

## 2018 Avista Natural Gas IRP

Technical Advisory Committee Meeting # 4 May 10, 2018 Olympia, WA

# Agenda

- Introductions
- AEG Idaho and Washington DSM
- ETO Oregon DSM
- Lunch
- Dynamic DSM
- Sendout Modeling
- Assumptions Review
- Solving for Unserved Demand
- Stochastics
- 2016 IRP Action Items
- 2018 Highlights
- Wrap-Up and Review schedule



# 2018 IRP Timeline

- August 31, 2017 Work Plan filed with WUTC
- January through May 2018 Technical Advisory Committee meetings. Meeting topics will include:
  - TAC 1: Thursday, January 25, 2018: TAC meeting expectations, review of 2016 IRP acknowledgement letters, customer forecast, and demand-side management (DSM) update.
  - TAC 2: Thursday, February 22, 2018: Weather analysis, environmental policies, market dynamics, price forecasts, cost of carbon.
  - TAC 3: Thursday, March 29, 2018 : Distribution, supply-side resources overview, overview of the major interstate pipelines, RNG overview and future potential resources.
  - TAC 4: Thursday, May 10, 2018: DSM results, stochastic modeling and supply-side options, final portfolio results, and 2020 Action Items.
  - June 21, 2018– TAC final review meeting to review final stochastics (if necessary)
- July 2, 2018 Draft of IRP document to TAC
- July 13, 2018 Comments on draft due back to Avista
- August 31, 2018 File finalized IRP document





# 2018 CONSERVATION POTENTIAL ASSESSMENT

Study Results, Prepared for the Avista DSM Advisory Group



Energy solutions. Delivered.

### CONTENTS



#### **CPA-Related Action Plan Activities**

- Measure Screening
- Measure Documentation
- Fully-Balanced TRC
- Barriers To DSM Uptake

Potential Study Summary

- LoadMAP Modeling Approach
- Levels of Potential

Potential Results

- Summary of Potential
- Comparison with Existing Programs
- Comparison with 2016 CPA

#### Sector-Level Potential, WA and ID (Supplemental Slide Deck)

- Residential
- Commercial
- Industrial



### **CPA-Related Action Plan Activities**

**Discussion of Action Items** 

#### 2017-2018 ACTION PLAN New Activities for 2018 IRP



In the 2018 IRP, ensure that the entity performing the Conservation Potential Assessment (CPA) evaluates and includes the following information:

- All conservation measures excluded from the CPA, including those excluded prior to technical potential determination;
- Rationale for excluding any measure;
- Description of Unit Energy Savings (UES) for each measure included in the CPA; specify how it was derived and the source of the data;
- Explain the efforts to create a fully-balanced TRC cost effectiveness metric within the planning horizon. Additionally, while evaluating the effort to eventually revert back to the TRC, Avista should consult the DSM Advisory Group and discuss appropriate non-energy benefits to include in the CPA.

In developing the 2018 IRP, discuss with the TAC:

• Discuss the barriers surrounding the uptake of DSM and how Avista can improve an increased level of achievable potential. (percentage of baseline dropped from 1.2 (economic) to 0.3 (achievable))

#### MEASURE SCREENING Exclusions from CPA



Recommended Activity:

In the 2018 IRP, ensure that the entity performing the Conservation Potential Assessment (CPA) evaluates and includes the following information:

- All conservation measures excluded from the CPA, including those excluded prior to technical potential determination;
- Rationale for excluding any measure;

#### Handling in CPA:

- Very few measures were excluded from the current CPA prior to estimation of technical potential. Those explicitly excluded were highly custom commercial and industrial controls/process measures that were instead captured under a retrocommissioning or strategic energy management program.
- Measures that did not pass the economic screen were still counted in within achievable technical potential, allowing Avista to review for inclusion in programs if portfolio-level cost-effectiveness allows.



### MEASURE SCREENING Achievable Technical Top Measures in 2018

| Rank    | Measure / Technology                                                     | Achiev.<br>Technical | UCT Achiev.<br>Economic | Difference |
|---------|--------------------------------------------------------------------------|----------------------|-------------------------|------------|
| 1       | Res - Furnace - Direct Fuel - AFUE 95%                                   | 22,707               | 19,091                  | 3,616      |
| 2       | Res - Windows - High Efficiency - Double Pane LowE CL22                  | 9,426                | 9,426                   | -1         |
| 3       | Com - Thermostat - WiFi Enabled - Wi-Fi/interactive thermostat installed | 7,719                | 0                       | 7,719      |
| 4       | Com - Boiler - AFUE 97%                                                  | 6,337                | 6,337                   | 0          |
| 5       | Res - Water Heater <= 55 gal Instantaneous - ENERGY STAR (UEF 0.87)      | 4,193                | 4,193                   | 0          |
| 6       | Com - Retrocommissioning - HVAC - Optimized HVAC flow and controls       | 2,809                | 661                     | 2,148      |
| 7       | Res - Gas Furnace - Maintenance - Restored to nameplate 80% AFUE         | 2,203                | 0                       | 2,203      |
| 8       | Com - Water Heater - Solar System - Solar system installed               | 1,812                | 0                       | 1,812      |
| 9       | Com - Fryer - ENERGY STAR                                                | 1,775                | 1,775                   | 0          |
| 10      | Com - Destratification Fans (HVLS) - Fans Installed                      | 1,494                | 0                       | 1,494      |
| 11      | Res - Thermostat - Wi-Fi/Interactive - Interactive/learning thermostat   | 1,343                | 1,344                   | -1         |
| 12      | Com - Gas Boiler - Insulate Steam Lines/Condensate Tank                  | 1,152                | 1,152                   | 0          |
| 13      | Res - Insulation - Floor/Crawlspace - R-30                               | 1,132                | 1,132                   | 0          |
| 14      | Com - Gas Boiler - Hot Water Reset - Reset control installed             | 1,123                | 1,123                   | 0          |
| 15      | Com - HVAC - Demand Controlled Ventilation - DCV enabled                 | 1,033                | 1,033                   | 0          |
| 16      | Com - Thermostat - Programmable - Programmable thermostat installed      | 937                  | 0                       | 937        |
| 17      | Res - Water Heater - Solar System - 40 sq ft supplemental solar system   | 858                  | 0                       | 858        |
| 18      | Com - Insulation - Roof/Ceiling - R-38                                   | 847                  | 850                     | -3         |
| 19      | Com - Water Heater - TE 0.94                                             | 838                  | 838                     | 0          |
| 20      | Com - Steam Trap Maintenance - Cleaning and maintenance                  | 820                  | 820                     | 0          |
| Subtot  | al                                                                       | 70,558               | 49,774                  | 20,784     |
| Total S | avings in Year                                                           | 86,389               | 61,279                  | 25,110     |



### MEASURE DOCUMENTATION Documentation of Savings and Other Assumptions

#### **Recommended Activity:**

• Description of Unit Energy Savings (UES) for each measure included in the CPA; specify how it was derived and the source of the data;

#### Handling in CPA:

- The measure list developed during the CPA includes descriptions of each measure included. AEG will provide this as an appendix to the final report.
- Source documentation for assumptions, including UES, lifetime, and costs (including NEIs) may be found in the "Measure Summary" spreadsheet delivered as an appendix to the final report.
  - This will include the name of the source and version (if applicable)

### FULLY-BALANCED TRC Non-Energy Impacts



#### **Recommended Activity:**

• Explain the efforts to create a fully-balanced TRC cost effectiveness metric within the planning horizon. Additionally, while evaluating the effort to eventually revert back to the TRC, Avista should consult the DSM Advisory Group and discuss appropriate non-energy benefits to include in the CPA.

### Addressed in CPA:

- As we will discuss throughout this presentation, TRC potential was estimated alongside UCT for each measure analyzed. In this study, we expanded the scope of non-energy/non-gas impacts to include the following:
  - 1. 10% Conservation Credit in Washington
  - 2. Quantified and monetized non-energy impacts (e.g. water, detergent, wood)
  - 3. Projected cost of carbon in Washington
  - 4. Heating calibration credit for secondary fuels (12% for space heating, 6% for secondary heating)
  - 5. Electric benefits for applicable measures (e.g. cooling savings for smart thermostats, lighting and refrigeration savings for retrocommissioning)

### BARRIERS TO DSM UPTAKE Non-Energy Impacts



#### **Recommended Activity:**

 Discuss the barriers surrounding the uptake of DSM and how Avista can improve an increased level of achievable potential. (percentage of baseline dropped from 1.2 (economic) to 0.3 (achievable))

#### Addressed in CPA:

- In 2018, Washington achievable technical potential is at 40% of technical, compared to roughly 25% in the 2016 CPA.
- By 2038, Washington achievable technical potential is at 84% following the Council's 85% long-term achievability assumption.
  - Idaho potential is slightly lower due to a program start-up period
- Many measures currently in Avista programs are on fast ramp rates (such as heating and food preparation equipment)
  - Others may be newer programs or experience substantial implementation barriers (contractors may be less willing to install measures that require crawlspace work)
- Barriers may possibly be alleviated by bundling measures, "cross-selling" additional measures to active participants, and assisting in market transformation initiatives



### Potential Study Summary

Overview of Objectives, Approach, and Levels of Potential

# LOADMAP MODELING APPROACH





### LEVELS OF POTENTIAL



We estimate three levels of potential. These are standard practice for CPAs in the Northwest:

- Technical: everyone chooses the efficient option when equipment fails regardless of cost
- Achievable Technical is a subset of technical that accounts for achievable participation within utility programs as well as non-utility mechanisms, such as regional initiatives and market transformation
- Achievable Economic is a subset of achievable technical potential that includes only <u>cost-effective</u> measures. Tests considered within this study include UCT, and TRC.



#### ECONOMIC SCREENING Three Cost-Effectiveness Tests



In assessing cost-effective, achievable potential within Avista's Washington and Idaho territories, AEG utilized two cost tests:

- Utility Cost Test (UCT): Assesses costeffectiveness from a utility or program administrator's perspective.
- Total Resource Cost Test (TRC): Assesses cost-effectiveness from the utility's <u>and</u> participant's perspectives. Includes non-energy impacts if they can be <u>quantified</u> and <u>monetized</u>.

| Component                    | UCT     | TRC     |
|------------------------------|---------|---------|
| Avoided Energy               | Benefit | Benefit |
| Non-Energy Benefits*         |         | Benefit |
| Incremental Cost             |         | Cost    |
| Incentive                    | Cost    |         |
| Administrative Cost          | Cost    | Cost    |
| Non-Energy Costs* (e.g. O&M) |         | Cost    |

\*Council methodology includes monetized impacts on other fuels within these categories



### Potential Results

Combined Results Avista's Residential, Commercial, and Industrial Sectors

#### DEFINITIONS OF POTENTIAL Cumulative and Incremental



Over the following slides, we will display potential both as a **cumulative** impact on baseline as well as in annual **increments** 

**Cumulative** potential includes the impacts of potential acquired from the first year of the study period (2018) through the year of interest, including effects of measures persistence

- We begin in 2018 for alignment with the current IRP period and to capture similarities with Avista programs and accomplishments
- This is particularly important in Idaho where programs are restarting and ramping up

**Incremental** potential summarizes new impacts realized in any given year of interest, excluding the effects of measure repurchases

Due to the effect of repurchases, the sum of incremental savings will always be <u>greater than or equal to</u> the cumulative potential in any given year

#### POTENTIAL ESTIMATES Achievability



All potential "ramps up" over time – all ramp rates are based on those found within the NWPCC's Seventh Power Plan

Achievable technical potential reaches 85% of technical by the end of the study, consistent with the Council assumptions

 Please note Power Council's ramp rates include potential realized from outside of utility DSM programs, including regional initiatives and market transformation



### POTENTIAL ESTIMATES Total Avista Washington, Cumulative Potential

| Scenario                          | 2018       | 2019       | 2022       | 2028       | 2038       |
|-----------------------------------|------------|------------|------------|------------|------------|
| Baseline Forecast (Dth)           | 17,221,900 | 17,418,177 | 17,878,550 | 18,517,630 | 19,498,948 |
| Cumulative Savings (Dth)          |            |            |            |            |            |
| UCT Achievable Economic           | 61,279     | 133,576    | 500,422    | 1,916,441  | 4,139,016  |
| TRC Achievable Economic           | 33,893     | 73,100     | 276,379    | 1,297,679  | 2,420,649  |
| Achievable Technical              | 86,389     | 186,065    | 655,389    | 2,405,890  | 4,901,043  |
| Technical                         | 217,202    | 434,037    | 1,189,331  | 3,251,362  | 5,804,041  |
| Energy Savings (% of Baseline)    |            |            |            |            |            |
| UCT Achievable Economic Potential | 0.4%       | 0.8%       | 2.8%       | 10.3%      | 21.2%      |
| TRC Achievable Economic Potential | 0.2%       | 0.4%       | 1.5%       | 7.0%       | 12.4%      |
| Achievable Technical Potential    | 0.5%       | 1.1%       | 3.7%       | 13.0%      | 25.1%      |
| Technical Potential               | 1.3%       | 2.5%       | 6.7%       | 17.6%      | 29.8%      |



### POTENTIAL ESTIMATES Total Avista Idaho, **Cumulative** Potential

| Scenario                          | 2018      | 2019      | 2022      | 2028      | 2038      |
|-----------------------------------|-----------|-----------|-----------|-----------|-----------|
| Baseline Forecast (Dth)           | 8,557,178 | 8,667,149 | 8,958,733 | 9,352,011 | 9,975,077 |
| Cumulative Savings (Dth)          |           |           |           |           |           |
| UCT Achievable Economic           | 26,340    | 58,352    | 235,414   | 965,825   | 2,107,684 |
| TRC Achievable Economic           | 9,846     | 22,432    | 108,249   | 635,250   | 1,204,809 |
| Achievable Technical              | 37,324    | 81,526    | 310,222   | 1,218,944 | 2,514,049 |
| Technical                         | 103,071   | 206,214   | 582,638   | 1,660,809 | 2,993,151 |
| Energy Savings (% of Baseline)    |           |           |           |           |           |
| UCT Achievable Economic Potential | 0.3%      | 0.7%      | 2.6%      | 10.3%     | 21.1%     |
| TRC Achievable Economic Potential | 0.1%      | 0.3%      | 1.2%      | 6.8%      | 12.1%     |
| Achievable Technical Potential    | 0.4%      | 0.9%      | 3.5%      | 13.0%     | 25.2%     |
| Technical Potential               | 1.2%      | 2.4%      | 6.5%      | 17.8%     | 30.0%     |



### POTENTIAL BY SECTOR Total Avista Washington, **Cumulative** Potential

As the largest sector, residential represents the largest portion of **cumulative** UCT achievable economic potential (AEP) throughout the study period.

The industrial sector only includes customers eligible for programs, which represent a very small percentage of total industrial consumption.

Some residential measures are not cost-effective on a TRC basis. This is due to the use of full measure costs rather than just a utility's portion. Inclusion of a heating calibration credit and nongas impacts somewhat mitigates this effect.

UCT AEP Share of Total Savings by Sector



| UCT Savings (Dth) | 2018   | 2019    | 2022    | 2028      | 2038      |
|-------------------|--------|---------|---------|-----------|-----------|
| Residential       | 39,979 | 88,051  | 345,801 | 1,362,078 | 3,107,847 |
| Commercial        | 20,731 | 44,393  | 151,733 | 547,834   | 1,021,211 |
| Industrial        | 569    | 1,132   | 2,887   | 6,528     | 9,957     |
| Total             | 61,279 | 133,576 | 500,422 | 1,916,441 | 4,139,016 |
|                   |        |         |         |           |           |
| TRC Savings (Dth) | 2018   | 2019    | 2022    | 2028      | 2038      |
| Residential       | 14,920 | 32,308  | 139,361 | 824,953   | 1,573,939 |
| Commercial        | 18,376 | 39,603  | 134,004 | 465,827   | 836,014   |
| Industrial        | 597    | 1,188   | 1,785   | 6,899     | 10,696    |
|                   |        |         |         |           |           |

#### POTENTIAL BY SECTOR Total Avista Idaho, **Cumulative** Potential



As the largest sector, residential represents the largest portion of **cumulative** UCT achievable economic potential (AEP) throughout the study period. This is slightly larger in Idaho than Washington.

The industrial sector only includes customers eligible for programs, which represent a very small percentage of total industrial consumption.

Some residential measures are not cost-effective on a TRC basis. This is due to the use of full measure costs rather than just a utility's portion. Inclusion of a heating calibration credit and nongas impacts somewhat mitigates this effect.

#### UCT AEP Share of Total Savings by Sector



| UCT Savings (Dth) | 2018   | 2019   | 2022    | 2028    | 2038      |
|-------------------|--------|--------|---------|---------|-----------|
| Residential       | 18,354 | 41,176 | 174,333 | 720,226 | 1,615,844 |
| Commercial        | 7,417  | 16,035 | 58,160  | 239,015 | 481,888   |
| Industrial        | 569    | 1,140  | 2,922   | 6,584   | 9,952     |
| Total             | 26,340 | 58,352 | 235,414 | 965,825 | 2,107,684 |
|                   |        |        |         |         |           |
| TRC Savings (Dth) | 2018   | 2019   | 2022    | 2028    | 2038      |
| Residential       | 3,744  | 9,243  | 62,156  | 458,445 | 833,329   |
| Commercial        | 5,529  | 12,039 | 43,123  | 169,784 | 360,683   |
| Industrial        | 573    | 1,150  | 1,738   | 7,021   | 10,797    |
| Total             | 9,846  | 22,432 | 108,249 | 635,250 | 1,204,809 |

## RESIDENTIAL ACCOMPLISHMENTS



Washington, Comparison with Current Avista Programs

2018 UCT achievable economic estimates are lower than Avista's 2017 accomplishments and 2018 Plan

- Furnaces potential is lower, but unit installations are similar to current levels

   indicating a drop in unit energy savings due to new construction installations and the 2015 WSEC.
- Smart thermostat potential is mapped to the Council's electric ramp rate
- Windows represent substantial potential, in line with 2017 accomplishments.
- ENERGY STAR home savings in Washington have are lower due to the impacts of 2015 WSEC – but not to the level of the RTF, who assumes everyone will be installing high-efficiency water heaters
  - Anecdotal evidence from builders indicates that this is not the case

| 2018 UCT Achievable<br>Economic (Dth) | 2017<br>Accomplish | 2018<br>Plan | LoadMAP<br>2018 ATP |
|---------------------------------------|--------------------|--------------|---------------------|
| Furnace                               | 40,003             | 28,600       | 19,091              |
| Boiler                                | 453                | 0            | 619                 |
| Water Heater                          | 6,621              | 1,042        | 4,257               |
| ENERGY STAR Homes                     | 122                | 365          | 294                 |
| Smart Thermostat                      | 4,884              | 2,340        | 1,344               |
| Programmable TStat.                   | 0                  | 55           | 0                   |
| Ceiling Insulation                    | 540                | 280          | 1,072               |
| Wall Insulation                       | 218                | 240          | 904                 |
| Floor Insulation                      | 66                 | 266          | 1,135               |
| Doors                                 | 40                 | 63           | 0                   |
| Windows                               | 8,911              | 15,940       | 9,426               |
| Air Sealing                           | 207                | 112          | 0                   |
| Duct Insulation                       | 30                 | 144          | 367                 |
| Duct Sealing                          | 48                 | 0            | 0                   |
| Showerheads                           | 0                  | 954          | 575                 |
| Miscellaneous                         | 14                 | 0            | 893                 |
| Total                                 | 62,156             | 50,402       | 39,979              |

#### 2015 WASHINGTON ENERGY CODE Impact on Residential New Construction



Effective since the middle of 2016, the 2015 WSEC results in a much more efficient new construction baseline

- Mandatory, very efficient, shell measures substantially reduce heating loads, which lowers furnace usage by 30%
  - e.g. 650\*.7 = 455 therms
- Since usage is down, savings from upgrading to an efficient system are reduced proportionally

Credits are also required to meet section R406.2

 Although high efficiency equipment is allowed under this section, we have heard that builders are opting for cheaper methods of compliance, such as designing homes with interior ductwork

#### For a new home of average size:

- Ceiling Insulation: R49
- Wall Insulation: R21
- Floor Insulation: R30 R38
- Window U-Factor: 0.28-0.30
- Air Leakage: 3-5 ACH50

For optional credits, the following may be utilized:

- 94% AFUE furnace
- 0.95 EF water heater
- 1.75 GPM showerheads
- Inside ducting

RTF Analysis: <u>https://rtf.nwcouncil.org/standard-protocol/new-homes</u>



# RESIDENTIAL ACCOMPLISHMENTS

Idaho, Comparison with Current Avista Programs

2018 UCT achievable economic estimates are very similar to Avista's 2018 Plan and 2017 accomplishments

- Furnace potential is very similar to current accomplishments – mainly due to new construction potential
- Smart thermostats and windows pass UCT screening
- ENERGY STAR Homes reflect Idaho building codes, which do not lower space heating savings due to a substantially tighter building shell

| 2018 UCT Achievable<br>Economic (Dth) | 2017<br>Accomplish | 2018<br>Plan | LoadMAP<br>2018 ATP |
|---------------------------------------|--------------------|--------------|---------------------|
| Furnace                               | 12,783             | 11,716       | 11,816              |
| Boiler                                | 134                | 0            | 307                 |
| Water Heater                          | 1,775              | 2,077        | 2,014               |
| ENERGY STAR Homes                     | 41                 | 41           | 146                 |
| Smart Thermostat                      | 1,628              | 1,040        | 664                 |
| Programmable Tstat.                   | 0                  | 0            | 0                   |
| Ceiling Insulation                    | 129                | 56           | 534                 |
| Wall Insulation                       | 17                 | 102          | 452                 |
| Floor Insulation                      | 29                 | 119          | 774                 |
| Doors                                 | 11                 | 19           | 0                   |
| Windows                               | 1,407              | 1,708        | 820                 |
| Air Sealing                           | 87                 | 48           | 0                   |
| Duct Insulation                       | 56                 | 153          | 181                 |
| Duct Sealing                          | 59                 | 0            | 0                   |
| Showerheads                           | 0                  | 233          | 286                 |
| Miscellaneous                         | 2                  | 0            | 362                 |
| Total                                 | 18,158             | 17,311       | 18,354              |



## C&I ACCOMPLISHMENTS

Washington, Comparison with Current Avista Programs

# Program potential is similar to current Avista programs

- LoadMAP UCT Achievable Economic is between 2017 accomplishments and 2018 plan
- Even with very high ramp rates, food preparation potential is lower than current programs (LO50Fast)
- Many HVAC-specific measures would be considered "Custom" but assigned to this category since that is where those savings are ultimately realized
- Industrial adds an additional 569 Dth to the "Custom" program in the 2018 LoadMAP Projections

| 2018 UCT Achievable<br>Economic (Dth) | 2017<br>Accomplish | 2018<br>Plan | LoadMAP<br>2018 UCT<br>AEP |
|---------------------------------------|--------------------|--------------|----------------------------|
| HVAC                                  | 14,000             | 3,214        | 11,925                     |
| Weatherization                        | 1,657              | 2,080        | 1,694                      |
| Appliances                            | 380                | 0            | 838                        |
| Food Preparation                      | 3,987              | 4,956        | 2,761                      |
| Custom                                | 2,381              | 10,000       | 4,082                      |
| Total                                 | 22,405             | 20,251       | 21,300                     |



# C&I ACCOMPLISHMENTS

Idaho, Comparison with Current Avista Programs

Program potential is higher than 2017 accomplishments and similar to 2018 plan

- Idaho programs ramped up between 2017 and 2018 due to recent restarting of offerings
- Industrial adds an additional 569 Dth to the "Custom" program in the 2018 LoadMAP Projections (similar to WA when rounded)

| 2018 UCT Achievable<br>Economic (Dth) | 2017<br>Accomplish | 2018<br>Plan | LoadMAP<br>2018 UCT<br>AEP |
|---------------------------------------|--------------------|--------------|----------------------------|
| HVAC                                  | 1,390              | 805          | 3,769                      |
| Weatherization                        | 874                | 940          | 941                        |
| Appliances                            | 35                 | 0            | 198                        |
| Food Preparation                      | 1,359              | 1,490        | 1,045                      |
| Custom                                | 0                  | 4,100        | 2,033                      |
| Total                                 | 3,657              | 7,336        | 7,986                      |

#### COMPARISON WITH 2016 CPA Residential, First-Year Potential



Comparison of first-year UCT Achievable economic potential between 2016 and 2018 CPAs for the residential sector

Measures mapped to current Avista programs similarly to current CPA

| Drogram                 | Washi  | ngton  | Idaho  |        | Notos                                                                                                             |
|-------------------------|--------|--------|--------|--------|-------------------------------------------------------------------------------------------------------------------|
| Program                 | 2017   | 2018   | 2017   | 2018   | Notes                                                                                                             |
| Furnace                 | 9,524  | 19,091 | 3,209  | 11,816 | Accelerated from 2017 per Avista accomplishments                                                                  |
| Boiler                  | 251    | 619    | 112    | 307    |                                                                                                                   |
| Water Heater            | 718    | 4,257  | 254    | 2,014  | Accelerated from 2017 per Avista accomplishments                                                                  |
| ENERGY STAR Homes       | 0      | 294    | 0      | 146    | Now passing cost-effectiveness                                                                                    |
| Smart Thermostat        | 445    | 1,344  | 213    | 664    | More mature measure, higher starting point                                                                        |
| Programmable Thermostat | 0      | 0      | 0      | 0      |                                                                                                                   |
| Ceiling Insulation      | 1,218  | 1,072  | 577    | 534    |                                                                                                                   |
| Wall Insulation         | 0      | 904    | 0      | 452    | Now cost-effective                                                                                                |
| Floor Insulation        | 0      | 1,135  | 0      | 774    | Now cost-effective                                                                                                |
| Doors                   | 0      | 0      | 0      | 0      |                                                                                                                   |
| Windows                 | 8,491  | 9,426  | 4,044  | 820    | \$/sqft is low as percent of measure cost, slowed in ID as a result,<br>but demand for measure appears high in WA |
| Air Sealing             | 0      | 0      | 0      | 0      |                                                                                                                   |
| Duct Insulation         | 0      | 367    | 0      | 181    |                                                                                                                   |
| Duct Sealing            | 939    | 0      | 0      | 0      |                                                                                                                   |
| Showerheads             | 1,627  | 575    | 736    | 286    | No accomplishments in 2017, allowing time for program to<br>"ramp up"                                             |
| Miscellaneous           | 4,387  | 893    | 1,992  | 362    | Maintenance measures no longer cost-effective due to updated labor cost calculations.                             |
| Total                   | 27,598 | 39,979 | 11,138 | 18,354 |                                                                                                                   |

### COMPARISON WITH 2016 CPA C&I, First-Year Potential



Comparison of first-year UCT Achievable economic potential between 2016 and 2018 CPAs for the commercial sector

Custom measures reduce the most. This was due to retrocommissioning, which was cost-effective in the prior CPA

| Dregnore         | Washington |        | Idaho |       | Natas                                                                                                |
|------------------|------------|--------|-------|-------|------------------------------------------------------------------------------------------------------|
| Program          | 2017       | 2018   | 2017  | 2018  | Notes                                                                                                |
| HVAC             | 8,065      | 11,925 | 3,400 | 3,769 | Similar to prior study, slightly accelerated                                                         |
| Weatherization   | 1,636      | 1,694  | 540   | 941   |                                                                                                      |
| Appliances       | 953        | 838    | 453   | 198   |                                                                                                      |
| Food Preparation | 577        | 2,761  | 228   | 1,045 | Heavily accelerating measures due to program accomplishments, particularly fryers and ovens          |
| Custom           | 12,130     | 4,082  | 4,997 | 2,033 | Retrocommissioning was a top measure in prior CPA, but no longer cost-effective after to UES update. |
| Total            | 23,362     | 21,300 | 9,618 | 7,986 |                                                                                                      |

### COMPARISON WITH 2016 CPA 10-year Cumulative UCT Achievable Potential



|              | <b>Current Study:</b>   | Prior Study:            |                                  |
|--------------|-------------------------|-------------------------|----------------------------------|
|              | 2027 Potential<br>(Dth) | 2026 Potential<br>(Dth) | Change from<br>Prior Study (Dth) |
| Washington   |                         |                         |                                  |
| Residential  | 1,131,013               | 497,074                 | 633,939                          |
| Commercial   | 476,648                 | 413,219                 | 63,429                           |
| Industrial   | 5,974                   | 4,050                   | 1,924                            |
| WA Total     | 1,613,635               | 914,343                 | 699,292                          |
| Idaho        |                         |                         |                                  |
| Residential  | 596,450                 | 208,875                 | 387,575                          |
| Commercial   | 205,064                 | 170,883                 | 34,181                           |
| Industrial   | 6,034                   | 4,411                   | 1,623                            |
| ID Total     | 807,547                 | 384,169                 | 423,378                          |
| Avista       |                         |                         |                                  |
| Residential  | 1,727,462               | 705,949                 | 1,021,513                        |
| Commercial   | 681,712                 | 584,102                 | 97,610                           |
| Industrial   | 12,007                  | 8,461                   | 3,546                            |
| Avista Total | 2,421,181               | 1,298,512               | 1,122,669                        |

• 10-year cumulative UCT Achievable Potential increased substantially

• In the prior CPA, we gradually increased ramp rates over time and did not max out ramp rates at 85%

• This is causing a spike in mid-year potential since many of the faster rates are already at 85%



Ingrid Rohmund, Senior Vice President irohmund@appliedenergygroup.com

Kurtis Kolnowski, Senior Project Manager kkolnowski@appliedenergygroup.com

Ken Walter, Senior Analyst kwalter@appliedenergygroup.com



Energy Trust of Oregon Energy Efficiency Resource Assessment Study May 10<sup>th</sup>, 2018





# Agenda

- About Energy Trust
- 2017 Achieved Savings
- Resource Assessment
   Overview and Background
- Methodology
- Results
- Questions/Discussion

## About us

| Independent<br>nonprofit                    | Serving 1.6 millio<br>Portland Gen<br>Pacific Power,<br>Cascade Natural | on customers of<br>eral Electric,<br>NW Natural,<br>Gas and Avista |
|---------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------|
| Providing access<br>to affordable<br>energy | Generating<br>homegrown,<br>renewable power                             | Building a<br>stronger Oregon<br>and SW<br>Washington              |


## 15 years of affordable energy

From Energy Trust's investment of \$1.5 billion in utility customer funds:



Nearly 660,000 sites transformed into energy efficient, healthy, comfortable and productive homes and businesses 10,000 clean energy systems generating renewable power from the sun, wind, water, geothermal heat and biopower



**\$6.9 billion** in savings over time on participant utility bills from their energy-efficiency and solar investments



20 million tons of carbon dioxide emissions kept out of our air, equal to removing 3.5 million cars from our roads for a year A clean energy power plant

607 average megawatts saved

# **121** aMW generated

52 million annual therms saved

Enough energy to power **564,000** homes and heat **100,000** homes for a year

Avoided **20** million tons of carbon dioxide

#### Energy Trust's 2017 Achievements for Avista

#### Energy Trust Savings Achievements – 2017

- Our first full year serving Avista customers in Oregon
- Overall achieved 107% of goal
  - Goal 318k Therms
  - Achieved 341k Therms
- Anticipate continued success as we move into year 2 and Trade Ally networks expand



#### 2017 Energy Trust Goals to Actuals - Avista

#### Energy Trust achieved 107% of goal in Avista service territory

Resource Assessment: Purpose, Overview and Background

## Resource Assessment (RA) Purpose

- Provides estimates of energy efficiency potential that will result in a reduction of load on Avista's system for use in Avista's Integrated Resource Plan (IRP).
- The purpose is to help Avista strategically plan future investment in both supply side and demand side resources.
- Estimates of energy efficiency potential are in 'gross' savings, not 'net', as gross savings are what will be reflected on the Avista system.



## **Resource Assessment Overview**



- What is a resource assessment?
  - Model that provides an estimate of energy efficiency resource potential achievable over a 20-year period
  - 'Bottom-up' approach to estimate potential starting at the measure level and scaling to a service territory
- Energy Trust uses a model in *Analytica* that was developed by Navigant Consulting in 2014
  - The Analytica RA Model calculates Technical, Achievable and Cost-Effective Achievable Energy Efficiency Potential.
  - Final program/IRP targets are established via a deployment protocol exogenous of the model.
- Data inputs and assumptions in the model are updated in conjunction with IRP about every two years.

## Additional RA Background

- Informs utility IRP work & Energy Trust strategic and program planning.
- Does not dictate source or measure mix of annual energy savings acquired by programs
- Does not set incentive levels



# 20-Year Forecast Methodology

## **Forecasted Potential Types**



## 20-Year IRP EE Forecast Flow Chart



# **RA Model inputs**



#### **Measure Level Inputs**

#### **Measure Definition and Application:**

- Baseline/Efficient equip. definition
- Applicable customer segments
- Installation yype (RET/ROB/NEW)\*
- Measure Life

#### **Measure Savings**

#### **Measure Cost**

- Incremental cost for ROB/NEW measures
- Full cost for retrofit measures

#### Market Data (for scaling)

- Density
- Baseline/efficient equipment saturations
- Suitability

#### **Utility 'Global' Inputs**

#### **Customer and Load Forecasts**

- Used to scale measure level savings to a service territory
  - Residential Stocks: # of homes
  - Commercial Stocks: 1000s of Sq.Ft.
  - Industrial Stocks: Customer load

#### Avoided Costs (provided by Avista)

#### **Customer Stock Demographics:**

- Heating fuel splits
- Water heat fuel splits

\* RET = Retrofit; ROB = Replace on Burnout; NEW = New Construction

# Model Updates

- The RA Model is a 'living' model and Energy Trust makes continuous improvements to it.
- Measure updates, new measures and new emerging technologies included in model
- More alignment with high-level NWPCC 7<sup>th</sup> Power Plan deployment methodologies to obtain cost-effective achievable savings within market sectors and replacement types.
- Cost-effective potential may be realized through programs or codes and standards.



## Example Measure: Residential Gas Tank Water Heater (>0.70 EF)

Key Measure Inputs:

- Baseline: 0.60 EF gas water heater
  - Replacement Type: Replacement on Burnout / New
  - Measure Incremental Cost: \$193
  - Conventional (not emerging, no risk adjustment)
  - Lifetime:13 years
  - Savings: 31.5 therms (annual)
  - Non-Energy Benefits: \$5.95
  - Customer Segments: SF, MF, MH
  - Density, Saturation, Suitability
  - Competing Measures: All efficient gas water heaters

#### Incremental Measure Savings Approach (Competition groups – Gas water heaters)



19

# **Cost-Effectiveness Screen**



• Energy Trust utilizes the Total Resource Cost (TRC) test to screen measures for cost effectiveness

| TRC = | Measure Benefits   |
|-------|--------------------|
|       | Total Measure Cost |

- If TRC is > 1.0, it is cost-effective
- Measure Benefits:
  - Avoided Costs (provided by Avista)
    - Annual measure savings x NPV avoided costs per therm
  - Quantifiable Non-Energy Benefits
    - Water savings, etc.
- Total Measure Costs:
  - The customer cost of installing an EE measure (full cost if retrofit, incremental over baseline if replacement)



## Cost-Effectiveness Override in Model

Energy Trust applied this feature to measures found to be NOT Cost-Effective in the model but are offered through Energy Trust programs.

Reasons:

- Blended avoided costs may produce different results than utility specific avoided costs
- 2. Measures offered under an OPUC exception per UM 551 criteria.

The following measures had the CE override applied (all under OPUC exception):

- Res Insulation (ceiling, floor, wall)
- Res Tank Water Heater (0.67-0.69 only)

## **Emerging Technologies**

| Residential                                                         | Commercial                                                                                                | Industrial                                             |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| <ul> <li>Path 5 Emerging Super<br/>Efficient Whole Home</li> </ul>  | <ul> <li>Advanced Ventilation</li> <li>Controls</li> </ul>                                                | <ul> <li>Gas-fired HP Water</li> <li>Heater</li> </ul> |
| • Window Replacement<br>(U<.20), Gas SF                             | • DOAS/HRV - GAS<br>Space Heat                                                                            | • Wall Insulation- VIP,<br>R0-R35                      |
| <ul> <li>Absorption Gas Heat</li> <li>Pump Water Heaters</li> </ul> | <ul> <li>DHW Circulation</li> <li>Pump</li> </ul>                                                         |                                                        |
| <ul> <li>Advanced Insulation</li> </ul>                             | • Gas-fired HP HW                                                                                         |                                                        |
| <ul> <li>Behavior Competitions</li> </ul>                           | <ul> <li>Gas-fired HP, Heating</li> <li>Zero Net Energy Path</li> <li>AC Heat Recovery,<br/>HW</li> </ul> |                                                        |

- Model includes savings potential from emerging technologies
- Factors in changing performance, cost over time
- Use risk factors to hedge against uncertainty

|                                           | Risk Factors for Emerging Technologies                                                                                                                                                               |                                                      |                                                                                     |                                                                                                                                |                                                                                                       |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Risk Category                             | 10%                                                                                                                                                                                                  | 30%                                                  | 50%                                                                                 | 70%                                                                                                                            | 90%                                                                                                   |
| Market Risk<br>(25%<br>weighting)         | Requires new/changed<br>business model<br>Start-up, or small manufacturer<br>Significant changes to<br>infrastructure<br>Requires training of<br>contractors. Consumer<br>acceptance barriers exist. |                                                      | Training for<br>contractors<br>available.<br>Multiple<br>products in<br>the market. | Trained contractors<br>Established business models<br>Already in U.S. Market<br>Manufacturer committed to<br>commercialization |                                                                                                       |
| Technical Risk<br>(25%<br>weighting)      | Prototype in first<br>field tests.<br>A single or<br>unknown<br>approach                                                                                                                             | Low volume<br>manufacturer.<br>Limited<br>experience | New product<br>with broad<br>commercial<br>appeal                                   | Proven technology in<br>different application<br>or different region                                                           | Proven<br>technology in<br>target<br>application.<br>Multiple<br>potentially<br>viable<br>approaches. |
| Data Source<br>Risk<br>(50%<br>weighting) | Based only on<br>manufacturer<br>claims                                                                                                                                                              | Manufacturer<br>case studies                         | Engineering<br>assessment<br>or lab test                                            | Third party case study<br>(real world<br>installation)                                                                         | Evaluation<br>results or<br>multiple third<br>party case<br>studies                                   |

#### Results

## **Outputs of Potential Type**

| Not<br>Technically<br>Feasible | Technical Potential |                                                      |                                           |                                          |                                                                   |
|--------------------------------|---------------------|------------------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------------------------------|
|                                |                     | Achievable Potential<br>(85% of Technical Potential) |                                           |                                          | Calculated<br>within RA<br>Model                                  |
|                                | Market<br>Barriers  | Not Cost-<br>Effective                               | Cost-Effec<br>Pote                        |                                          |                                                                   |
|                                |                     |                                                      | Program Design<br>& Market<br>Penetration | Final<br>Program<br>Savings<br>Potential | Developed<br>with<br>Programs<br>& Other<br>Market<br>Information |

The RA Model estimates the in Technical, Achievable and Cost-Effective Achievable potential

Final Program Savings Potential is deployed exogenously of the model using the Cost-Effective Achievable potential from the RA model in combination with program expertise on what can actually be achieved

#### Overall Cumulative Savings Results – Millions of Therms



RA Model Results Technical, Achievable, and Cost-Effective

# Model Output Cumulative Potential by Type and Year (2018-2037)



### Cumulative Emerging Technology Contribution – Millions of Therms



# Cumulative Potential by Sector and Type – Millions of Therms



#### Proportion of Cumulative Cost-effective Potential by End Use



## Cost-Effective Override Effect – Cumulative CE Potential (Millions of Therms)

| Sector      | Potential<br>with CE<br>Override | Potential with<br>NO CE<br>Override | Difference<br>(total CE<br>potential with<br>override) |
|-------------|----------------------------------|-------------------------------------|--------------------------------------------------------|
| Residential | 10.63                            | 8.33                                | 2.3                                                    |
| Commercial  | 6.32                             | 6.32                                | -                                                      |
| Industrial  | 0.26                             | 0.26                                | -                                                      |
| Total DSM:  | 17.21                            | 14.91                               | 2.30                                                   |

#### **Measures with CE Override in Model**

- Res Insulation (ceiling, floor, wall)
- Res Tank Water Heater (0.67-0.69 only)

#### Top-20 Measures – Cost-Effective Cumulative Potential



65

#### Final Savings Projections -Deployed Results

### Final Savings Projection Methodology

Energy Trust sets the first five years of energy efficiency acquisition to program performance and budget goals.





# 20-Year Cumulative Potential by Type – Millions of Therms

|             | Technical<br>Potential | Achievable<br>Potential | Ach. Cost-<br>Effective<br>Potential | Energy Trust<br>Savings<br>Projection |
|-------------|------------------------|-------------------------|--------------------------------------|---------------------------------------|
| Residential | 20.0                   | 17.0                    | 10.6                                 | 5.7                                   |
| Commercial  | 13.3                   | 11.3                    | 6.3                                  | 3.3                                   |
| Industrial  | 0.3                    | 0.3                     | 0.3                                  | 0.2                                   |
| All Sectors | 33.5                   | 28.5                    | 17.2                                 | 9.2                                   |

Not all Cost-Effective Potential is projected to be achieved because:

- Lost opportunity with 'Replacement' and 'New Constr.' measures
- Hard to reach measures (e.g. insulation)
- Other market barriers identified by programs & new service territory

#### Cost-Effective Avista Savings Projection 2018-2037 – Millions of Therms



#### Annual Projected Savings as Percent of Avista's Annual Load Forecasts



# 2018 Supply Curve – 20 Year Technical Potential by Levelized Cost of Energy (\$/Therm)



71



#### Thank you

Jack Cullen Sr. Project Manager, Planning

Jack.Cullen@energytrust.org 503.548.1596


### **WUTC 2016 IRP comments**

- Discuss with the TAC:
  - The results of Northwest Energy Efficiency Alliance (NEEA) coordination, including non-energy benefits to include in the CPA.
  - The appropriateness of listing and mapping all prospective distribution system enhancement projects planned on the 20 year horizon, and comparing actual projects completed to prospective projects listed in previous IRP's.





### **Dynamic DSM**

Kaylene Schultz

### Sendout and Dynamic DSM

 Action Plan: Avista's 2018 IRP will contain a dynamic DSM program structure in its analytics. In prior IRP's, it was a deterministic method based on Expected Case assumptions. In the 2018 IRP, each portfolio will have the ability to select conservation to meet unserved customer demand. Avista will explore methods to enable a dynamic analytical process for the evaluation of conservation potential within individual portfolios.

### **DSM Example**





### **Needed Measures**



#### 11 demand areas X 957 measures per area = 10,527 needed measures to solve



### **Sendout and DSM Issues**

- Attempts to group measures
  - Unique measures can have different curves and device lives
  - Intent of modeling DSM as a resource is to provide individual resources the ability to fill demand along the demand curve and not lump assumptions
  - As the model works today, we would have to solve for individual area and class, each in a separate model; this would miss the mark on system optimization and peak day events



### **2020 Action Plan**

- Avista will use the same software our electric IRP team has as a solution to this action plan
  - The solution is outside of the Sendout model in an enhanced Excel solver, meaning we will rebuild our system model in Sendout into excel
  - This solution is known to our WA and ID commissions as "PRiSM", which is used to solve and create Avista's DSM goals in each jurisdiction





### **Modeling in Sendout**

Kaylene Schultz

### **Modeling Transportation In SENDOUT®**

- Start with a point-in-time look at each jurisdiction's resources
  - Contracts Receipt and Delivery Points
  - Rates
- Contractual vs. Operational
  - Contractual can be overly restrictive
  - Operational can be overly flexible
- Incorporating operational realities into our modeling can defer the need to acquire new resources
- Gas Supply's job is to get gas from the supply basin to the pipeline citygate
- Gas Engineering/Distribution's job is to take gas from the pipeline citygate to our customers
- The major limiting factor is receipt quantity how much can you bring into the system?



### **Modeling Challenges**

- Supply needs to get gas to the gate
- Contracts were created years ago, based on demand projections at that point in time
- Stuff happens (i.e. growth differs from forecast)
- Sum of receipt quantity and aggregated delivery quantity don't identify resource deficiency for quite some time however.....
- The aggregated look can mask individual city gate issues, and the disaggregated look can create deficiencies where they don't exist
- In many cases, operational capacity is greater than contracted
- Transportation resources are interconnected (two pipes can serve one area)
- WARNING we need to be mindful of the modeling limitations



### What is in SENDOUT<sup>®</sup>?

#### Inside:

- Demand forecasts at an aggregated level
- Existing firm transportation resources and current rates
  - Receipt point to aggregated delivery points/"zone"
  - Jurisdictional considerations
  - Long term capacity releases
- Potential resources, both supply and demand side



### What is outside SENDOUT<sup>®</sup>?

#### Outside:

- Gate station analysis
  - Forecasted demand behind the gate
    - Growth rates consistent with IRP assumptions
    - Actual hourly/daily city gate flow data
  - Gate station MDDO's
  - Gate station operational capacities





### **Assumptions Review**

### **Developing a Reference Case**



1. Customer annual growth rates:

| System      | Base-Case  | High      | Low   |  |  |  |  |  |
|-------------|------------|-----------|-------|--|--|--|--|--|
| Residential | 1.2%       | 1.6%      | 0.9%  |  |  |  |  |  |
| Commercial  | 0.7% 1.0%  |           | 0.3%  |  |  |  |  |  |
| Industrial  | -0.3% 2.2% |           | -3.3% |  |  |  |  |  |
| Total       | 1.2%       | 1.2% 1.5% |       |  |  |  |  |  |
|             |            |           |       |  |  |  |  |  |
| WA          | Base-Case  | High      | Low   |  |  |  |  |  |
| Residential | 1.2%       | 1.5%      | 0.9%  |  |  |  |  |  |
| Commercial  | 0.7%       | 1.0%      | 0.4%  |  |  |  |  |  |
| Industrial  | -0.8%      | 1.9%      | -3.1% |  |  |  |  |  |
| Total       | 1.2%       | 1.5%      | 0.8%  |  |  |  |  |  |
|             |            |           |       |  |  |  |  |  |
| ID          | Base-Case  | High      | Low   |  |  |  |  |  |
| Residential | 1.5%       | 2.0%      | 1.0%  |  |  |  |  |  |
| Commercial  | 0.6%       | 1.1%      | 0.1%  |  |  |  |  |  |
| Industrial  | 0.1%       | 1.7%      | -2.7% |  |  |  |  |  |
| Total       | 1.4%       | 1.9%      | 0.9%  |  |  |  |  |  |
|             |            |           |       |  |  |  |  |  |
| OR          | Base-Case  | High      | Low   |  |  |  |  |  |
| Residential | 1.0%       | 1.3%      | 0.6%  |  |  |  |  |  |
| Commercial  | 0.7%       | 1.1%      | 0.4%  |  |  |  |  |  |
| Industrial  | 0.1%       | 4.7%      | -7.8% |  |  |  |  |  |
| Total       | 0.9%       | 1.3% 0.6% |       |  |  |  |  |  |

- 2. Use per customer coefficients –3 year average use per HDD per customer
- 3. Weather planning standard coldest day on record
  - WA/ID 82; Medford 61; Roseburg 55; Klamath 72; La Grande 74



#### WA-ID Region Firm Customers: 2018 IRP and 2016 IRP



88

WA-ID Base 2016

#### **OR Region Firm Customers: 2018 IRP and 2016 IRP**



89

#### System Firm Customer Range, 2018-2037



### **Base Coefficients**



July and August Average

AVISTA

**2018 Henry Hub Prices - Nominal** 



AVISTA

92

# **Price Elasticity: What does the research show?**



### Statistical significance of own-price becomes more uncertain as geographic area of measurement shrinks.\*

\*Bernstein, M.A. and J. Griffin (2005). Regional Differences in Price-Elasticity of Demand for Energy, Rand Corporation.



### **Price Elasticity Proposed Assumptions**

- The data is a mixed bag at best:
  - 8 of 9 super regions have statistically significant short and long run elasticity's.
  - At a state level only 10 of 50 show statistical significant elasticity's.
  - In some cases, the estimated elasticity's are positive.
- We incorporated a -.10 price elastic response for our expected elasticity assumption as found in our Medford and Roseburg service areas.



### **Carbon Tax Summary**

- ID None
- OR Cap and Investment Program SB1070
  - Avista's price assumption are based on CA cap and trade program (2018 annual price of \$14.53)
    - Begins in 2021 at \$17.86 and increases by 5% plus inflation each year until reaching \$51.58 in 2037
- WA Governor Inslee proposed Carbon tax (SB 6203)
  - Starts at \$10 per MTCO2e in July 2019 and in 2021 adds \$2 per year until capping at \$30 in 2030.



### **Carbon Price by Jurisdiction**



ANS

\*Idaho has no carbon price adder

### 2018 Henry Hub Expected Price Including Carbon Adders by State



### **Planning Standard Assumptions**

| Area          | Coldest in 20 Year<br>HDD | Coldest on Record<br>HDD |  |
|---------------|---------------------------|--------------------------|--|
| WA-ID         | 76                        | 82                       |  |
| Klamath Falls | 72                        | 72                       |  |
| La Grande     | 66                        | 74                       |  |
| Medford       | 52                        | 61                       |  |
| Roseburg      | 48                        | 55                       |  |

#### **Coldest on Record Dates**

WA/ID – December 30, 1968
Medford – December 9, 1972
Roseburg – December 22, 1990
Klamath Falls – January 6, 2017
La Grande – January 23, 1996





AVISTA





### **Scenario Analysis**



### **2018 Proposed Scenarios**

| Proposed Scenarios                    | Expected                                     | Cold Day 20yr          | Average           | Low Growth                                                       | 80 % below 1990 emissions              | High Growth                     |
|---------------------------------------|----------------------------------------------|------------------------|-------------------|------------------------------------------------------------------|----------------------------------------|---------------------------------|
| INPUT ASSUMPTIONS                     | Case                                         | Weather Std            | Case              | & High Prices                                                    | (Oregon and Washington<br>only)        | & Low Prices                    |
| Customer Growth Rate                  | Reference Case Cust Growth Rates             |                        | Low Growth Rate   | Reference Case growth with<br>emissions 80% below 1990<br>target | High Growth Rate                       |                                 |
| Use per Customer                      | 3 yr Flat + Price Elasticity                 |                        |                   |                                                                  |                                        | 3 yr Flat + Price<br>Elasticity |
| Demand Side Management                | Yes                                          |                        |                   |                                                                  |                                        |                                 |
| Weather Planning Standard             | Historical Coldest Day                       | Coldest in 20 years    | 20 year average   |                                                                  | Historical Coldest Day                 |                                 |
| Prices<br>Price curve                 |                                              | Expected High Lo       |                   | Low                                                              |                                        |                                 |
| Carbon Legislation<br>(\$/Metric Ton) | \$10-\$30 WA<br>\$17.86-\$51.58 OR<br>\$0 ID |                        |                   |                                                                  |                                        | None                            |
| RESULTS                               |                                              |                        |                   |                                                                  |                                        |                                 |
| First Gas Year Unserved               |                                              |                        |                   |                                                                  |                                        |                                 |
| WA/ID                                 | N/A                                          | N/A                    | N/A               | N/A                                                              | N/A                                    | 2032                            |
| Medford                               | N/A                                          | N/A                    | N/A               | N/A                                                              | N/A                                    | 2031                            |
| Roseburg                              | N/A                                          | N/A                    | N/A               | N/A                                                              | N/A                                    | 2031                            |
| Klamath                               | N/A                                          | N/A                    | N/A               | N/A                                                              | N/A                                    | N/A                             |
|                                       | N/A                                          | N/A                    | N/A               | N/A                                                              | N/A                                    | 2032                            |
| Scenario Summary                      | Most aggressive pools                        | Evolution adopting on  | Case most         | Stogpopt growth                                                  | Boduction of the use of natural        | A ggroopiyo grouth              |
|                                       | Nost aggressive peak                         | Evaluates adopting an  | Case most         | Stagnant growth                                                  | Reduction of the use of hatural        | Aggressive growin               |
|                                       |                                              | standard Holps         |                   | assumptions in order to                                          | in OP and W/A by 2050 The              |                                 |
|                                       | assumptions as a                             | nrovide some bounds    | (budget pga       | does occur. Not likely to                                        | case assumes the overall               |                                 |
|                                       | starting point and                           | around our sensitivity | rate case)        |                                                                  | reduction is an average goal           | shortage could occur            |
|                                       | lavering in coldest                          | to weather.            | planning criteria | 000011                                                           | before applying figures like           | Not likely to occur.            |
|                                       | weather on record.                           |                        |                   |                                                                  | elasticity and dsm.                    |                                 |
|                                       | The likelihood of                            |                        |                   |                                                                  | ······································ |                                 |
|                                       | occurrence is low.                           |                        |                   |                                                                  |                                        |                                 |



### **Existing Resources vs. Peak Day Demand**

Expected Case – Washington/Idaho (DRAFT)





### **Existing Resources vs. Peak Day Demand**

Expected Case – Medford/Roseburg (DRAFT)



*Aivista*'

### **Existing Resources vs. Peak Day Demand**

#### **Expected Case – Klamath Falls (DRAFT)**





## Expected Case – La Grande (DRAFT)



**A**VISTA














#### Solving for unserved demand

Tom Pardee

#### When unserved demand does show up.....

There are a few questions we need to ask:

- 1. Why is the demand unserved?
- What is the magnitude of the short? (i.e Are we 1 Dth or 1000 Dth's short?)
- 3. What are my options to meet it?



# When current resources don't meet demand what could we consider?

- Transport capacity release recalls
- "Firm" backhauls
- Contract for existing available transportation
- Expansions of current pipelines
- Peaking arrangements with other utilities (swaps/mutual assistance agreements) or marketers
- In-service territory storage
- Satellite/Micro LNG (storage inside service territory)
- Large scale LNG with corresponding pipeline build into our service territory
- Structured products/exchange agreements delivered to city gates
- Biogas (assume it's inside Avista's distribution)
- Hydrogen blend (assume it's inside Avista's distribution)
- Avista distribution system enhancements
- Demand side management



#### **New Resource Risk Considerations**

- Does is get supply to the gate?
- Is it reliable/firm?
- Does it have a long lead time?
- How much does it cost?
  - New build vs. depreciated cost
  - The rate pancake
- Is it a base load resource or peaking?
- How many dekatherms do I need?
- What is the "shape" of resource?
- Is it tried and true technology, new technology, or yet to be discovered?
- Who else will be competing for the resource?

## Potential New Supply Resources Considerations

- Availability
  - By Region which region(s) can the resource be utilized?
  - Lead time considerations when will it be available?
- Type of Resource
  - Peak vs. Base load
  - Firm or Non-Firm
  - "Lumpiness"
- Usefulness
  - Does it get the gas where we need it to be?
  - Last mile issues
- Cost

# \$ per kg vs \$ per Dth



National Renewable Energy Laboratory (NREL) estimates hydrogen fuel prices from around \$8 - \$10 per kg by 2020 to 2025 period.

USDOE target is below \$4 (excludes compression and delivery)

Source: https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles

# **Supply Resources - Modeled**

| Additional Resource                                                              | Size                                              | Cost/Rates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Availability | Notes                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unsubscribed GTN Capacity                                                        | Up to 50,000<br>Dth                               | GTN Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Now          | Currently available unsubscribed capacity from Kingsgate to Stanfield                                                                                                                                                                                               |
| Medford Lateral Exp                                                              | 50,000 Dth /<br>Day                               | \$35M capital + GTN<br>Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2018         | Additional compression to facilitate more gas to flow from mainline GTN to Medford.                                                                                                                                                                                 |
| *Hydrogen                                                                        | 20% of heat<br>content of a Dth<br>or 200,000 btu | \$10 kg<br>1 LHV kg = 113,937<br>btu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2030         | Roughly 20% of yearly gas demand to mix<br>with natural gas in current pipeline. Cost is<br>from the DOE target for cost of Hydrogen.<br>Costs from a consultant will be utilized in the<br>final document, but were unavailable for<br>modeling in time for TAC #4 |
| *Renewable Natural Gas –<br>Landfill, Dairy, Waste Water,<br>Food waste to (RNG) | 1,370 Dth / Day                                   | \$10, \$12, \$14, \$16/<br>Dth equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2030         | Dairy Farm estimate. Costs from a consultant for each specific type of RNG will be utilized in the final document, but were unavailable for modeling in time for TAC #4                                                                                             |
| Plymouth LNG                                                                     | 241,700 Dth<br>w/70,500 Dth<br>deliverability     | HIGH OF ADDA DECISION           Mark Decision (a) and a start of the decision (b) and a start of the decision | 2018         | Provides for peaking services and alleviates<br>the need for costly pipeline expansions.<br>-Pair with excess pipeline MDDO's to create<br>firm transport                                                                                                           |

AVISTA

# **Future Supply Resources – Not Modeled**

#### **Other Resources to Consider**

| Additional Resource         | Size           | Cost/Rates          | Availability | Notes                                          |
|-----------------------------|----------------|---------------------|--------------|------------------------------------------------|
| Co. Owned LNG               | 600,000 Dth w/ | \$75 Million plus   | 2022         | On site, in service territory liquefaction and |
|                             | 150,000 of     | \$2 Million annual  |              | vaporization facility                          |
|                             | deliverability | O&M                 |              |                                                |
| Various pipelines – Pacific | Varies         | Precedent           | 2020         | Requires additional mainline capacity on       |
| Connector, Trails West, NWP |                | Agreement Rates     |              | NWPL or GTN to get to service territory        |
| Expansion, GTN Expansion,   |                |                     |              |                                                |
| etc.                        |                |                     |              |                                                |
| Large Scale LNG             | Varies         | Commodity less Fuel | 2020         | Speculative, needs pipeline transport          |
| In Ground Storage           | Varies         | Varies              | Varies       | Requires additional mainline transport to      |
|                             |                |                     |              | get to service territory                       |





## **Stochastic Analysis**





### **Monte Carlo Simulations**

- A way to estimate the probability of potential future outcomes by allowing for a random set of variables
- Uses historical price and weather data
- Avista's Sendout model uses RMIX to help choose an optimal resource stack and costs under varying conditions



# Unserved Demand and Stochastic Analysis

- Avista has <u>no unserved demand</u> in its resource stack using a deterministic analysis in our Expected case (coldest on record every year in every location for 20 years)
- In order to show how we would solve for a shortage we will utilize our high growth & low prices case
  - This models new potential resources and allows Sendout to solve using an resource mix (RMIX) option to select a least cost portfolio and run it through a monte carlo simulation at 200 draws to measure risk and uncertainty

#### **Expected Case distribution**



#### High Growth and Low Prices Scenario

#### (Example of determining additional resources to unserved demand)



# Network Diagram for additional resources



#### **Spokane Weather Monte Carlo example**



#### Monte Carlo weather draw examples



Max of Draw 155 Max of Draw 156



#### **AECO Monte Carlo Draw Example**



## High Growth & Low Prices 200 Draws



AVISTA

## High Growth & Low Prices Variability by Month by Gas Year



Gas Year 2017-2018 2018-2019 2019-2020

2020-2021 2021-2022 2022-2023 2023-2024

2024-2025 2025-2026 2026-2027

ANISTA

4vg. (thousands of \$) ≓

#### **High Growth & Low Prices**



AVISTA

# Supply by source and Area December 20<sup>th</sup>



### Supply by source and Area February 15th



#### **Summary**

- Plymouth, Kingsgate and RNG are selected as a solve to unserved demand
- Another 200 draw simulation of the High Growth & Low prices case will be done once final costs are provided by consultant

\*This information will be provided in the draft IRP unless the TAC would like to review during an additional meeting



#### **Key Issues / Document Discussion**

#### IPUC

- Staff believes public participation could be further enhanced through "bill stuffers, public flyers, local media, individual invitations, and other methods."
- Result: Avista utilized it's Regional Business Managers in addition to digital communications and newsletters in all states in order to try and gain more public participation. Previous IRP's relied on website data and word of mouth.
  - eCommunity newsletter was sent out on January 15, 2018

135

#### **OPUC**

#### Staff Recommendation No. 1

- Staff recommends in Avista's 2018 IRP that Avista pursue an updated methodology, wherein the low/high gas price curves continue to be based on low (high) historic prices in a Monte Carlo setting, but are inflated to match the growth rate (yr/yr) of the expected price curve. The resulting curves would be based on historic prices and also produce symmetric .risk profiles throughout the time horizon.
- Result: Avista updated its method as recommended by the Oregon commission. This new method deviates from the expected price by the following method:

#### Pricing starts at the expected price for the first year

- Years 2-6 the high and low price deviate +/- 6% per year from the expected price
- Years 7-11 the high and low price deviate by +/- 3% per year from the expected price
- Years 12 20 the high and low price deviate by +/- 1.5% per year from the expected price
- By the 20 year mark the high and low deviate from the expected price by +/- 58.5%
- Staff Recommendation No. 2
  - Staff recommends that Avista forecast its number of customers using at least two different methods and to compare the accuracy of the different methods using actual data as a future task in its next IRP.
  - Result: Avista analyzed the data, but there was nothing material discovered the come up with a meaningful forecast alternative.



## **OPUC cont.**

#### • Staff Recommendation No. 3

- Avista's 2018 IRP will contain a dynamic DSM program structure in its analytics.
  - In, prior IRPs, it was a deterministic method based on Expected Case assumptions, in the 2018 IRP, each portion will have the ability to select conservation to meet unserved customer demand, Avista will explore methods to enable a dynamic analytical process for the evaluation of conservation potential within individual portfolios and will work with Energy Trust of Oregon in the development of this process and in producing any final results for its 2018 IRP for Oregon customers.
    - Result After attempting to get dynamic dsm into the Sendout model we determined an alternate method is necessary.
    - The total dsm measures has a maximum of 999 measures. If we were to model our areas as is combined with 400 measures by area we would come up with a total need of 4400 measures.
    - 2 If we were able to group them by dollars or efficiency levels it takes away the desired approach of measure by measure.
    - 3 We have every bit of data both ETO and AEG can provide and the model is not acting appropriately and cannot determine a stopping point for taking a single measure. This means it would take the maximum, if cheaper than gas, to fill the entire demand. Clearly, this won't work. There are other issues with the program we will discuss during TAC 4. Another factor in this decision is the vendor does not know the dsm module and cannot provide assistance. We cannot see the code behind the application so it's all a guess as to how to input the measures.
    - 4 The output data from ETO and AEG is very different and we need to understand it better before modeling. Avista has used AEG in some form for the past 4 IRPs so we are comfortable with it. ETO, in Oregon only, has a different model and method and is still rather foreign to us.
- Staff Recommendation No. 4
  - Staff recommends that Avista provide Staff and stakeholders with updates regarding its discussions and analysis regarding possible regional pipeline projects that may move forward.
    - Regional pipeline projects were discussed during TAC #3 meeting on March 29<sup>th</sup>, 2018. Avista does not have a shortage of resources for the 2018 Expected case. The regional pipelines take many years to place into service affording Avista the time to consider resources should they come into our territory. New pipeline builds are expensive with unofficial quotes averaging \$1 / Dth.
- Staff Recommendation No. 5
  - Staff recommends that in its 2018 IRP process Avista work with Staff and stakeholders to establish and complete stochastic analysis that considers a range of alternative portfolios for comparison and consideration of both cost and risk.
    - Result This was shown in detail and with risk and cost in TAC 4 on May 10, 2018. Potential resources were



### **OPUC cont.**

- Staff Recommendation No. 6
  - Environmental Considerations
    - 1. Carbon Policy including federal and state regulations, specifically those surrounding the Washington Clean Air Rule and federal Clean Power Plan;
      - Result: Carbon Policy including the Clean Power Plan and Clean Air Rule were both reviewed and included in TAC 2 Meeting materials on 2/22/2018. An indicator of where Avista's carbon reduction requirements under the CAR was also included. Since the CAR was invalidated on 12/15/2017 in Thurston County Superior Court this analysis is intended to meet the action item in addition to showing the potential impacts of similar policies.
    - 2. Weather analysis specific to Avista's service territories;
      - Result: A weather analysis was included and reviewed in TAC 2 meeting materials on 2/22/2018
    - 3. Stochastic Modeling and supply resources; and
    - 4. Updated DSM methodology including the integration of ETO.

#### WUTC

- Include a section that discusses impacts of the Clean Air Rule (CAR).
  - In its 2018 IRP expected case, Avista should model specific CAR impacts as well as consider the costs and risk of additional environmental regulations, including a possible carbon tax.
  - Result:
    - Carbon Policy including the Clean Power Plan and Clean Air Rule were both reviewed and included in TAC 2 Meeting materials on 2/22/2018. An indicator of where Avista's carbon reduction requirements under the CAR was also included. Since the CAR was invalidated on 12/15/2017 in Thurston County Superior Court this analysis is intended to meet the action item in addition to showing the potential impacts of similar policies.
    - For the 2018 IRP Avista is utilizing SB6203 from the WA Senate energy committee on Feb. 1 as a proxy of a possible carbon tax in Washington State.



#### WUTC

- Provide more detail on the company's natural gas hedging strategy, including information on upper and lower pricing points, transactions with counterparties, and how diversification of the portfolio is achieved.
  - Avista's natural gas hedging strategy was discussed during the TAC 2 Meeting on 2/22/2018. The upper and lower pricing points in Avista's programmatic hedges is controlled by taking into consideration the volatility over the past year for the specific hedging period. This volatility is weighted toward the more recent volatility. The window length and quantity of windows is also a part of the equation. Avista transacts on ICE with counterparties meeting our credit rating criteria. The diversification of the portfolio is achieved through the following methods:
  - **Components:** The plan utilizes a mix of index, fixed price, and storage transactions.
  - Transaction Dates: Hedge windows are developed to distribute the transactions throughout the plan.
  - **Supply Basins:** Plan to primarily utilize AECO, execute at lowest price basis at the time.
  - Delivery Periods: Hedges are completed in annual and/or seasonal timeframes. Long-term hedges may be executed.



## WUTC cont.

- Ensure that the entity performing the CPA evaluates and includes the following information:
  - All conservation measures excluded from the CPA, including those excluded prior to technical potential determination
  - The rationale for excluding any measure
  - A description of Unit Energy Savings (UES) for each measure included in the CPA, specifying how it was derived and the source of the data
  - The rationale for any difference in economic and achievable potential savings, including how the Company is working towards an achievable target of 85 percent of economic potential savings.
  - A description of all efforts to create a fully-balanced cost effectiveness metric within the planning horizon based on the TRC.



## WUTC cont.

- Discuss with the TAC:
  - The results of Northwest Energy Efficiency Alliance (NEEA) coordination, including non-energy benefits to include in the CPA.
  - The appropriateness of listing and mapping all prospective distribution system enhancement projects planned on the 20 year horizon, and comparing actual projects completed to prospective projects listed in previous IRP's.
- Provide a rationale for any difference in economic and achievable potential savings

#### 2017 – 2018 Avista's Action Plan

- The price of natural gas has dropped significantly since the 2014 IRP. This is primarily due to the amount of economically extractable natural gas in shale formations, more efficient drilling techniques, and warmer than normal weather. Wells have been drilled, but left uncompleted due to the poor market economics. This is depressing natural gas prices and forcing many oil and natural gas companies into bankruptcy. Due to historically low prices Avista will research market opportunities including procuring a derivative based contract, 10-year forward strip, and natural gas reserves.
  - Result: After exploring the opportunity of some type of reserves ownership, it was
    determined the price as compared to risk of ownership was inappropriate to go forward with
    at this time. As an ongoing aspect of managing the business, Avista will continue to look for
    opportunities to help stabilize rates and/or reduce risk to our customers.
- Monitor actual demand for accelerated growth to address resource deficiencies arising from exposure to "flat demand" risk. This will include providing Commission Staff with IRP demand forecast-to-actual variance analysis on customer growth and use-per-customer at least biannually.
  - Result: actual demand was closely tracked and shared with Commissions in semi-annual or quarterly meetings.



#### Avista's 2020 IRP Action Plan

- Avista's 2020 IRP will contain a dynamic DSM program structure in its analytics. In prior IRP's, it was a deterministic method based on based on Expected Case assumptions. In the 2020 IRP, each portfolio will have the ability to select conservation to meet unserved customer demand. Avista will explore methods to enable a dynamic analytical process for the evaluation of conservation potential within individual portfolios.
- Work with Staff to get clarification on types of natural gas distribution system analyses for possible inclusion in the 2020 IRP
- Work with Staff to clarify types of distribution system costs for possible inclusion in our avoided cost calculation
## **Highlights of the 2018 IRP**

- No resource needs in the Expected Case
- Higher long term customer growth rates
- Increased DSM potential and resultant avoided costs
- Carbon costs broken out by jurisdiction
  - Higher for WA and OR as compared to the 2016 IRP
- Washington and Idaho separated in Sendout
- Lower use per customer



## 2018 IRP Timeline

- August 31, 2017 Work Plan filed with WUTC
- January through May 2018 Technical Advisory Committee meetings. Meeting topics will include:
  - TAC 1: Thursday, January 25, 2018: TAC meeting expectations, review of 2016 IRP acknowledgement letters, customer forecast, and demand-side management (DSM) update.
  - TAC 2: Thursday, February 22, 2018: Weather analysis, environmental policies, market dynamics, price forecasts, cost of carbon.
  - TAC 3: Thursday, March 29, 2018 : Distribution, supply-side resources overview, overview of the major interstate pipelines, RNG overview and future potential resources.
  - TAC 4: Thursday, May 10, 2018: DSM results, stochastic modeling and supply-side options, final portfolio results, and 2020 Action Items.
  - June 21, 2018– TAC final review meeting to review final stochastics (if necessary)
- July 2, 2018 Draft of IRP document to TAC
- July 13, 2018 Comments on draft due back to Avista
- August 31, 2018 File finalized IRP document