford 6 psig System, OR

Real-time Pressure & Flow Monitoring

PI ProcessBook - [W	A GAS DASHBOARD.pc	6]						
Eile Edit ⊻iew Inseri	t <u>T</u> ools <u>D</u> raw <u>A</u> rrange							
<u> 2 - </u>		~	▼ B Z U 🆄 ±	∠ ± ⊴ ± = =	\arrow \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	덥 🖪 간 영 %		
▶ ≫ ∖ □ ⊡ <	○┌ॼॼ \√	Դ. 🔝 🔏 🛠 🛃 🗃	🖼 📟 🖩 📽 📕	€ 12:00	a	l 💻 15 6 6 6 🔇	II 💀 🗗 🖪 😗 %	1
) 🗁 🖬 🗟 🖪	X h 🐴 🗅 ± C	* 🥳 🕷 🔁 🗅	> 🔳 🖬 100% 🔹	- 6 K? 🗅	🗠 ± 👗 🖻 🖏 Pas	ste Special 🛛 a 🕓 =	= 🖪 ଓ % ୮୯ 👌 🕷	Show Details and Annotations
🗏 ≪ 🌂 3/12/2013		() 4/16/2	201 🜒 🔊 🔉 🗱 🐙	U = > > 🚰				
= 🛶 - Y:\Pi\AVISTA PI	I GAS SUMMARY\WA GAS DA	ASHBOARD.pdi		- 🕥 - '	🎓 🏤			
		SPOKANE				COLVILLE	Switchboard	ID OR
American Linen	Eastern WA Unive	Inland N/V Dairy	Mutual Materials C	Sacred Heart	State Corrections AD	B.C. Arden	SCADA Scanning St	
F HP LP T B1 B2	F HP LP T B1 B2	F HP LP T B1 B2	F HP LP T B1 B2	F HP LP T B	F HP LP T B	F HP LP T B1 B2	PULLMAN	CLARKSTON
B.F. Goodrich	Fairchild AFB	Kaiser Mead	NECT SW	Shamrock Pavii	Travis Foundry	Colville Dist. Pres:	Pullman Reg 352	Asotin Pressure
HP LP T B1 B2	F HP LP T B1 B2	F HP LP T B1 B2	F HP LP T B1 B2	F HP LP T B1 B2	F HP LP T B1 B2	HP LP AD B1	HP LP AD B1	HP LP AD B1
Baker Commoditie	Franz Bakery	Kaiser Trentwood	9-Mile CG	SCC SW	Triumph Group	Chewelah Cntry (Pullman CG	Clarkston Reg 43'
HP LP T B1 B2	F HP LP T B1 B2	F HP LP T B1 B2	F HP LP T B OD	F HP LP T B1 B2	F HP LP T B1 B2	HP LP AD B1	F HP LP T AC B DD	HP LP AD B1
Boulder Park G	Gonzaga U C	Lakeland Village	9-Mile Reg 56	SFCC AD	VA Hospital	Chewelah Reg	WSU SW	Clarkston Svc Ctr
F HP LP T B1 B2	F HP LP T B1 B2	F HP LP T B1 B2	HP LP AD B1	F HP LP T B1 B2	F HP LP T B1 B2	HP LP AD B1	F HP LP T B1 B2	HP LP AD B1
CDA Sunset Reg	Hayford Rd. Reg	Liberty Lake Reg	Perry Wildrose 7	Spokane Court AD	Valley Medical	BC Ply Kettle		Lower Critchfield
HP LP AD B1	HP LP AD B1	HP LP AD B1	HP LP AD B1	F HP LP T B1 B2	F HP LP T B1 B2	F HP LP T B1 B2	F HP LP T B1 B2	HP LP AD B1
Central Pre-Mix	Holy Family Hospi	Lyons Rd Reg 17:	Progress Rd Reg	Spokane Industrie	Whitworth College	Kettle Falls Prs		Upper Critchfield
F HP LP T B1 B2	F HP LP T B1 B2	HP LP AD B1	HP LP AD B1	F HP LP T B1 B2	F HP LP T B1 B2	HP LP AD B1		F HP LP T B1 B2
Creach	Huntwood	Madison & Thorpe	Pulpwood	Spokane Rock	VVaste 2 Energy AD	Kettle Falls Gen	ОТІ	IER
B1 B2 B3 B4 B5	F HP LP T B1 B2	HP LP AD B1	HP LP AD B1	B1 (SW	F HP LP T B1	F HP LP T B	Connell CG	Ritzville CG
Davenport Reg	Inland Asp Valley	Mead CG	Purina Mills	Spo West CG	Waste Mgt CNG	Kettle CG-Indian T	F HP LP T B1 B2	F HP LP T B1 B2
HP LP AD B1	F HP LP T B1 B2		B1 SW	F HP LP T B OD	F HP LP B1 B2	F HP LP T B1 B2	Goldendale CG	Stevenson CG
Deaconess Hospi	Inland Asp Perry	Medical Lake C AC	Quarry Tile C	Starr Rd Reg 47	W. St. Asphalt	Lane Mt Silica	F HP LP T B1 B2	F HP LP T B1 B2
(80)		[]		HP LP AD B1	F HP LP T B1 B2	F HP LP T B1 B2	Lamb-Weston Boi	Warden CG
Eastern St Hospit: C		Mica CG C	Reg 700 C	Starr Road CG	W St Asp Velox C		F HP LP T B1 B2	F HP LP T B1 B2
							Lamb-Weston Firr	VVA Potato Co
	Legend	Out of Service	Lost Connection		General Inf	ormation	F HP LP T B1 B2	F HP LP T B1 B2
	Legend	lot Yet In Service	Blinking: In Alarr	n	Read Rates	Missing Data	Lind Pressure	
					Read Rate	Trends	HP LP AD B1	

2022-2023 Winter

Gas Load And Weather Forecast Report

Page: 1 Date: 12/09/22 01:00 PM Database: NUCPRD gs_fore_temp

Date: 12/09/2022

Area: LAGRANDE

	Date:	Hi	Lo	HDD	Load
TUE	12/06/22	31	19	37	4,615
WED	12/07/22	34	17	37	4,943
THU	12/08/22	33	27	35	4,865
FRI	12/09/22	35	27	32	4,485
SAT	12/10/22	40	34	28	3,926
SUN	12/11/22	39	31	30	3,783
MON	12/12/22	35	25	34	4,348
TUE	12/13/22	32	20	39	4,961
WED	12/14/22	30	19	42	5,163
THU	12/15/22	28	16	44	5,382
		Ave	erage	:	4,647
Area:	SPOKANE				
	Date:	Hi	Lo	HDD	Load
TUE	12/06/22	25	22	42	156,599
WED	12/07/22	29	19	39	148,068
THU	12/08/22	32	22	36	141,226
FRI	12/09/22	33	23	38	148,465
SAT	12/10/22	39	32	29	121,803
SUN	12/11/22	34	25	35	129,829
MON	12/12/22	27	15	43	159,574
TUE	12/13/22	22	14	47	176,241
WED	12/14/22	24	13	47	178,331
THU	12/15/22	22	10	49	183,111
			rage		154,325

Area: KLAMATH FALLS

Hi Lo HDD Load Date: TUE 12/06/22 36 13 40 8,276 WED 12/07/22 25 19 42 9,272 12/08/22 37 18 37 8,434 THU 12/09/22 37 17 34 8,065 FRI SAT 12/10/22 38 29 31 7,266 SUN 12/11/22 33 20 38 7,980 MON 12/12/22 32 14 41 8,949 12/13/22 9,563 TUE 27 13 46 WED 12/14/22 25 12 47 9,724 27 11 46 9,543 THU 12/15/22 8,707 Average: Area: LEWISTON Hi Lo HDD Load Date: 35 24 36 20,619 TUE 12/06/22 WED 12/07/22 30 24 38 21,866 THU 12/08/22 38 29 31 20,803 FRI 12/09/22 36 27 33 1,641 12/10/22 39 30 31 18,372 SAT SUN 12/11/22 37 32 30 17,277 MON 12/12/22 36 29 32 18,822 31 24 38 21,708 TUE 12/13/22 WED 12/14/22 28 21 41 23,192 THU 12/15/22 26 16 44 24,527 18,883 Average:

Area: MEDFORD

Area: OTHER

	Date:	Hi	Lo	HDD	Load
TUE	12/06/22	47	26	29	31,904
WED	12/07/22	32	29	34	36,261
THU	12/08/22	44	30	28	28,159
FRI	12/09/22	45	33	24	29,178
SAT	12/10/22	47	36	23	27,792
SUN	12/11/22	44	32	28	29,737
MON	12/12/22	44	26	31	33,984
TUE	12/13/22	44	25	33	35,729
WED	12/14/22	45	26	32	35,414
THU	12/15/22	46	28	31	34,419
		Ave	rage	:	32,258

Area: ROSEBURG

IIIIII ROSEDORG							
	Date:	Hi	Lo	HDD	Load		
TUE	12/06/22	46	33	26	8,443		
WED	12/07/22	50	38	20	7,400		
THU	12/08/22	48	36	23	8,309		
FRI	12/09/22	46	38	22	7,229		
SAT	12/10/22	45	36	23	6,995		
SUN	12/11/22	45	35	26	8,001		
MON	12/12/22	45	34	27	9,004		
TUE	12/13/22	45	32	29	9,409		
WED	12/14/22	46	30	29	9,583		
THU	12/15/22	45	31	29	9,329		
		Ave	rage	:	8,370		

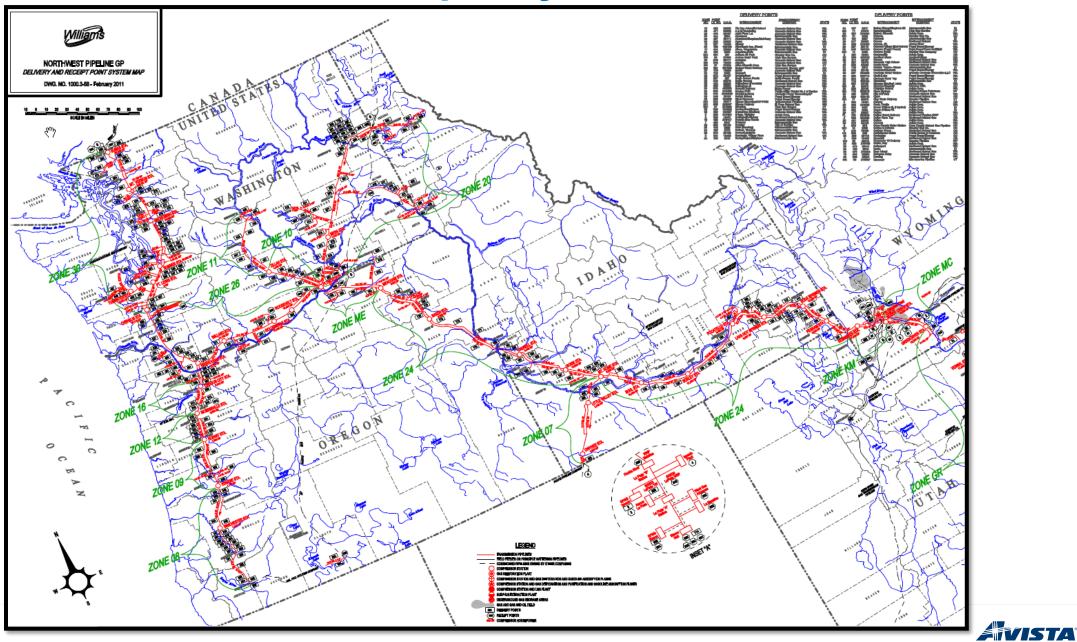
	Date:	Hi	Lo	HDD	Load
TUE	12/06/22	0	0	0	304
NED	12/07/22	0	0	0	303
THU	12/08/22	0	0	0	304
		Ave	304		

Average:

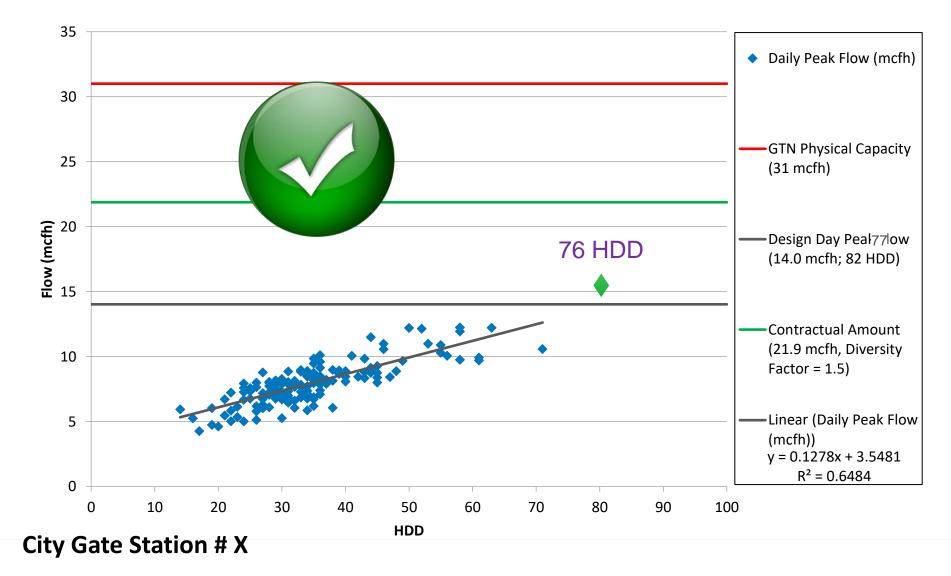
48

2013-2014 Winter

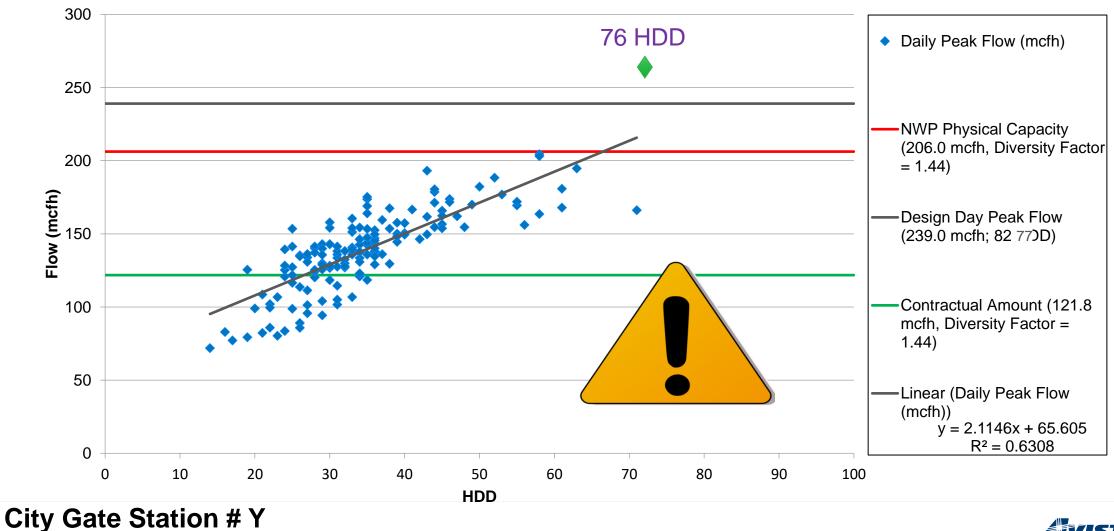
Area:	LaGrande					Area:	Klamath Falls					Area:	Medford					Area:	Roseburg				
	Date	Hi	Lo	HDD	Load		Date	Hi	Lo	HDD	Load		Date	Hi	Lo	HDD	Load		Date	Hi	Lo	HDD	Load
SAT	12/7/2013	18	-4	58	6,615	SAT	12/7/2013	21	-16	63	11,170	SAT	12/7/2013	32	11	44	40,462	SAT	12/7/2013	27	18	43	11,843
SUN	12/8/2013	9	-9	65	6,695	SUN	12/8/2013	6	-20	72	12,002	SUN	12/8/2013	25	2	52	47,855	SUN	12/8/2013	26	15	44	13,011
MON	12/9/2013	21	-4	56	5,389	MON	12/9/2013	14	-17	66	11,474	MON	12/9/2013	27	4	50	48,999	MON	12/9/2013	31	17	41	9,984
TUE	12/10/2013	29	16	42	4,897	TUE	12/10/2013	31	-6	52	9,299	TUE	12/10/2013	38	9	41	44,095	TUE	12/10/2013	34	19	38	10,867
	12/11/2013				4,689	WED	12/11/2013	36	7	43	8,799	WED	12/11/2013	42	17	35	35,943	WED	12/11/2013	40	28	31	9,197
THU	12/12/2013	35	20	37	4,131	THU	12/12/2013			41	8,191	THU	12/12/2013	42	20	34	35,273	THU	12/12/2013	40	30	30	8,730
FRI	12/13/2013	41	27	31	3,398	FRI	12/13/2013	42	17	35	7,206	FRI	12/13/2013	44	29	28	29,966	FRI	12/13/2013	42	33	27	8,112
SAT	12/14/2013	38	22	35	3,618	SAT	12/14/2013	45	15	35	6,887	SAT	12/14/2013	48	26	28	27,507	SAT	12/14/2013	43	30	28	7,686
SUN	12/15/2013	41	23	33	3,491	SUN	12/15/2013			33	6,681	SUN	12/15/2013	50	25	27	26,954	SUN	12/15/2013	45	32	26	7,418
MON	12/16/2013	40	22	34	3,642	MON	12/16/2013	47	16	33	6,812	MON	12/16/2013	49	27	27	27,580	MON	12/16/2013	44	34	26	7,682
Area:	Spokane					Area:	Lewiston																
	Date	Hi	Lo	HDD	Load		Date	Hi	Lo	HDD	Load												
SAT	12/7/2013	15	0	57	195,583	SAT	12/7/2013	18	2	55	31,016												
SUN	12/8/2013	15	-2	58	183,544	SUN	12/8/2013	13	0	59	31,386												
MON	12/9/2013	20	9	51	166,628	MON	12/9/2013	26	8	48	25,901												
TUE	12/10/2013	25	12	46	156,433	TUE	12/10/2013	28	22	40	21,715												
WED	12/11/2013	29	15	43	145,441	WED	12/11/2013	31	17	41	22,022												
THU	12/12/2013	31	20	39	134,506	THU	12/12/2013	34	21	37	19,886												
FRI	12/13/2013	33	26	35	120,774	FRI	12/13/2013	38	29	31	17,448												
SAT	12/14/2013	35	27	34	114,257	SAT	12/14/2013	36	27	33	17,579												
SUN	12/15/2013	36	27	33	114,089	SUN	12/15/2013	38	27	32	17,570												
MON	12/16/2013	34	26	35	120,924	MON	12/16/2013	36	27	33	18,079												


Areas Currently Monitoring for Low Pressure and Proposed Solutions*

- Jacksonville, OR
- Medford 6 psig system, OR
- Palouse, WA
- South Hill Spokane, WA
- *Notes:
 - List not comprehensive
 - projects are subject to change and will be reviewed on a regular basis



Gate Station Capacity Review


51

Gate Station Capacity Review (example)

Gate Station Capacity Review (example)

City Gate

53

City Gate Stations Currently Monitoring and Proposed Solutions*

- Sutherlin, OR: *rebuild/enhance in 2024+*
- Medford, OR: work with pipeline to increase capacity
- Klamath Falls Keno, OR: *completed in 2020*
- Pullman, WA: work with pipeline to increase capacity
- *Notes:
 - List not comprehensive
 - projects are subject to change and will be reviewed on a regular basis

Avista's Capability To Accommodate Hydrogen

- Requirements (physical):
 - Meets existing tariff gas quality standards
 - Injection in a contained system with customer equipment that is capable of accepting a hydrogen blend
 - Metering at interconnect point for volume and gas quality
 - Pressure regulation at interconnect point

Avista's Capability To Accommodate Hydrogen

• Other

- Interconnection application process
- Interconnection agreement
- Where, when, & costs of upgrades required:
 - Each project will be different
 - Dependent on:
 - the proximity of the project to our distribution system
 - Size/scale of project

Questions and Discussion

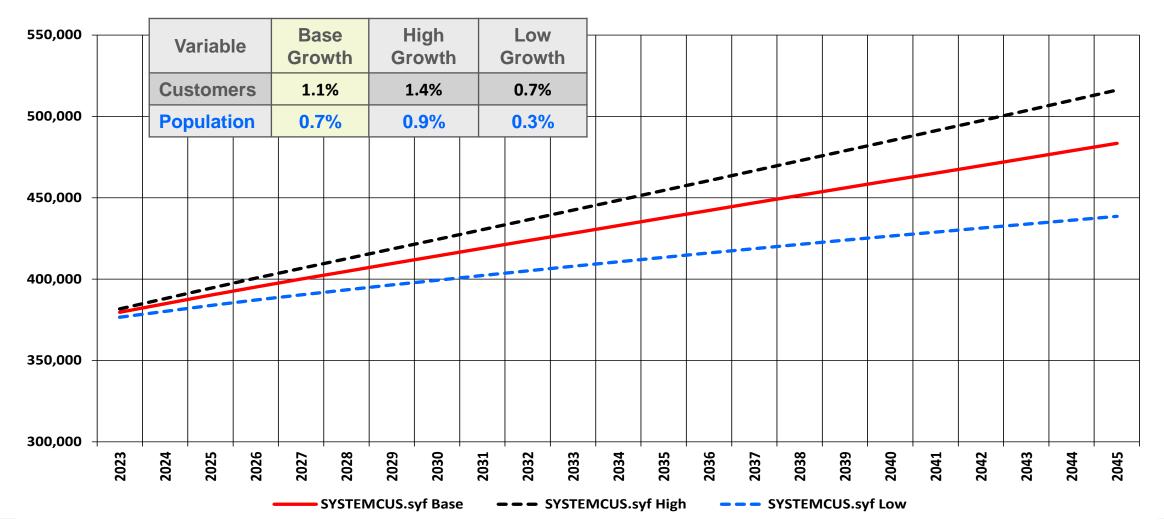
Mission

Using technology to plan and design a safe, reliable, and economical distribution system

57

Review of Assumptions

Tom Pardee


58

Expected Growth

- In 2022 Washington State Building Code Council passed a commercial building and residential customer building requirement starting July 1, 2023.
 - Requires the use of a heat pump as the primary heat source in new buildings
 - Does not require a specific fuel type
 - Does not require current customers to switch equipment at any time to electricity
- New residential and commercial customers in Washington starting July 2023 will be treated as hybrid heating where natural gas use begins at temperatures lower than 40 degrees Fahrenheit

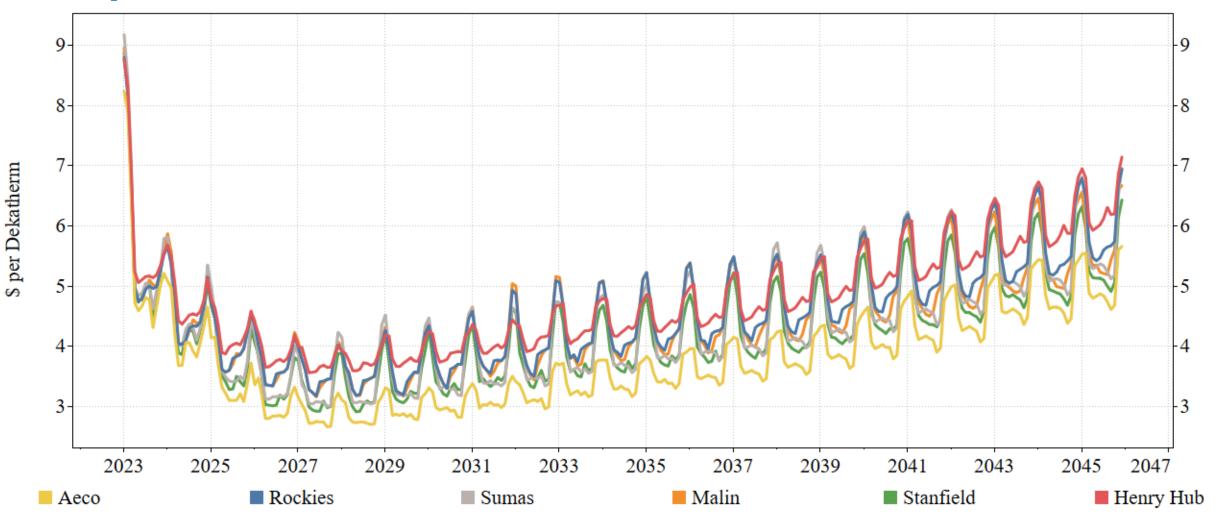
System Firm Customer Range (2023-2045)

AVISTA

60⁶⁰

Weather Summary

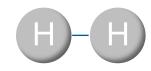
- Average daily weather by planning region for the prior 20 years including climate change weather data.
 - Example:
 - 2022 data is from 2002 2021
 - 2030 data is from 2010 2029
 - Median of daily values for all climate study results by area
- A peak event by planning region based on the past 30 years of the coldest average day, each year, combined with a 1% probability of a weather occurrence
 - Calculation now includes future projected peak values and is trended to the 2045 value from the historic coldest on record to smooth out volatility of peak day temperatures
 - Using the median values as peak day drastically reduces the temperatures for the design weather day
 - Taking the 95th percentage of climate models daily results and utilizing the highest annual value to include in the peak calculation reduces this risk of unserved customers



Peak Temp Changes (degrees Fahrenheit)

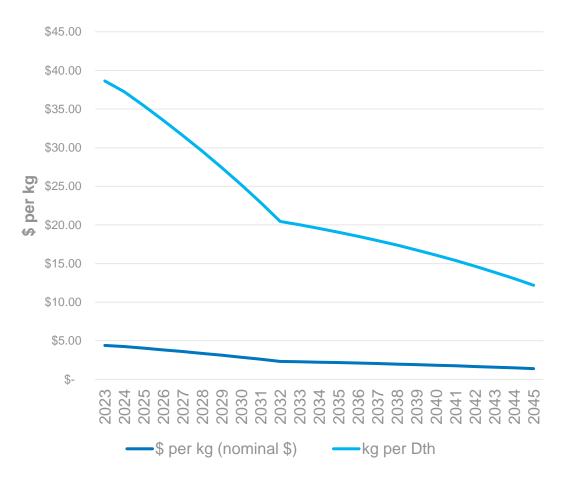
Planning Region	Trended Peak 2045				
La Grande, Oregon	-8.0				
Klamath Falls, Oregon	-5.1				
Medford/Roseburg, Oregon	11.7				
Spokane, ID/WA	-14.6				

Expected Natural Gas Price Forecasts



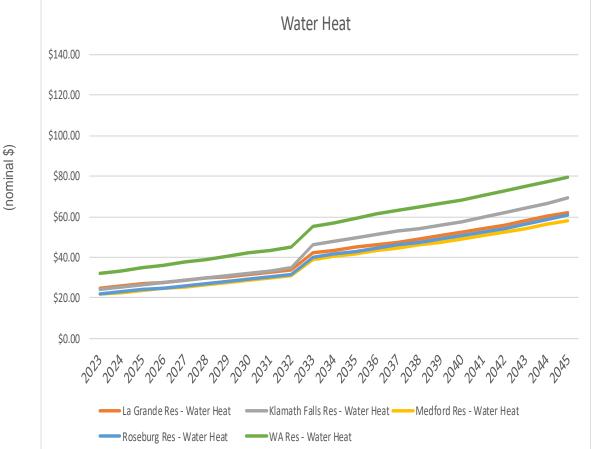
VISTA

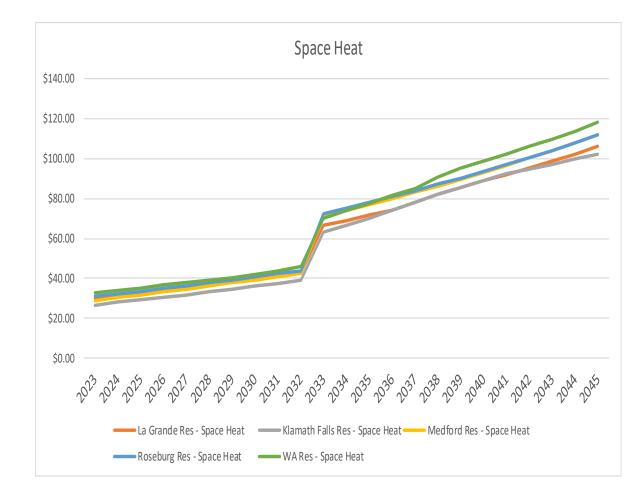
S per Dekatherm


			RNG Type	Levelized Price (Dth)
RN	Cost Estimate by type	Landfill	\$11.14	
	RNG Cost Estimate by type Landlin Dairy	Dairy	\$42.65	
			Wastewater	\$19.29
	\$90.00		Food Waste	\$58.36
	\$80.00			
	\$70.00			
	\$60.00			
	\$50.00			
Dth al \$)	\$40.00			
\$ per Dth (Nominal \$)	\$30.00			
\$ Ž	\$20.00			
	\$10.00			
	-20^{23} 20^{24} 20^{25} 20^{26} 20^{21} 20^{26} 20^{26} 20^{26} 20^{26} 20^{26} 20^{26} 20^{26}			2043 2044 2045
_	Centralized LFG to RNG Production — Dairy Manure to RNG Production — Wa	astewater Sludge to RNG	Production — Food Waste to	RNG Production


Green Hydrogen (H2)

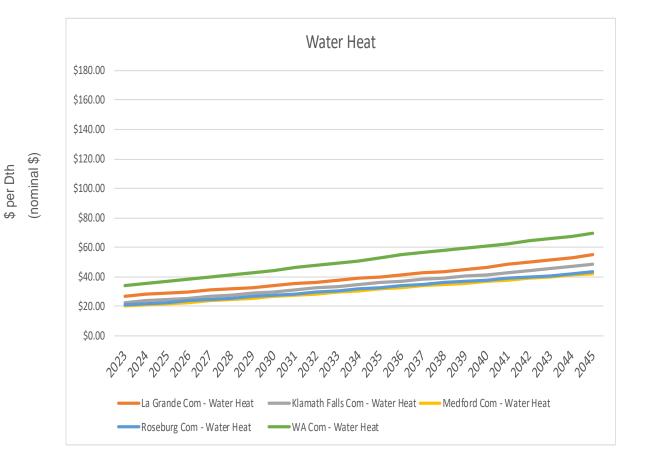
- Hydrogen is the most abundant element in the universe
- The lightest element and wants to escape making it harder to contain
- Highly combustible
- Tax credits from IRA assumed at a levelized credit for the full \$3 per kg incentive from green H2

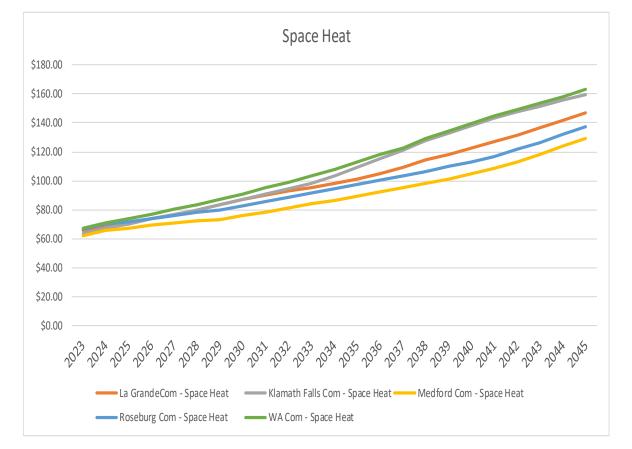

Synthetic Methane Costs



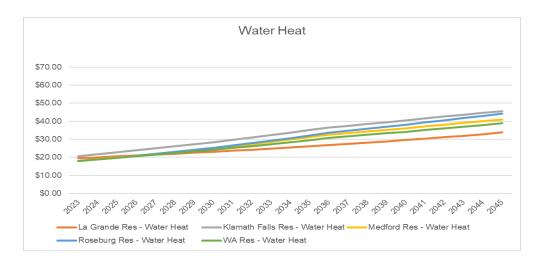
\$35.78

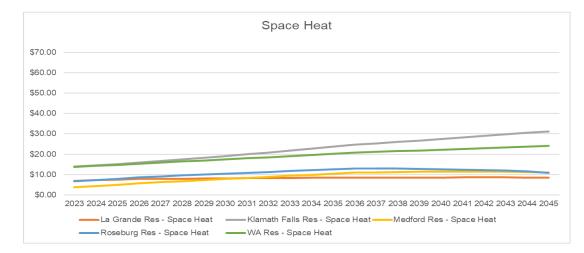
Residential Electrification Costs – Levelized (energy + conversion costs)

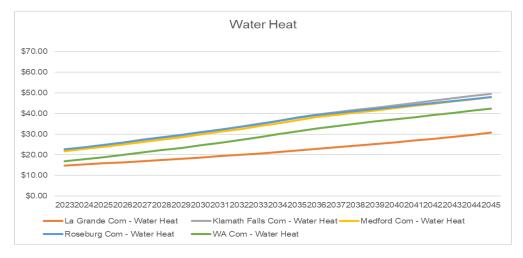


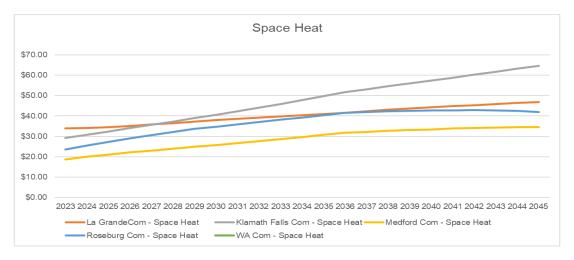


\$ per Dth
(nominal;

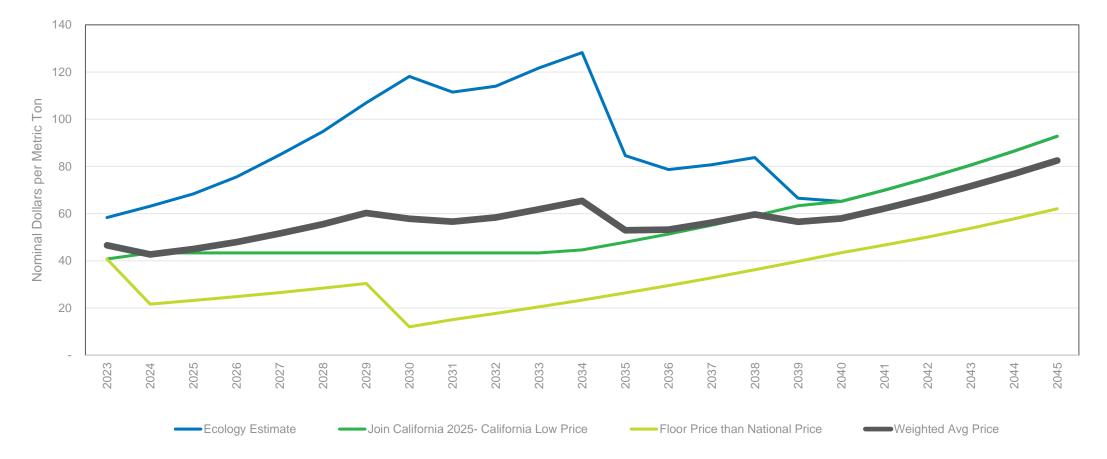

Commercial Electrification Costs – Levelized (energy + conversion costs)



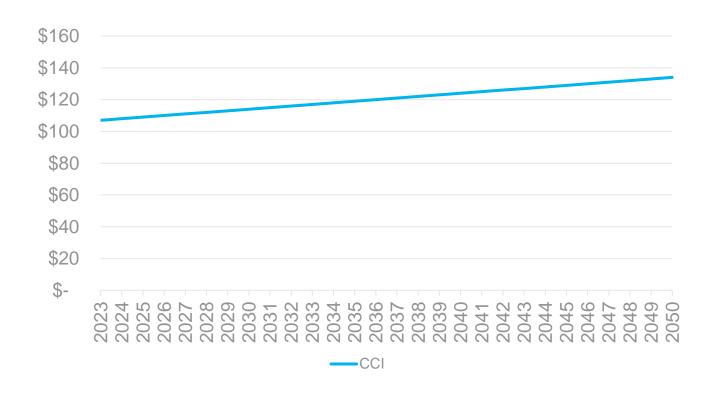




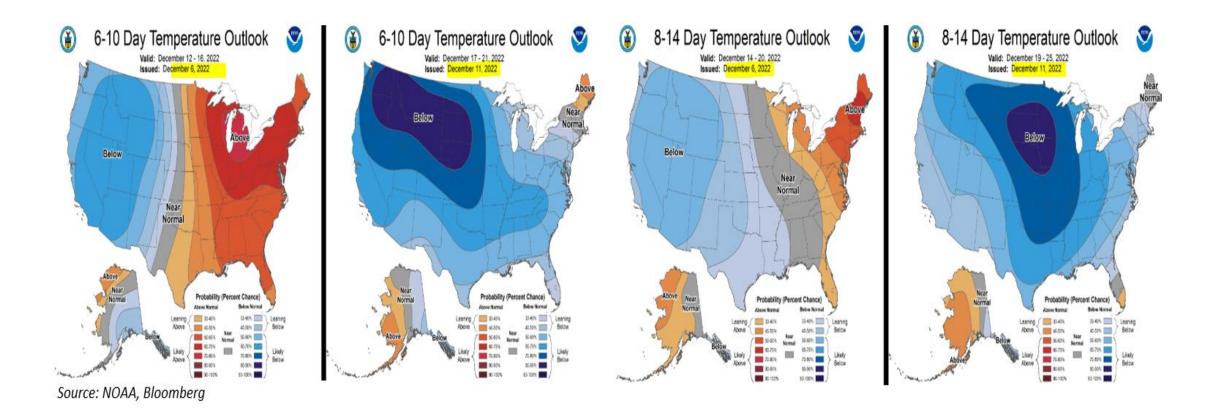
Electrification – No Capital Costs



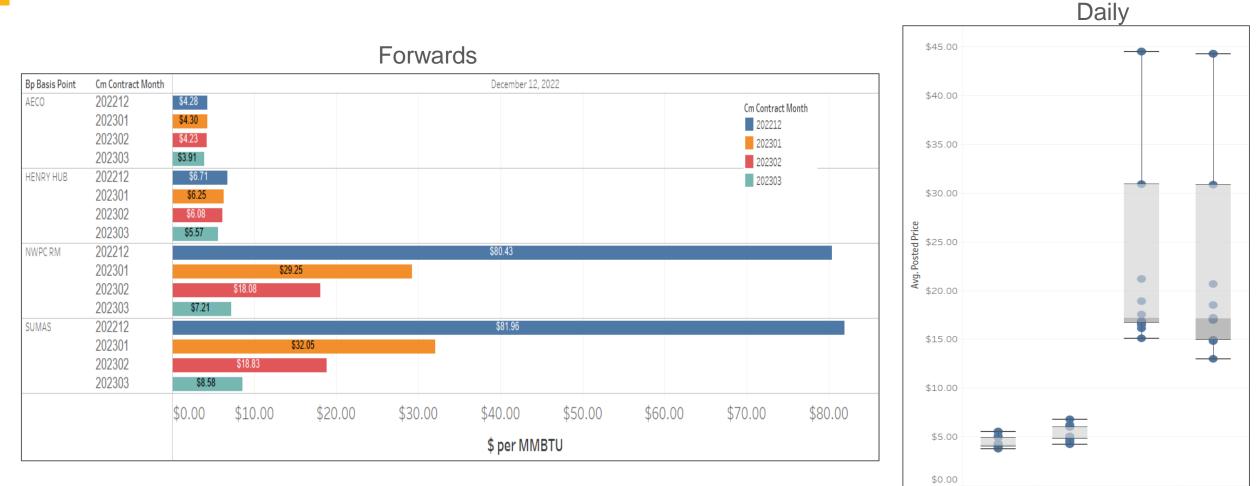
Allowance Price


Washington Carbon Pricing For the IRP

70


CCI Costs

	OAR 340-271-9000 Table 7 CCI credit contribution amount							
Effective date	CCI credit contribution amount in 2021 dollars, to be adjusted according to OAR 340-271-0820(3)							
March 1, 2023	\$107							
March 1, 2024	\$108							
March 1, 2025	\$109							
March 1, 2026	\$110							
March 1, 2027	\$111							
March 1, 2028	\$112							
March 1, 2029	\$113							
March 1, 2030	\$114							
March 1, 2031	\$115							
March 1, 2032	\$116							
March 1, 2033	\$117							
March 1, 2034	\$118							
March 1, 2035	\$119							
March 1, 2036	\$120							
March 1, 2037	\$121							
March 1, 2038	\$122							
March 1, 2039	\$123							
March 1, 2040	\$124							
March 1, 2041	\$125							
March 1, 2042	\$126							
March 1, 2043	\$127							
March 1, 2044	\$128							
March 1, 2045	\$129							
March 1, 2046	\$130							
March 1, 2047	\$131							
March 1, 2048	\$132							
March 1, 2049	\$133							
March 1, 2050	\$134							



Quick Market Update

Natural Gas Prices

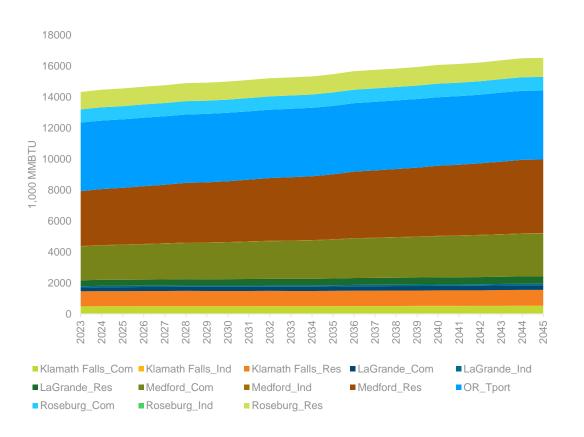
*prior two weeks of daily prices

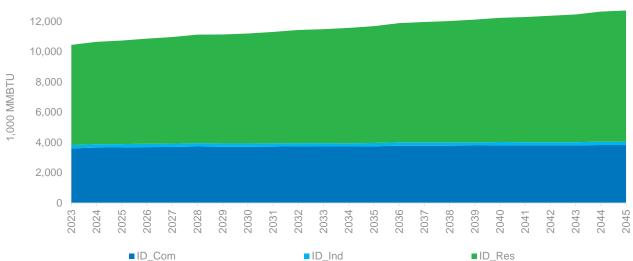
AECO

HENRY HUB

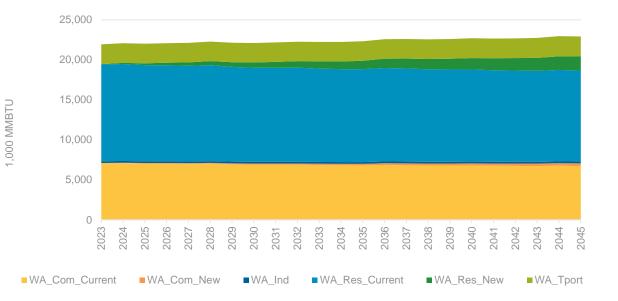
MALIN

HUNT

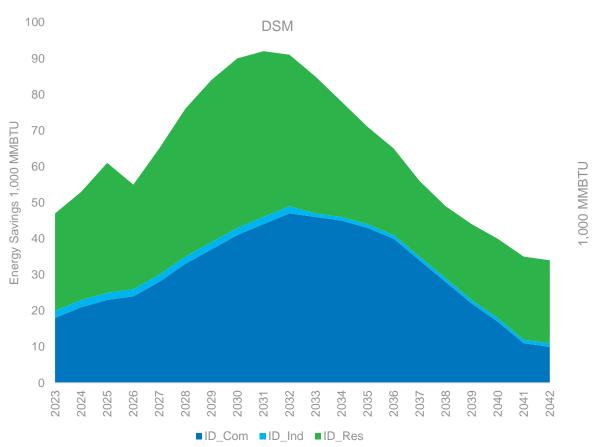

Preferred Resource Strategy (PRS)

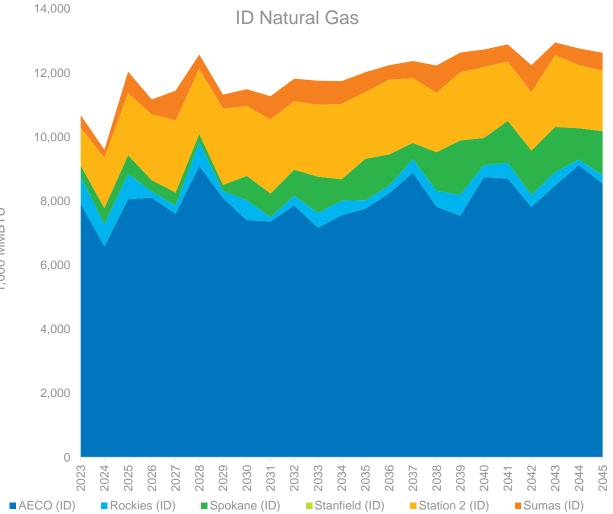

Simulation Analysis

- Simulation analysis is performed using stochastic simulation paired with Monte Carlo simulation to understand risk
- Stochastic simulation provides a single solution based on the number of simulations performed
 - 5 future simulations
- Monte Carlo simulation is used to provide risk analysis around the resources selected stochastically
 - 500 MC simulations

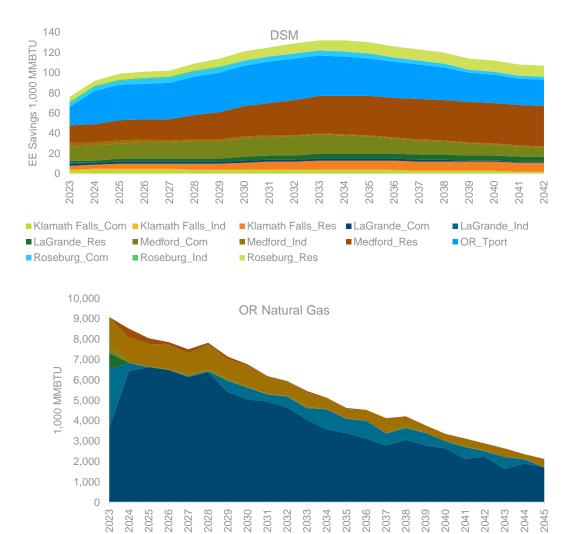


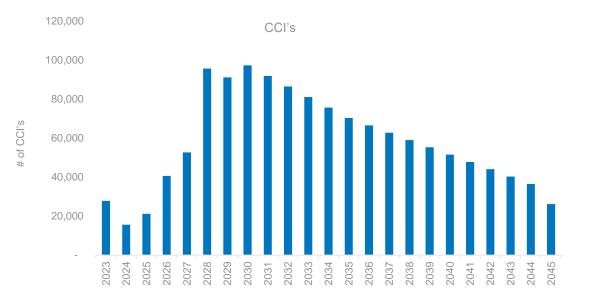
Demand by State

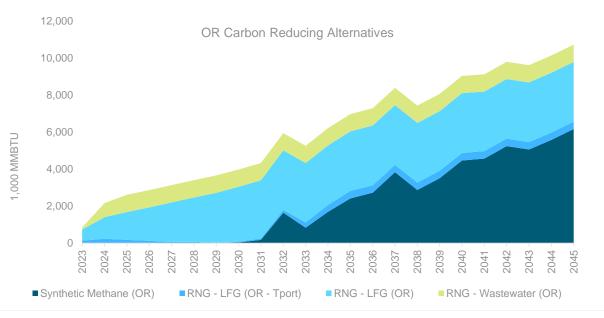


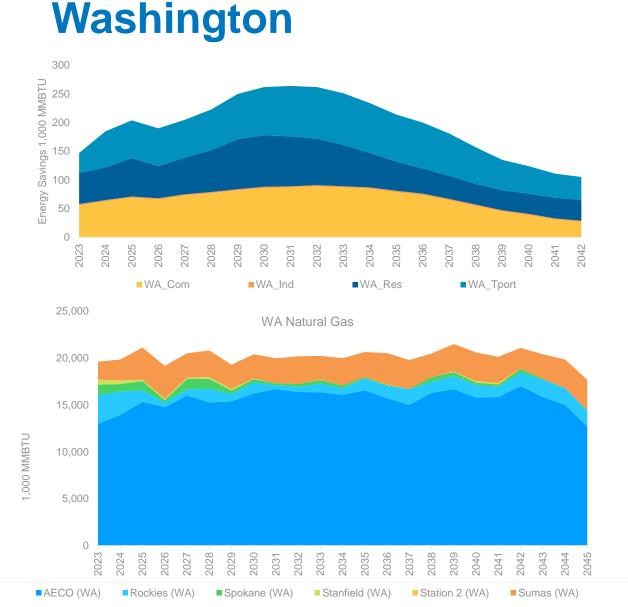


14,000


Idaho





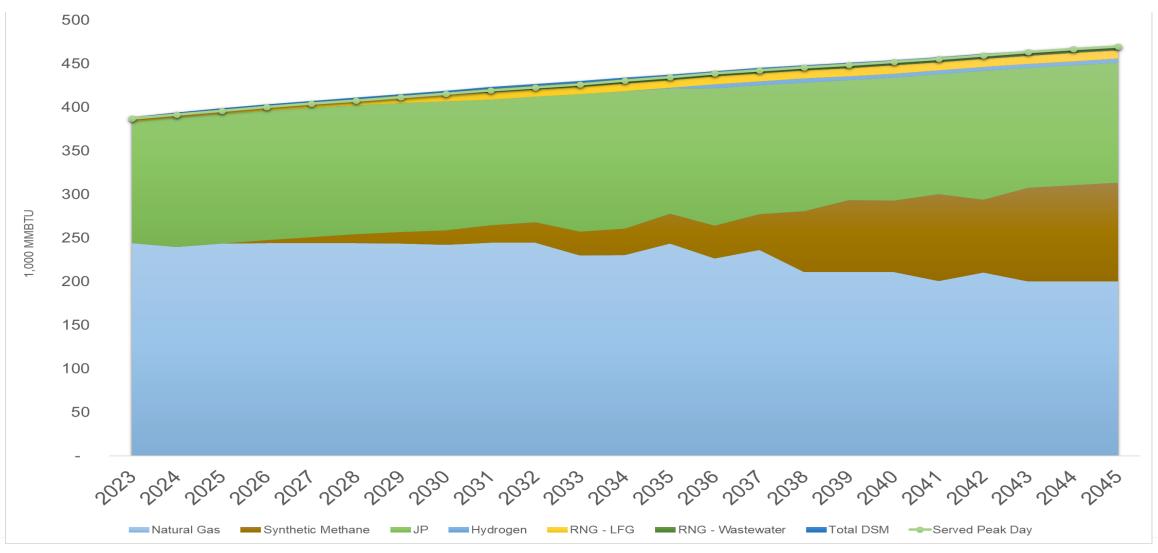


Oregon

1,400,000 1,200,000 1,000,000 # of Allowances 800,000 600,000 400.000 200,000 2044 2045

Total Free (Used)

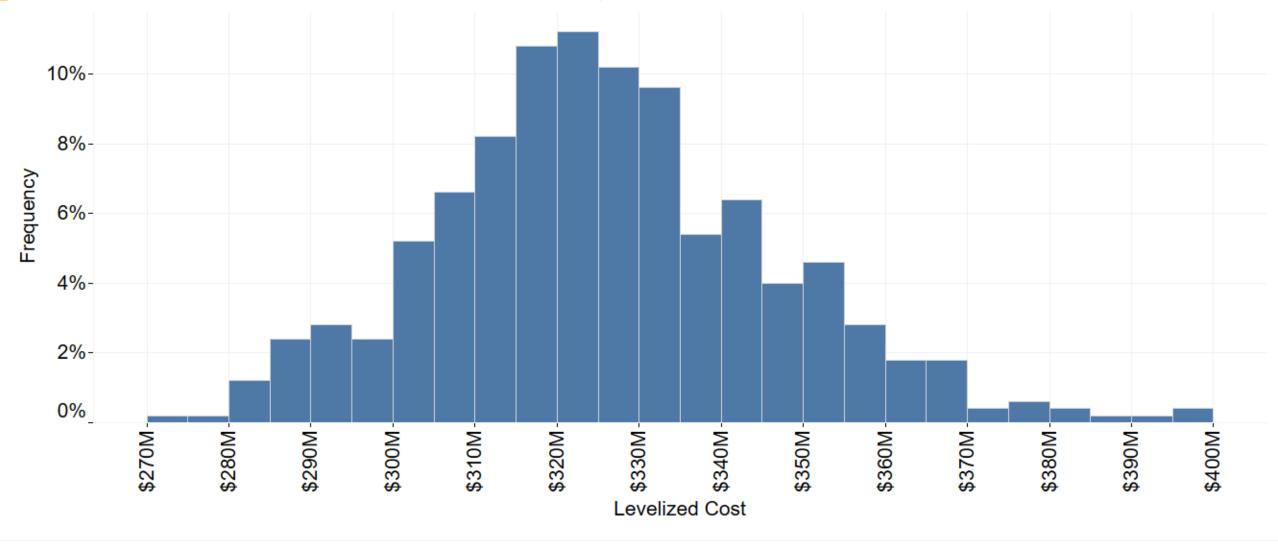
1,000 MMBTU

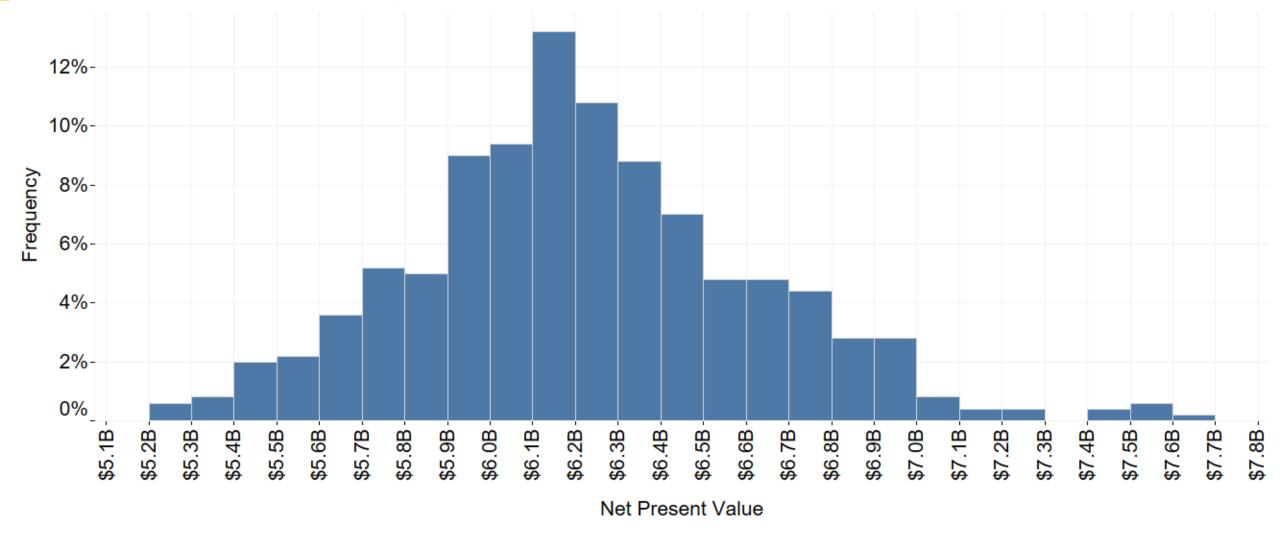

Total Given Total Purchased

Allowances

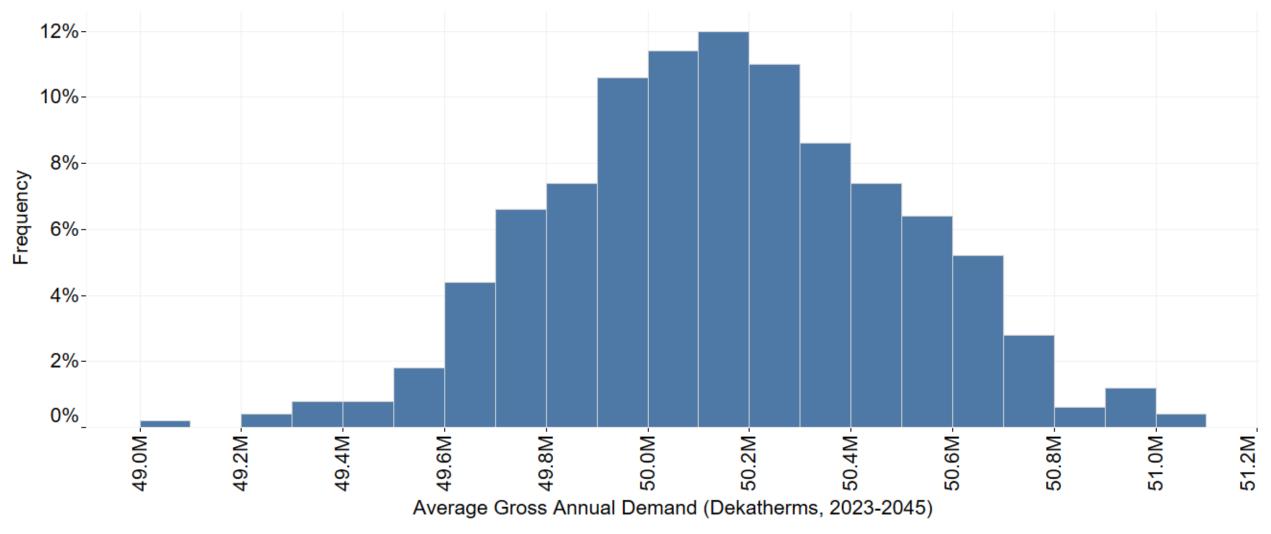
WA Carbon Reducing Alternatives RNG - LFG (WA) Synthetic Methane (WA - Tport) Synthetic Methane (WA)

PRS - System Peak Day

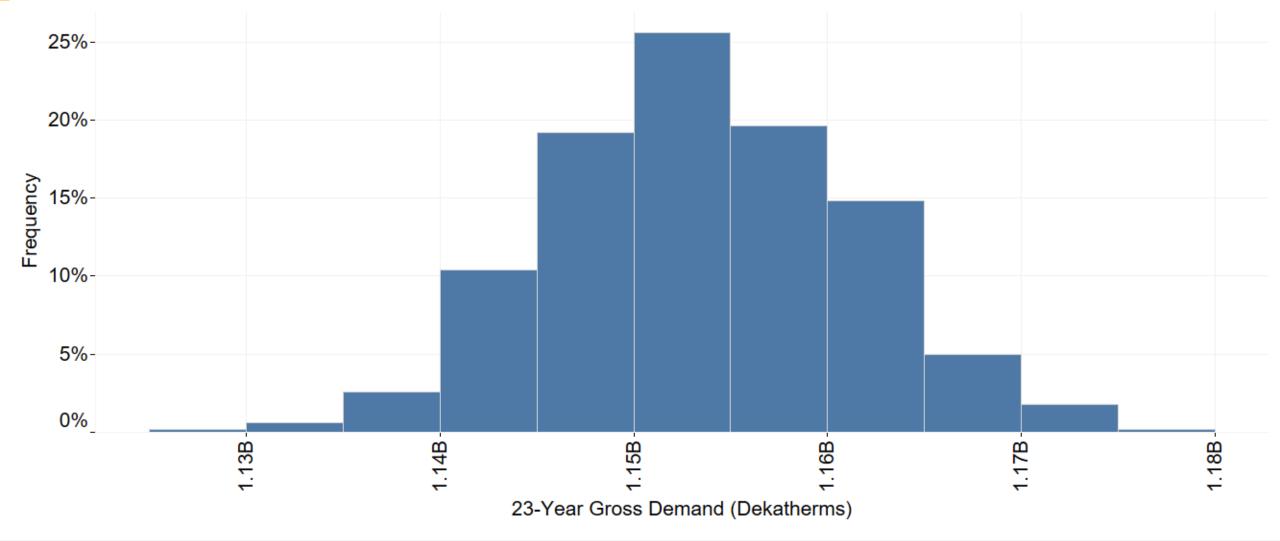

Residential PGA Impact



Monte Carlo – Levelized System Cost (500 Draws)


AVISTA

Monte Carlo – System Cost Net Present Value (500 Draws)


VISTA

Monte Carlo – Average Annual Gross System Demand (500 Draws)

AVISTA

Monte Carlo – Gross System Demand 2023-2045 (500 Draws)

Scenario Results

Scenarios

- Preferred Resource Case Our expected case based on assumptions and costs with a least risk and least cost resource selection
- Preferred Resource Case Low Prices Same as PRS, but includes low price curve for natural gas
- Preferred Resource Case High Prices Same as PRS, but includes high price curve for natural gas
- Preferred Resource Case CCA Ceiling Prices Same as PRS, but our expected case based on assumptions with a yearly ceiling price for allowances in the CCA program
- Electrification Expected Conversion Costs Expected conversion costs case to show the risk involved with energy delivered through the natural gas infrastructure moving to the electric system
- Electrification Low Conversion Costs A low conversion cost case to show the risk involved with energy delivered through the natural gas infrastructure moving to the electric system

- **Electrification High Conversion Costs** A high conversion cost case to show the risk involved with energy delivered through the natural gas infrastructure moving to the electric system
- □ High Customer Case A high case to measure risk of additional customer and meeting our emissions and energy obligations
- Limited RNG Availability A scenario to show costs and supply options if RNG availability is smaller than expected
- Interrupted Supply A scenario to show the impacts and risks associated with large scale supply impacts and the ability for Avista to provide the needed energy to our customers
- Carbon Intensity Include carbon intensity of all resources from Preferred Resource Case including upstream emissions on natural gas

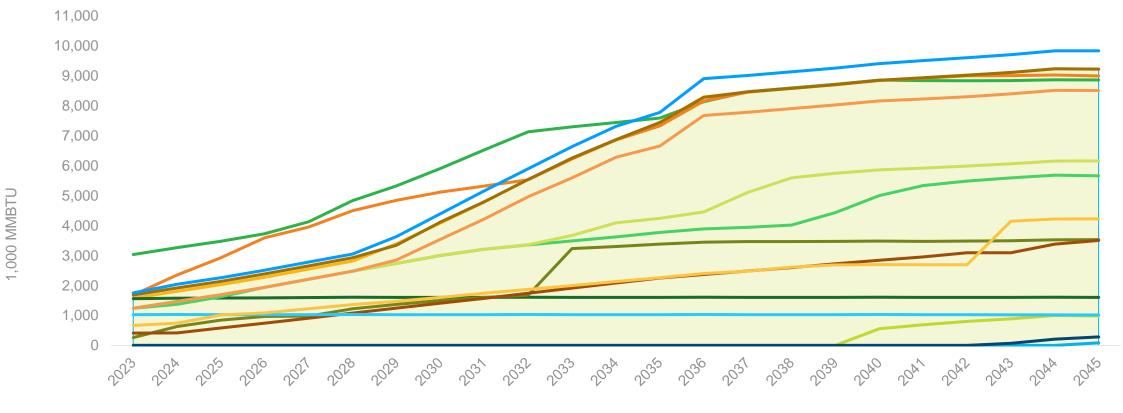
- Social Cost of Carbon A scenario to value resources in all locations using the Social Cost of Carbon @ 2.5% and includes upstream emissions
- Average Case Non climate change projected 20year history of average daily weather and excludes peak day
- Hybrid Case Natural Gas used for space heat below 40° F while transferring all other usage to electricity.

Scenario Analysis

- Uncertainty in future outcomes
- Understanding potential future outcomes through varying scenarios can help determine risk levels

System Demand by Scenario

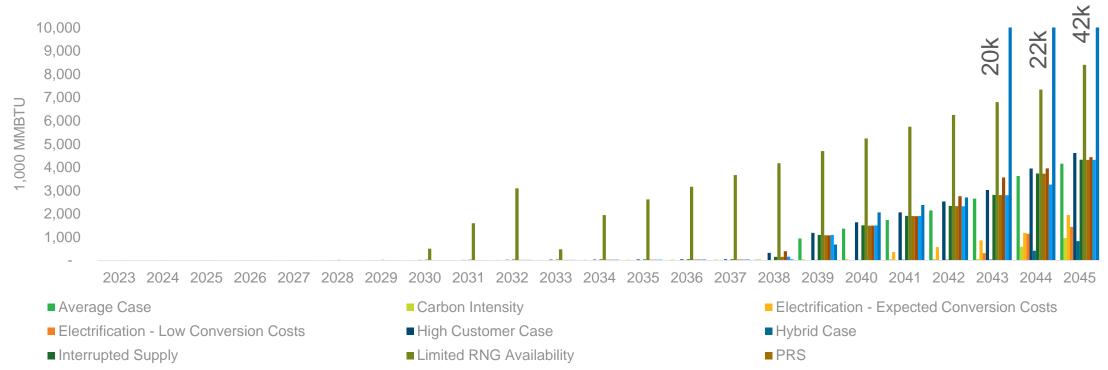
60,000


50,000																																		
40,000							ţS											ß												ß				
30,000				D			iversion Cost	Conversion Costs	on Costs						D			iversion Costs	ion Costs	on Costs						σ				iversion Cost	ion Costs		on Costs	
20,000	Case		: ((ance Price Celling	S	S	xpected Con	High Convers	y Low Conversion Costs	arbon	ly	Case		Allowance Price Ceiling	ailabilitv	S	S	xpected Con	High Conversion Costs v	ow Conversi		arbon	oly	Jase		Allowance Price Ceiling	ailability	S	S	xpected Con	High Conversion Costs		ow Conversi	rhon
10,000	High Customer (Average Case	ļ	PRS - Allowance Price C	PRS - High Prices	PRS - Low Prices	Electrification - Expected Conversion Costs	Electrification - H	Electrification - L	Social Cost of Carbon	Interrupted Supply	High Customer Case	Average Case		hitec	PRS - High Prices	PRS - Low Prices		Electrification - F	Electrification - Low Conversion Costs	Hybrid Case	Social Cost of Carbon	Interrupted Supply		Average Case		Limited RNG Availability	PRS - High Prices	PRS - Low Prices	Electrification - Expected Conversion Costs	Electrification - H	Carbon Intensity	Electrification - Low Conversion Costs	Cocial Cast of C

2025

social Cost of Carbor nterrupted Supply

RNG Supply


- PRS OR Renewables
- -----Social Cost of Carbon OR Renewables
- PRS High Prices WA Renewables
- Interrupted Supply OR Renewables
- ----- Electrification Low Conversion Costs OR Electrification
- -----Carbon Intensity OR Renewables

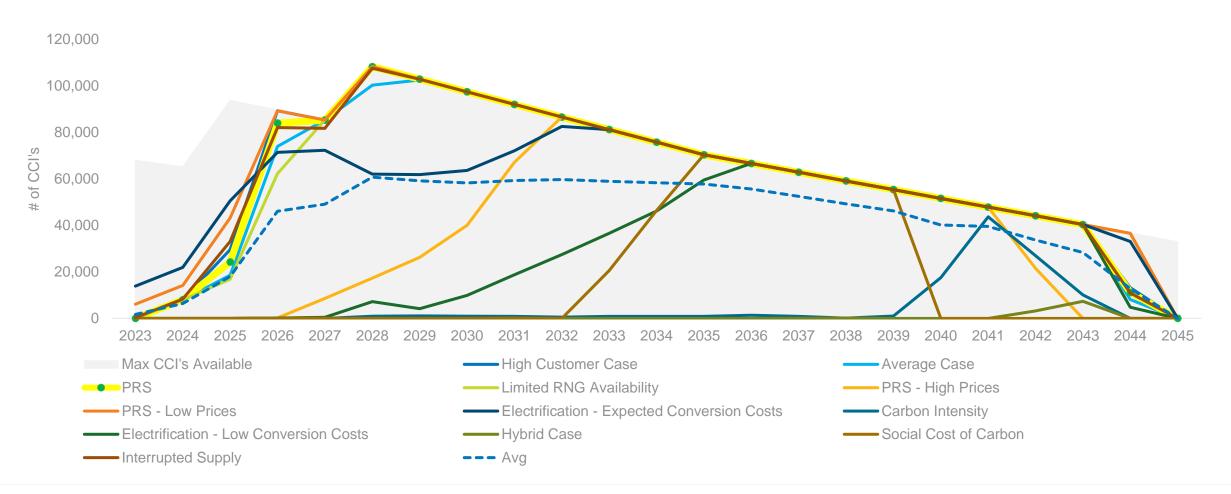
- ----Social Cost of Carbon ID Renewables
- PRS Low Prices OR Renewables

- -----Electrification Low Conversion Costs OR Renewables
- Average Case OR Renewables

- Social Cost of Carbon WA Renewables
- PRS High Prices OR Renewables
- Limited RNG Availability OR Renewables
- -----High Customer Case OR Renewables
- ----- Electrification Expected Conversion Costs OR Renewables

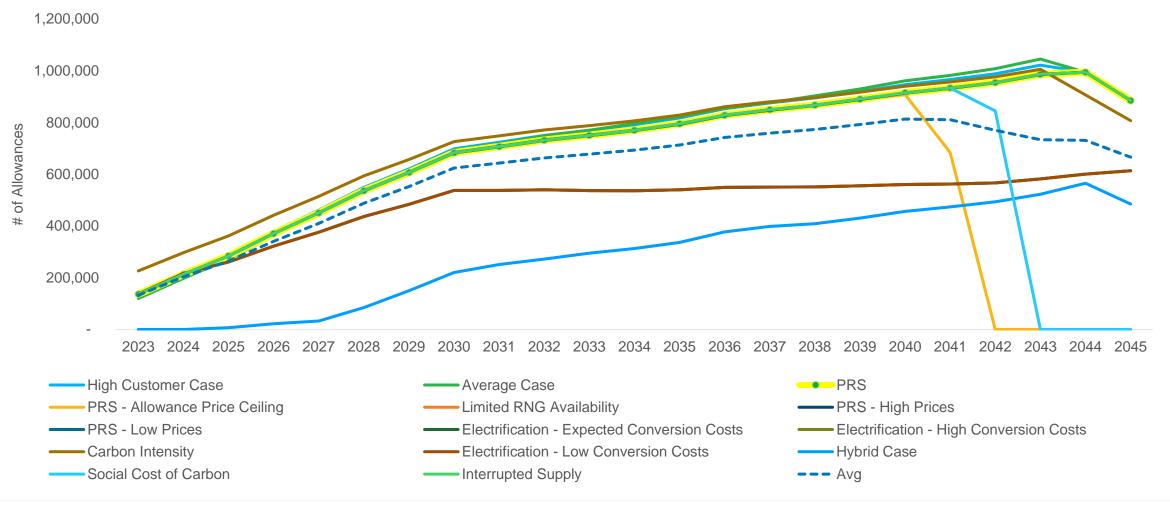
Synthetic Methane

PRS - High Prices


PRS - Low Prices

Social Cost of Carbon

Scenario	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045
Average Case	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	30	948	1,364	1,735	2,148	2,657	3,627	4,152
Carbon Intensity	-	-	0	4	7	10	13	17	20	24	27	31	34	38	41	44	48	51	55	58	61	589	960
Electrification - Expected Conversion Costs	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	362	575	865	1,187	1,953
Electrification - Low Conversion Costs	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	316	1,148	1,438
High Customer Case	-	-	3	7	11	15	20	24	28	32	37	41	45	50	54	329	1,187	1,642	2,069	2,532	3,026	3,947	4,615
Hybrid Case	-	-	-	-	-	-	-	-	-	1	4	8	11	15	18	21	25	28	31	34	38	413	827
Interrupted Supply	5	9	13	17	20	24	27	30	34	37	41	44	48	51	55	155	1,095	1,506	1,914	2,341	2,817	3,737	4,325
Limited RNG Availability	-	-	-	4	7	10	13	506	1,597	3,097	477	1,946	2,624	3,168	3,669	4,174	4,699	5,243	5,743	6,251	6,804	7,338	8,401
PRS	-	-	-	3	7	10	13	17	20	24	27	31	34	38	41	154	1,081	1,497	1,905	2,332	2,810	3,726	4,318
PRS - High Prices	-	-	-	3	6	10	13	16	20	23	27	30	34	37	41	399	1,076	1,493	1,902	2,761	3,567	3,953	4,437
PRS - Low Prices	-	-	-	3	7	10	14	17	20	24	27	31	34	38	41	162	1,094	1,504	1,907	2,329	2,804	3,261	4,318
Social Cost of Carbon	-	-	-	3	7	10	13	17	20	24	27	31	34	38	41	44	687	2.068	2.380	2,703	20,729	22,664	42.385


Oregon Community Climate Investments

VISTA

Washington Allowances and/or Offsets

Allowances

Levelized Yearly Costs (Millions \$) 2023-2042

WA GRC Commitments Applicable to Natural Gas IRP

December 15, 2022

Shawn Bonfield, Sr. Manager of Regulatory Policy & Strategy

WA General Rate Case Natural Gas Transition Issues

Avista agrees to include in its 2023 Natural Gas IRP, a natural gas system decarbonization plan for complying with the Climate Commitment Act.

- i. The Natural Gas IRP's decarbonization plan shall include a supply curve of decarbonization resources by price and availability, e.g. energy efficiency bundle 1 costs X\$/ton of carbon dioxide equivalent (CO2e) reduction and can reduce Y tons of CO2e, dairy RNG costs A\$/ton and can reduce B tons of CO2e.
- ii. The decarbonization plan shall consider a comprehensive set of strategies, programs, incentives and other measures to encourage new and existing customers to adopt fully energy efficient appliances and equipment or other decarbonization measures, which could include electrification.
- iii. The decarbonization plan shall include targets for the ratio of new gas customers added relative to new electric customers added in future years.

WA General Rate Case CCA Commitments

Within 60 days of the adoption of the final Department of Ecology rules), Avista will begin consulting with its applicable advisory groups concerning its plans for complying with the CCA for electric and gas service, and the terms of any future tariff filing, including the following:

- Reporting requirements for the consignment of no-cost allowances for the benefit of ratepayers,
- ii. The accounting treatment of any proceeds from the consignment of allowances, and
- iii. The investment of any proceeds from the sale of allowances during the rate plan including investments in projects that provide benefits to ratepayers including, but not limited to, weatherization, decarbonization, conservation and efficiency services, and bill assistance. (RCW 70A.65.130)

Note: Department of Ecology final rules adopted on September 29th and go into effect on October 30th with program beginning on January 1st. Avista provided initial CCA Overview provided at September 29th TAC Meeting.

CCA Deferred Accounting Petition

- Filed CCA deferred accounting petition on November 1st for natural gas costs and revenues related to compliance with the CCA
- Expect to begin incurring compliance costs in Q1 2023.
- Expect to receive revenues from consigned allowances in Q3 2023.
- Proposed to file annual tariff revisions to recover deferred costs. Current thinking is to begin recovery on November 1, 2023.
- Did not include proposal for what to do with revenues as more conversation is needed with WUTC.

Regulatory Next Steps for CCA Compliance

- Expect deferred accounting petition to be processed by WUTC in January 2023.
- WUTC initiating CCA compliance discussions in Q1 2023
- Thinking through needed rate schedule changes for allocating costs and revenues attributed to CCA.
 - Continuation of low-income bill discount tariff.
 - Transport customers separating those above and below 25,000 MTC02e.
 - General Service separating those on the system before and after July 25, 2021.
 - Special Contracts separating those above and below 25,000 MTC02e.
 - Tariff riders for CCA costs and benefits and which rate schedules tariff riders are applicable to.

Key Regulatory CCA Questions

- How are low-income customers determined?
- Can low-income customers not be charged CCA compliance costs to avoid complexity of providing them bill credits to offset costs?
- What is "reasonable distance" when considering RNG resources? (Note: Ecology expected to release guidance on RNG reporting soon.)
- What falls into the category of "decarbonization" that revenues from no-cost allowances can be used for?

Action Items

2025 Natural Gas IRP

Oregon Action Items

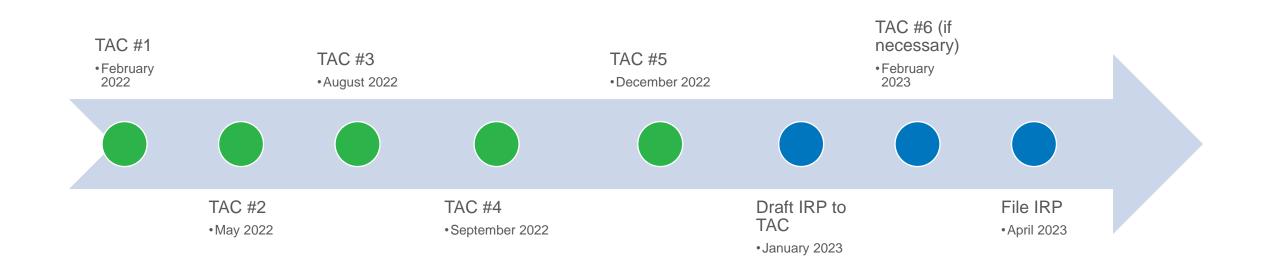
- Purchase Community Climate Investments for compliance to the Climate Protection Plan for years 2022, 2023 and 2024 to comply with emissions levels
- ETO identified 2023 gross savings of 546 thousand therms in the IRP verses 427 thousand therms of planned savings in the 2023 ETO Budget and Action Plan. Work with ETO to meet IRP gross savings target of 568 thousand therms in 2024
- New program offered by ETO for interruptible customers in 2023 to save 15 thousand therms.
- Engage stakeholders to explore additional new offerings for interruptible, transport and low-income customers to work towards identified savings of 375 thousand therms in 2024
- Acquire 8.64 million therms of RNG in 2023 and 21.80 million therms of RNG in 2024

Washington Action Items

- Purchase Allowances or offsets for compliance to the Climate Commitment Act for years 2023 and 2024 to comply with emissions levels
- Begin to offer a transport customer EE program by 2024 with the goal of saving 35 thousand therms
- Explore methods for using Non Energy Indicators (NEI) in future IRP analysis

Other Action Items

• Explore modeling alternatives like end use model to compliment time series


Next Steps

Next Steps

- Include Monte Carlo risk analysis and send out prior to IRP draft
- Determine electricity costs for Hybrid scenario
- Review RPF and incorporate selection in IRP
- Draft IRP January 25, 2023
- Virtual Public meeting March 8, 2023
- File final IRP March 31, 2023

2023 – Avista Natural Gas IRP

