

# 2027 Electric and Natural Gas Integrated Resource Plans Technical Advisory Committee Meeting No. 3 Agenda Thursday, November 20, 2025 Virtual Meeting – 2:00 pm to 4:30 pm Pacific Time

| <u>Topic</u>                                              | <u>State</u> | <u>Audience</u> |
|-----------------------------------------------------------|--------------|-----------------|
| <ul> <li>Introduction and Questions from TAC 2</li> </ul> |              |                 |
| Future Climate Analysis                                   | All          | E&G, Dist.      |
| Washington Non-Pipe Analysis                              | WA           | Gas             |
| CCA/CPP Discussion                                        | WA/OR        | E&G             |
| Natural Gas-Fired Heat Pump Technology                    | All          | Gas             |
| (Moved to TAC 4 in Jan. 2026) Carbon Sequestration        | All          | E&G             |

#### Microsoft Teams Need help?

#### **Join the meeting now**

Meeting ID: 290 866 144 576 5

Passcode: qb2HN9F8

#### Dial in by phone

+1 509-931-1514,,282989646# United States, Spokane

Find a local number

Phone conference ID: 282 989 646#

For organizers: Meeting options | Reset dial-in PIN



# Introductions 2027 Electric & Gas Integrated Resource Planning

TAC 3 – November 20, 2025

## **TAC 4 Agenda**

- Introduction and Questions from TAC 2, John Lyons
- Future Climate Analysis (All), Mike Hermanson
- Washington Non-Pipe Analysis (WA), Cadmus and Avista
- CCA/CPP Discussion, Janna Dubnicka and Michael Brutocao
- Natural Gas-Fired Heat Pump Technology (All), Reuben Arts
- (Moved to TAC 4, Jan. 2026) Carbon Sequestration (All), Robert Hughes



## **Meeting Guidelines**

- IRP team is in office Monday Wednesday; also available by email, phone and Teams for questions and comments
- Stakeholder feedback responses shared with TAC at meetings, in Teams and in Appendix
- Working IRP data posted to Teams
- All TAC meetings will be virtual on Teams
- Draft TAC presentations emailed three days before each meeting
- Final TAC presentations, meeting notes and recordings posted on IRP page



## **Virtual TAC Meeting Reminders**

- Please mute mics unless speaking or asking a question
- Raise hand or use the chat box for questions or comments
- Respect the pause
- Please try not to speak over the presenter or a speaker
- Please state your name before commenting for the note taker
- This is a public advisory meeting presentations and comments will be documented and recorded

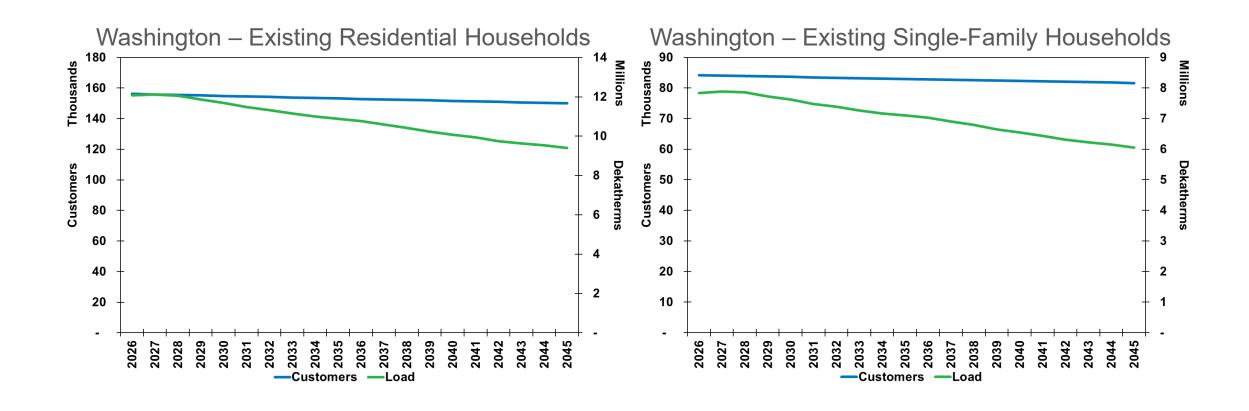


#### **Answers to Questions from TAC**

- Difference in Named Community population from the Department of Health Map Version 1 to Version 2 – See next slide
- Adding natural gas and electric coordination presentation to TAC 4, January 21, 2026
- Natural gas disconnect question about work orders for meter removals
  - Pulled work order data for past 7 years
  - Only 135 meter removals, which is probably higher than actual
  - No specific coding for removing meter for electrification
  - Anecdotally, gas servicemen in all 3 states say they only do this once or twice per year
- Natural gas pipeline embrittlement by hydrogen engineers are following this issue, but we
  are not expecting hydrogen being injected into our system anytime soon
- Existing gas customer forecast in Washington See customer and load growth slide



## Named Communities\* Populations – Updated


| Avista Electric Residential Households (as of Q4                       | 245,564**                                            |                                                                      |
|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|
|                                                                        | 2021 CEIP                                            | 2025 CEIP                                                            |
| Washington State Department of Health (DOH)                            | DOH V1 2019                                          | DOH V2                                                               |
| Highly Impacted Communities Vulnerable Populations Both HIC & VP Total | 15,157<br>43,010<br>47,700<br><b>105,867 or 43</b> % | + 19,610<br>+ 6,967<br>+ 1,932<br><b>134,720 or</b><br><b>55</b> %** |
| Federal Climate and Economic Justice 40 Map                            |                                                      | J40 V2 2024                                                          |
| All sensitives & scores added to Vulnerable Populations                |                                                      | + 8,637                                                              |
| Avista's Projected N                                                   |                                                      | 143,013 or                                                           |
|                                                                        | Population                                           | 58%**                                                                |

<sup>\*</sup>The Named Community designation is not a direct correlation to known low-income customers



<sup>\*\*</sup>The Named Community percentage based on point-in-time Washington electrical residential household count

#### 2025 Natural Gas IRP - Customer and Load Growth





| TAC 4 – Wednesday, January 21, 2026 (13:00 – 16:00 PST) |       |          |  |
|---------------------------------------------------------|-------|----------|--|
| Topic                                                   | State | Audience |  |
| Market Overview ad Price Forecast                       | All   | Gas      |  |
| Wholesale Electric Price Forecast                       | WA/ID | Electric |  |
| Sub-Hourly Modeling                                     | WA/ID | Electric |  |
| DER Forecast Impact on Distribution System              | WA    | Dist.    |  |
| Cost of Carbon (SCC, Allowances, CCI)                   | WA    | E & G    |  |
| Natural Gas and Electric Coordination                   | All   | E & G    |  |

| TAC 5 – Friday, February 20, 2026 (13:00 – 16:00 PST) |       |          |
|-------------------------------------------------------|-------|----------|
| Topic                                                 | State | Audience |
| New Electric Resource Options                         | WA/ID | Electric |
| Wholesale Price Forecast – Deterministic              | WA/ID | Electric |
| New Gas Resource Options                              | All   | Gas      |
| Liquified Natural Gas Analysis                        | All   | Gas      |
| Electrification Assumptions and Scenarios             | All   | Gas      |



| TAC 6 – Monday, March 16, 2026 (13:00 – 16:00 PDT) |       |          |
|----------------------------------------------------|-------|----------|
| Topic                                              | State | Audience |
| Wholesale Price Forecast – Stochastic              | WA/ID | Electric |
| Wholesale Market Price Scenarios                   | WA/ID | Electric |
| All-Source RFP Update                              | WA/ID | Electric |
| Economic Forecast and Five-Year Load Forecast      | All   | E&G      |

| TAC 7 – Wednesday, April 15, 2026 (13:00 – 16:00 PDT) |       |          |
|-------------------------------------------------------|-------|----------|
| Topic                                                 | State | Audience |
| Energy Efficiency Savings Since 2025 IRP              | OR    | Gas      |
| Hybrid Heat Pump Program Update                       | OR    | Gas      |
| Gas Avoided Cost                                      | All   | E & G    |
| Long-Run Load Forecast                                | All   | E&G      |
| End-Use Load Forecast                                 | All   | E & G    |



| TAC 8 - Monday, April 20, 2026 (13:00 - 16:00 PDT) |       |          |
|----------------------------------------------------|-------|----------|
| Topic                                              | State | Audience |
| Conservation Potential Assessment                  | All   | E & G    |
| Demand Response Potential Assessment               | All   | E & G    |

| TAC 9 - Friday, May 15, 2026 (13:00 - 16:00 PDT)    |       |              |
|-----------------------------------------------------|-------|--------------|
| Topic                                               | State | Audience     |
| IRP Generation Option Transmission Planning Studies | WA/ID | Transmission |
| Distribution System Planning within the IRP         | WA/ID | Dist.        |
| Transmission Project Example Evaluation             | WA/ID | Transmission |
| QCC Forecast                                        | WA/ID | Electric     |
| Gas Distribution Update                             | All   | Gas          |
| Natural Gas Availability & Resiliency               | All   | Gas          |



| TAC 10 – Wednesday, May 27, 2025 (9:00 – 12:00 PDT) |       |          |
|-----------------------------------------------------|-------|----------|
| Topic                                               | State | Audience |
| CEIP Update                                         | WA    | Electric |
| CETA Interim/Energy Compliance Report               | WA    | Electric |
| Load Forecast Update                                | All   | E&G      |

| TAC 11 Technical Modeling Workshop – Monday, June 15, 2026 (13:00 – 16:00 PDT) |       |          |  |
|--------------------------------------------------------------------------------|-------|----------|--|
| Topic                                                                          | State | Audience |  |
| PRiSM Model Tour                                                               | All   | E & G    |  |
| Aurora Resource Adequacy Model Tour                                            | WA/ID | Electric |  |
| New Resource Cost Model                                                        | All   | E & G    |  |



| TAC 12 Wednesday, July 15, 2026 (TDB)     |       |          |
|-------------------------------------------|-------|----------|
| Topic                                     | State | Audience |
| Load & Resource Balance and Methodology   | WA/ID | Electric |
| Loss of Load Probability                  | WA/ID | Electric |
| WRAP Update                               | WA/ID | Electric |
| Draft Preferred Resource Strategy Results | All   | E & G    |
| ETO Energy Savings                        | OR    | Gas      |

| TAC 13 – Monday, August 17, 2026 (13:00 – 16:00 PDT)    |       |          |
|---------------------------------------------------------|-------|----------|
| Topic                                                   | State | Audience |
| Preferred Resource Strategy Results                     | All   | E & G    |
| Oregon Non-Pipe Alternatives                            | OR    | Gas      |
| Aldyl-A Analysis and Targeted Voluntary Electrification | OR    | Gas      |
| IRP/Progress Report Outlines                            | All   | E & G    |
| Next Steps                                              | All   | E & G    |



| TAC 14 – Thursday, September 17, 2026 (13:00 – 16:00 PDT) |       |          |  |  |  |  |
|-----------------------------------------------------------|-------|----------|--|--|--|--|
| Topic                                                     | State | Audience |  |  |  |  |
| Portfolio Scenario Analysis                               | All   | E&G      |  |  |  |  |
| Avoided Cost                                              | All   | Electric |  |  |  |  |
| Resource Adequacy Results                                 | WA/ID | Electric |  |  |  |  |
| CBI Forecast and Results/Energy Burden                    | WA/OR | E&G      |  |  |  |  |
| Final Report Overview and Comment Plan                    | All   | E & G    |  |  |  |  |
| Action Items                                              | All   | E&G      |  |  |  |  |

| Electric Transmission & Distribution 5-Year Plan – October 7, 2026 (10:00 – 12:00 PDT) |       |          |  |  |  |  |
|----------------------------------------------------------------------------------------|-------|----------|--|--|--|--|
| Topic                                                                                  | State | Audience |  |  |  |  |
| Electric Trans Transmission & Distribution 5-Year Plan                                 | WA/OR | Electric |  |  |  |  |



#### **Other Key Dates**

- Oct 15, 2026 Draft Electric IRP Released to TAC
- Nov TBD 2026 Virtual Public Meeting
  - Noon-1pm
  - 6-7pm
- Jan 1, 2027 Final Electric IRP Filed
- Feb 15, 2027 Draft Gas IRP Released to TAC
- Apr 1, 2027 Final Gas IRP Filed

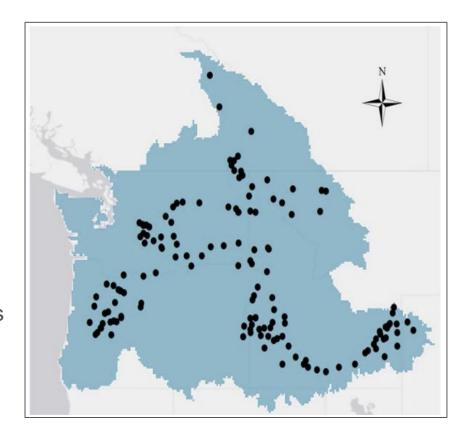




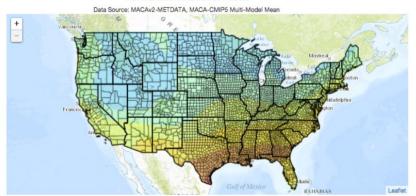
## IRP Climate Change Analysis

Forecasted streamflow and temperature changes for 2027 IRP Analysis

Mike Hermanson, Senior Power Supply Analyst Michael Brutocao, Natural Gas Planning Manager 2027 IRP TAC 3 - November 20, 2025


#### **Overview**

- Data sources and methodology
- Hydrogeneration analysis
- Temperatures analysis for peak electric
- Temperatures analysis for natural gas peak and energy



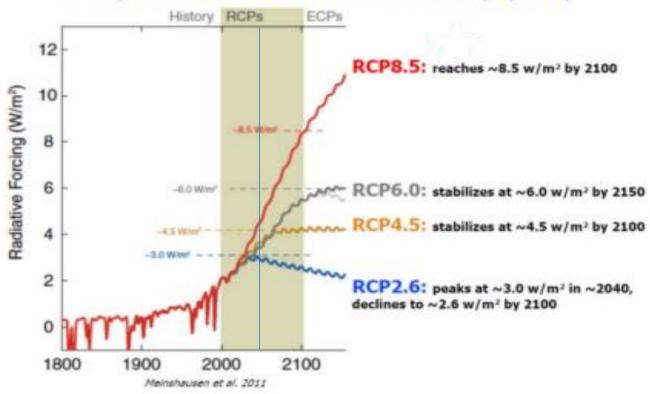

#### **Data Sources**

- Climate and Hydrology Datasets for RMJOC Long-Term Planning Studies: Second Edition
  - River Management Joint Operating Committee (RMJOC)
    - BPA, US Army Corps of Engineers, US Bureau of Reclamation
  - Research Team
    - University of Washington, Oregon State University
- Part I Unregulated stream flows (2018)
- Part II Reservoir Regulation and Operational Constraints
   (2020)
- Both temperature and streamflow were available from this study which covered the Columbia River Basin
- Oregon Locations
  - Multivariate Adaptive Constructed Analogs (MACA) Datasets.
     Compliation led by University of California Merced
  - Data from 20 different GCMs from the Coupled Model Intercomparison Project (2014)



Projected Winter (Dec-Jan-Feb) Downwelling Solar Radiation RCP4.5 2040-2069 vs. 1971-2000






#### **Global Climate Models**

- Global Climate Models (GCMs)
  - Coarse resolution ranging from 75 to 300 km grid size
  - Provides projections of temperature and precipitation, and other meteorological variables (wind)
  - Multiple Representative Concentration Pathways (RCP 4.5 & RCP 8.5)
  - 10 GCM models used in study
    - CanESM2 (Canada)
    - CCSM4 (US)
    - CNRM-CM5 (France)
    - CSIRO-Mk3-6-0 (Australia)
    - GFDL-ESM2M (US)
    - HadGEM2-CC (UK)
    - HadGEM2-ES (UK)
    - inmcm4 (Russia)
    - IPSL-CM5-MR (France)
    - MIROC5 (Japan)

#### **Emissions Scenarios**

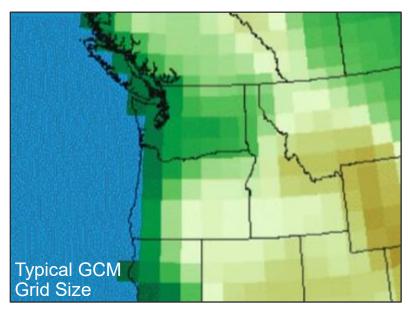
#### 4 Representative Concentration Pathways (RCPs)

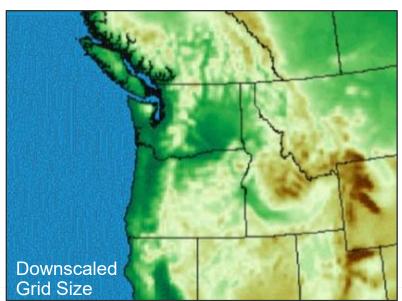


w/m<sup>2</sup> = watts for meter squared



#### Representative Concentration Pathways

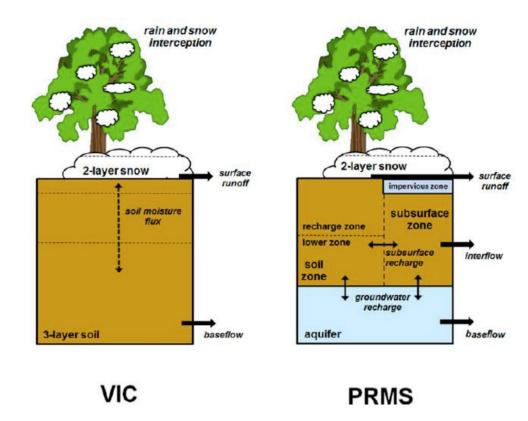

- Description by Intergovernmental Panel on Climate Change (IPCC)
  - RCP2.6 stringent mitigation scenario
  - RCP4.5 & RCP6.0 intermediate scenarios
  - RCP8.5 very high GHG emissions
- RMJOCII Study evaluated RCP4.5 and RCP8.5
- RCP4.5 and RCP6.0 have a similar mean and 'likely range' by the end the IRP planning horizon


|                                                      | Cooperio | 2046-2065 |              | 2081-2100 |              |
|------------------------------------------------------|----------|-----------|--------------|-----------|--------------|
|                                                      | Scenario | Mean      | Likely range | Mean      | Likely range |
| Global Mean<br>Surface<br>Temperature<br>Change (C°) | RCP2.6   | 1.0       | 0.4 to 1.6   | 1.0       | 0.3 to 1.7   |
|                                                      | RCP4.5   | 1.4       | 0.9 to 2.0   | 1.8       | 1.1 to 2.6   |
|                                                      | RCP6.0   | 1.3       | 0.8 to 1.8   | 2.2       | 1.4 to 3.1   |
|                                                      | RCP8.5   | 2.0       | 1.4 to 2.6   | 3.7       | 2.6 to 4.8   |



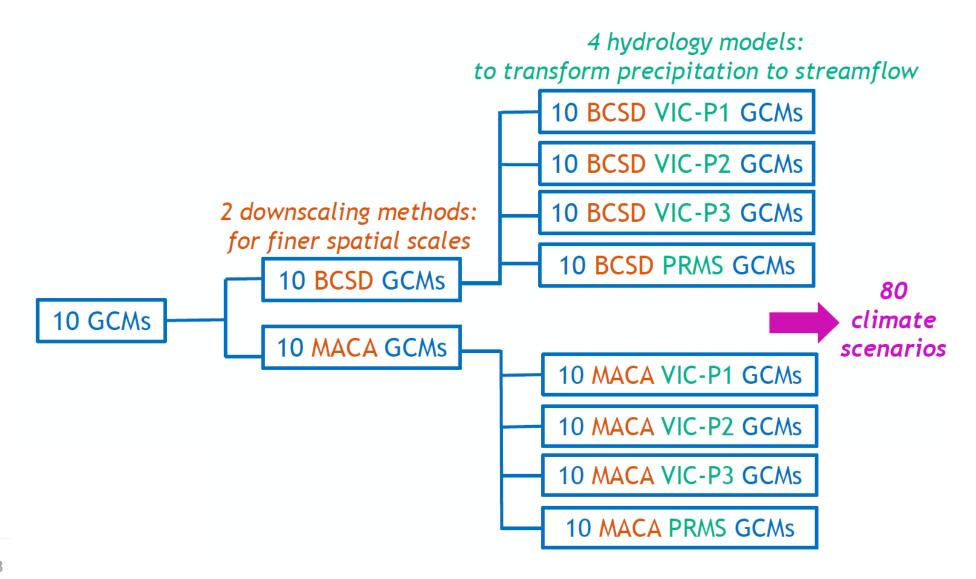
#### **Downscaling Techniques**

- Downscale GCM data to finer resolution necessary to model hydrology
  - Statistical methods to represent variation within large grid size
  - Two methods used (BCSD, MACA)
    - Bias Corrected Spatial Disaggregation
    - Multivariate Adaptive Constructed Analog
  - Oregon locations used MACA dataset that covers the entire US from the University of California Merced









## **Modeling Climate Change Impacts on Hydrogeneration**

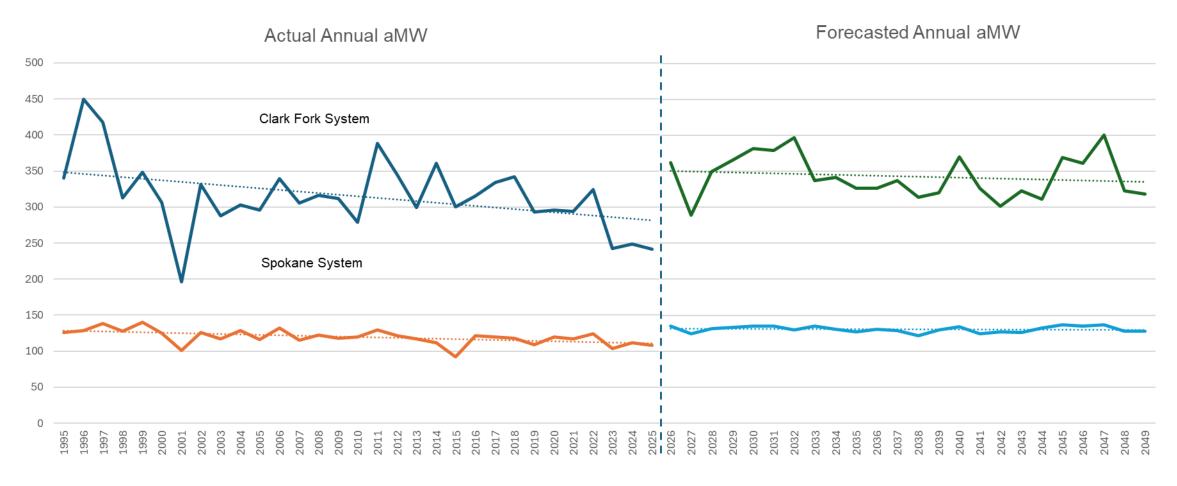
- Hydrologic models
  - Downscaled temperature and precipitation is input to hydrologic models.
  - Hydrologic models use soil, geology, slope, vegetation, aspect, snow cover, etc. to model how precipitation translates into runoff and streamflow.
  - 2 different hydrology models used.
    - 1 version of PRMS model
    - 3 versions of VIC model
- Hydro regulation models
  - Unregulated streamflow is input to reservoir models of Columbia River system to generate regulated flows.





## Modeling Climate Change Impacts on Hydrogeneration






## **2027 IRP Hydrogeneration**

- BPA selected 19 of the 80 scenarios that encompass a sufficient range of uncertainty.
- Two regulated river flow data sets utilized:
  - 1995-2025 uses actual generation data from each project
  - 2025-2049 used climate change river flows.
- Median of 19 BPA selected scenarios was used for the flow data set.
- A regression analysis was conducted on the historical relationship of flow and generation at each project to develop the forecasted generation.



#### Results



• Forecasted annual average generation is greater than actual generation in both Spokane and Clark Fork Systems

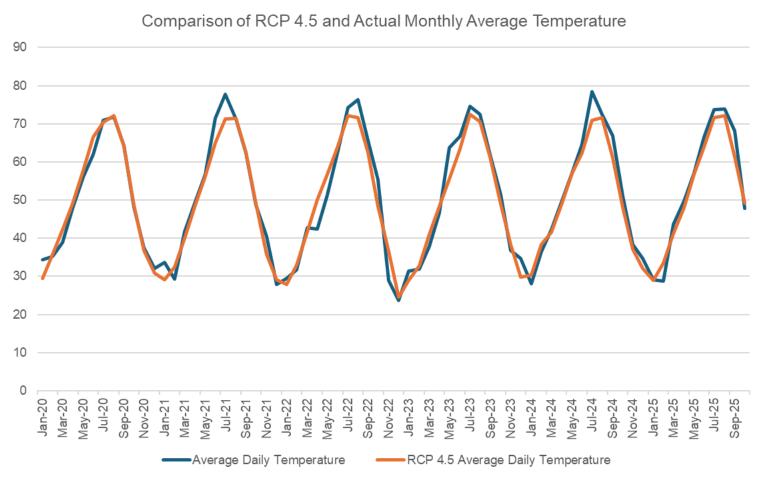


#### Results



- Clark Fork system greater in the winter/early spring months
- Spokane system forecast is greater in all months, following a very similar pattern as actuals

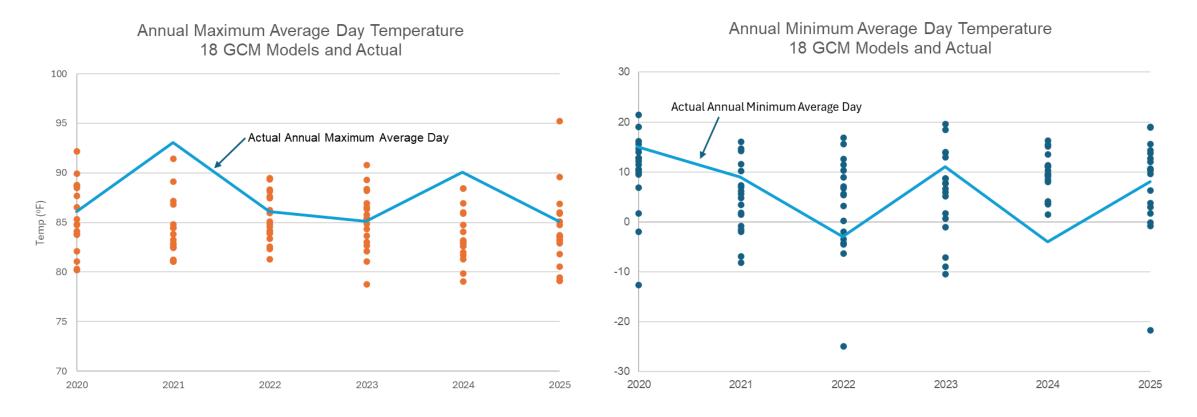



#### **Climate Change Temperatures for Load Forecast**

#### Data:

- Spokane RMJOCII study temperatures
- Klamath Falls MACA Compilation by University of California Merced
- La Grande MACA Compilation by University of California Merced
- Medford MACA Compilation by University of California Merced
- Roseburg MACA Compilation by University of California Merced




#### **Comparison of Actual Temp to Modeled Temps**



• Summer actual daily temperatures higher than models and winter actual daily temperatures equal to or lower than models



#### **Comparison of Actual Temp to Modeled Temps**

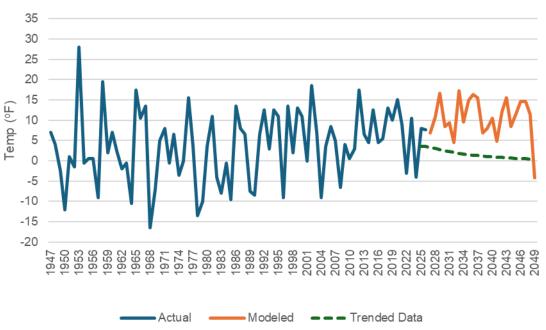


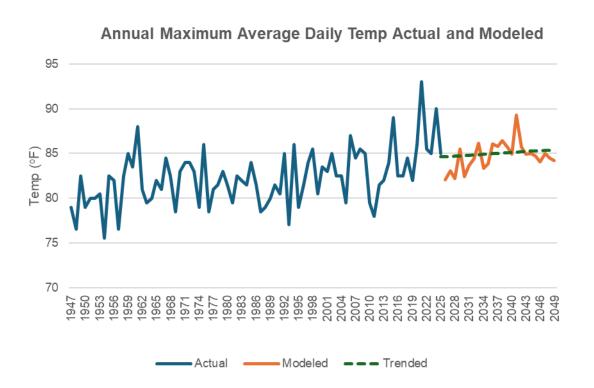
• Each chart depicts the actual annual min and max day along with the annual min and max day for each of the 18 climate scenarios used in the RMJOCII study.



## Peak Electric Load Forecasts – Temperature Data

 This IRP we are not using discrete modeled values in our peak load forecast, rather we are using rate of change over the forecast period 2025-2049.

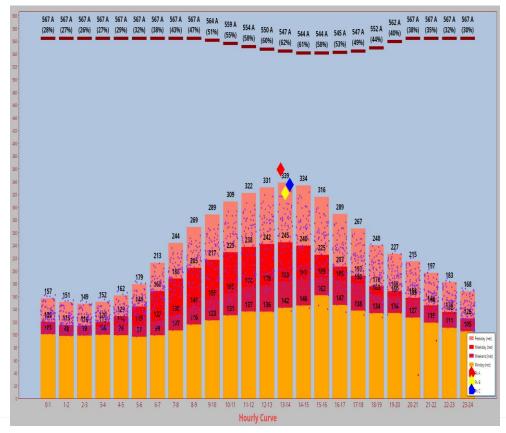

#### The process is:


- The discrete modeled temperatures are input into a regression equation that calculates load.
- For the period of 2025-2049 the rate of change of load is determined rather than the load values associated with the discrete temperature values. This establishes a monthly rate of change due to temperatures.
- The starting point for the summer months is the 20-year average of actuals and for the winter months is 79-year average of actuals



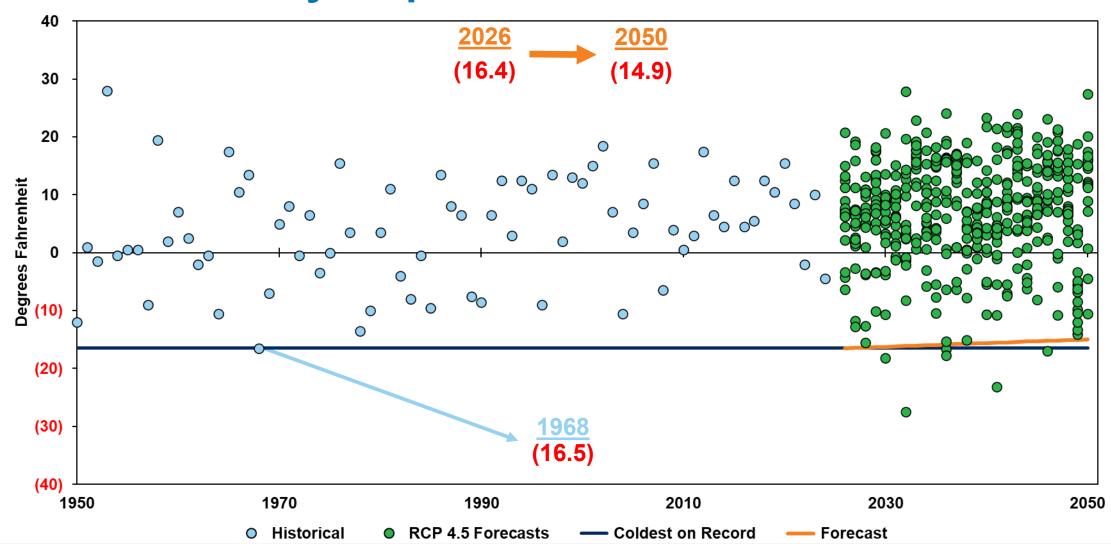
#### **Peak Electric Load Forecasts – Temperature Data**

# Annual Minimum Average Daily Temp Actual and Modeled



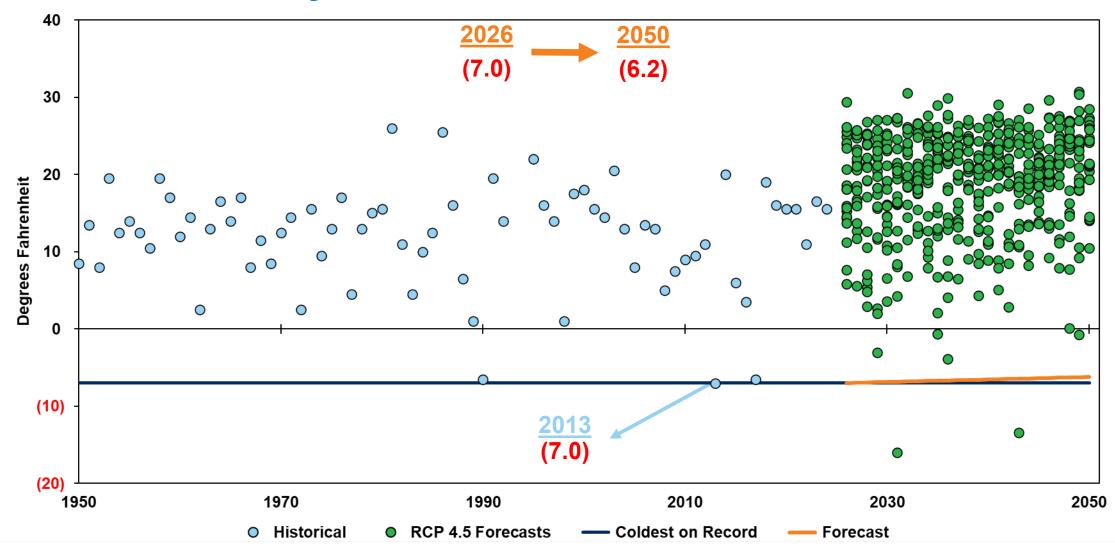






## **Temperature in Distribution System Planning**

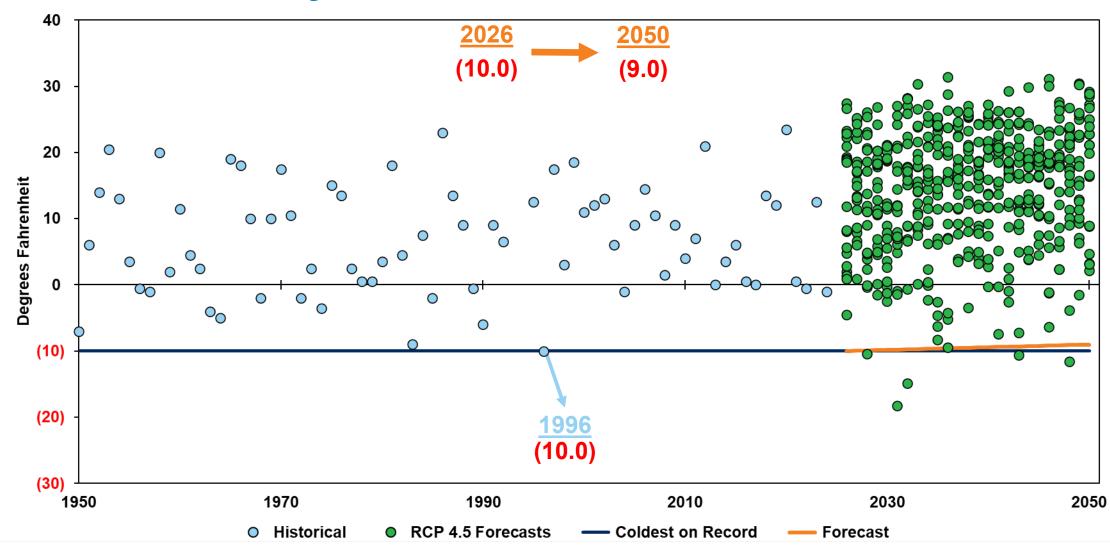
- Evaluate the linear relationship between load and temperature to form a 1 in 10 load for each of 570 transformers and feeders.
- Develop 24-hour curves to identify peaks
- Run power flow scenarios to identify if there are specific feeders with inadequate capacity.





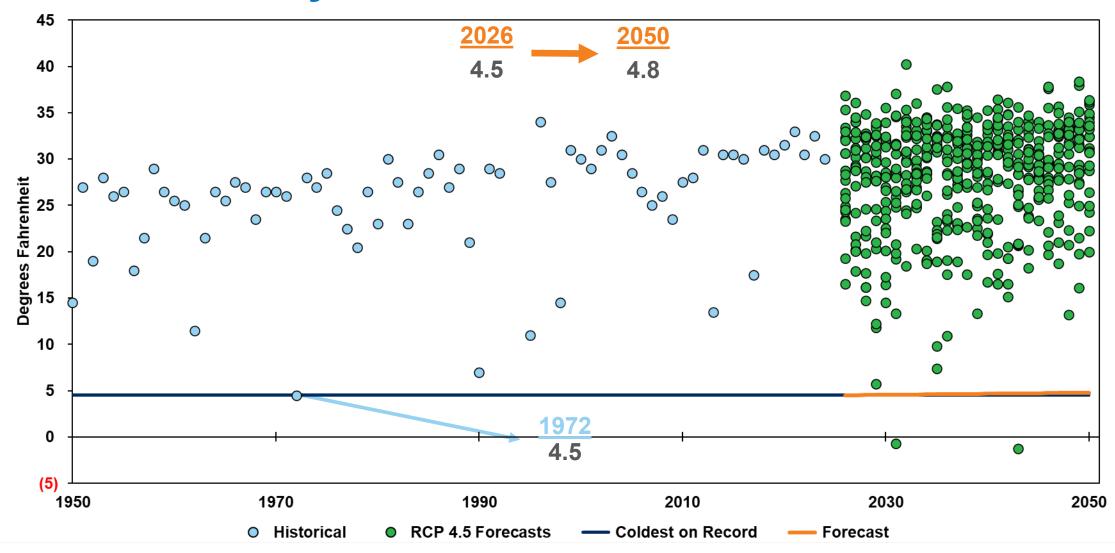

## Winter Peak Day – Spokane





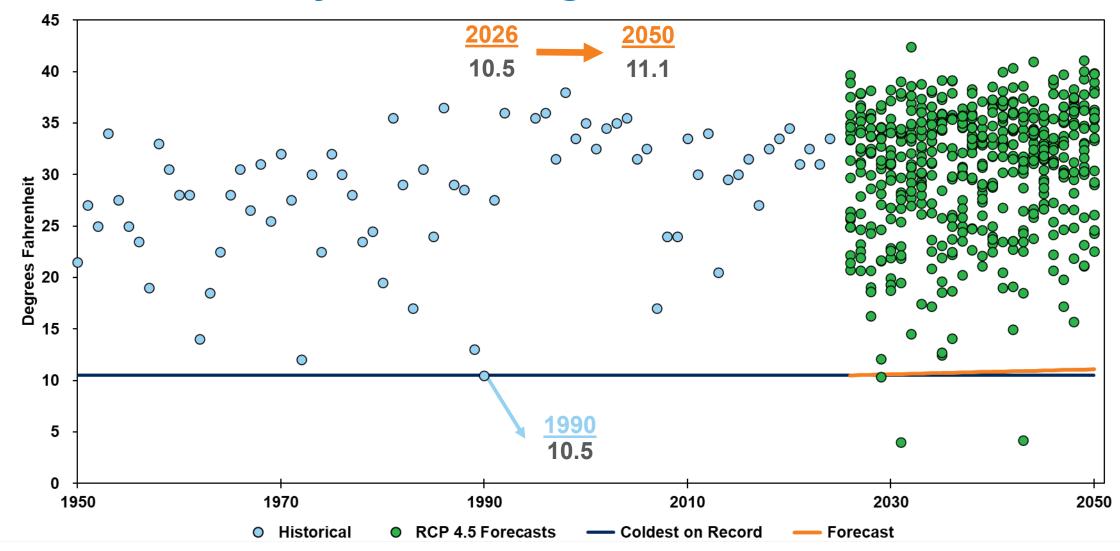

### Winter Peak Day – Klamath Falls






## Winter Peak Day – La Grande





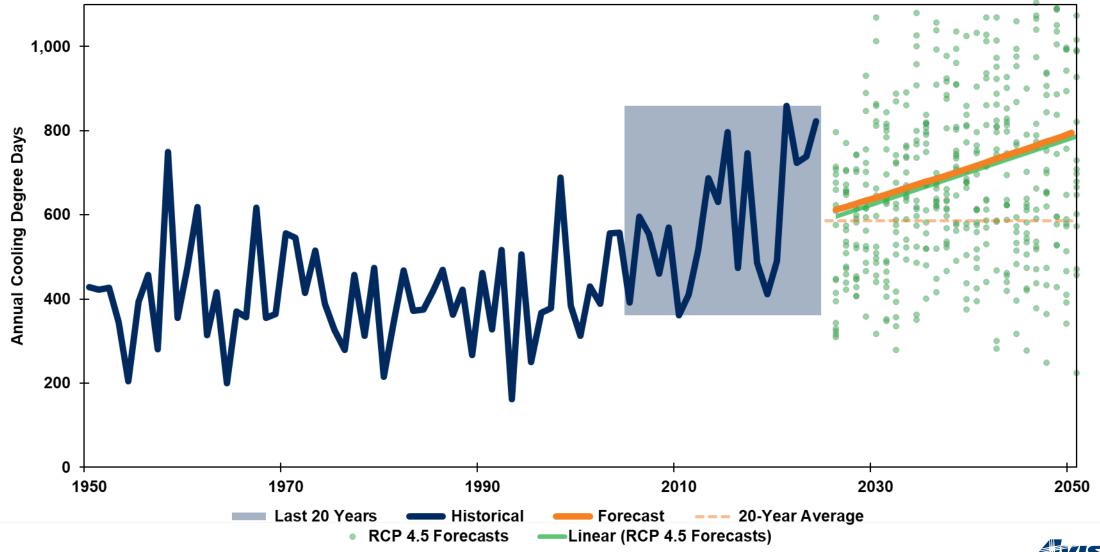

## Winter Peak Day – Medford





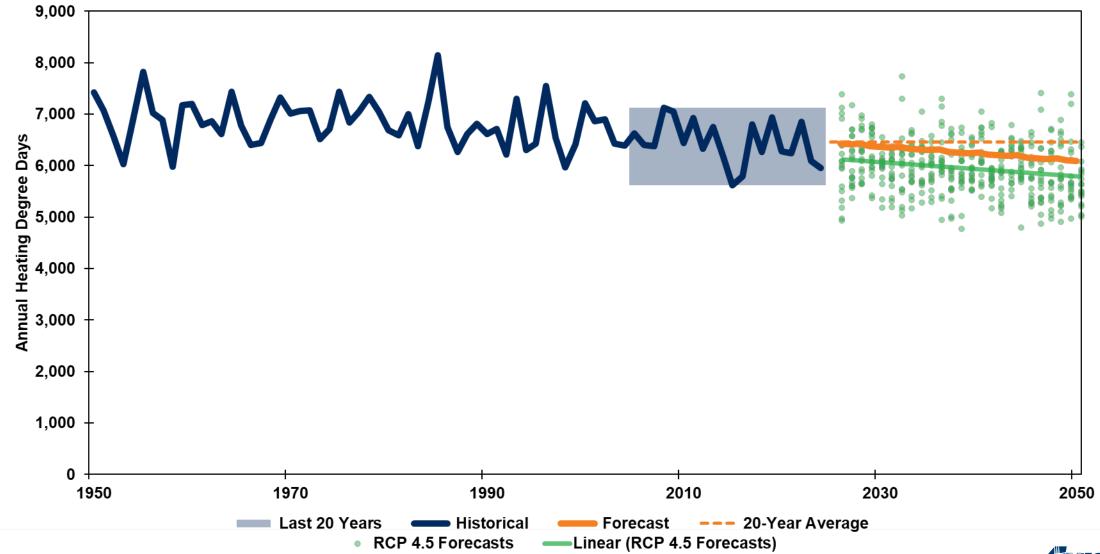
# Winter Peak Day – Roseburg



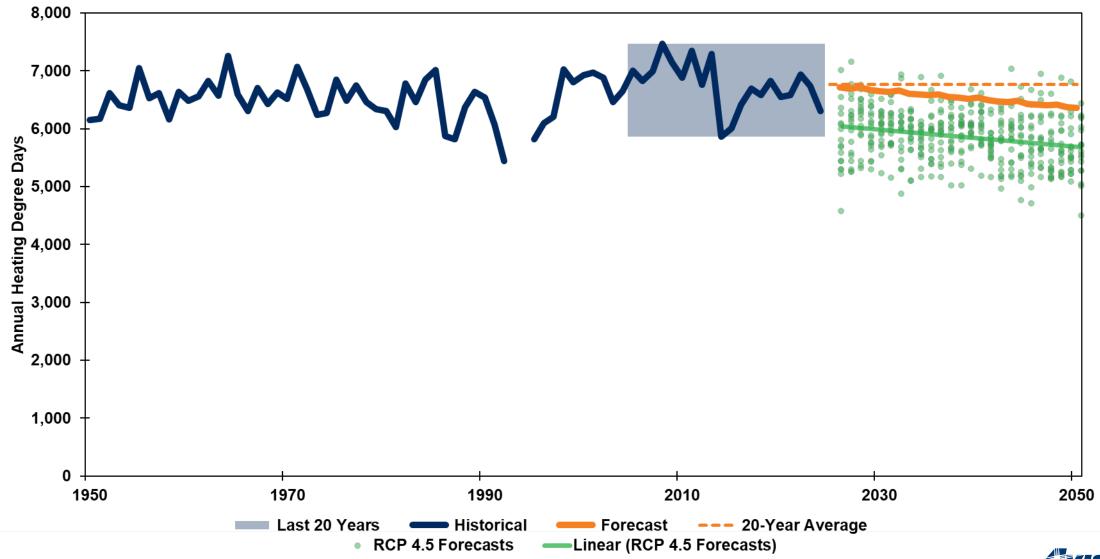



# **Temperatures – Annual Growth Rate**

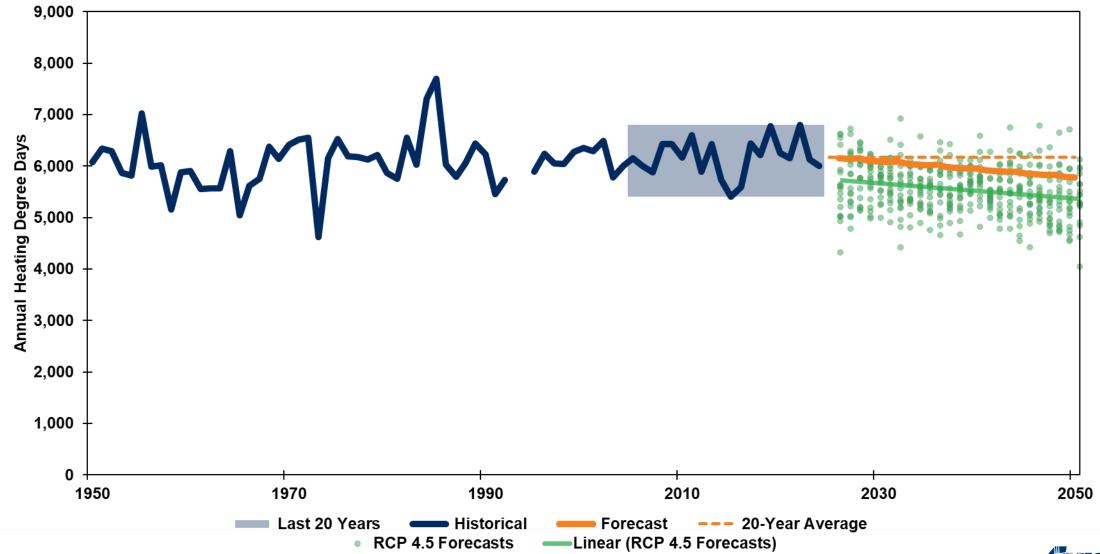
| Month     | Spokane | Klamath Falls | La Grande | Medford | Roseburg |
|-----------|---------|---------------|-----------|---------|----------|
| January   | 0.11%   | 0.10%         | 0.13%     | 0.08%   | 0.07%    |
| February  | 0.22%   | 0.14%         | 0.17%     | 0.10%   | 0.10%    |
| March     | 0.17%   | 0.09%         | 0.11%     | 0.07%   | 0.07%    |
| April     | 0.03%   | 0.10%         | 0.07%     | 0.08%   | 0.08%    |
| May       | 0.10%   | 0.09%         | 0.08%     | 0.08%   | 0.09%    |
| June      | 0.11%   | 0.08%         | 0.08%     | 0.07%   | 0.07%    |
| July      | 0.12%   | 0.10%         | 0.11%     | 0.09%   | 0.10%    |
| August    | 0.11%   | 0.09%         | 0.11%     | 0.08%   | 0.08%    |
| September | 0.15%   | 0.10%         | 0.10%     | 0.08%   | 0.08%    |
| October   | 0.12%   | 0.12%         | 0.13%     | 0.10%   | 0.10%    |
| November  | 0.03%   | 0.13%         | 0.13%     | 0.11%   | 0.11%    |
| December  | 0.18%   | 0.21%         | 0.26%     | 0.16%   | 0.14%    |



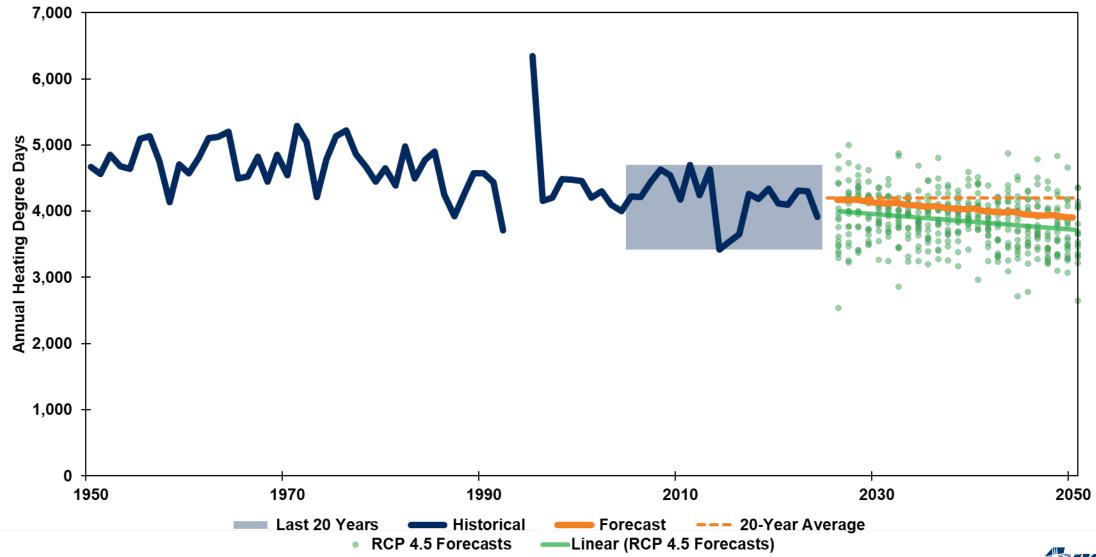

### **Annual Cooling Degree Days – Spokane**





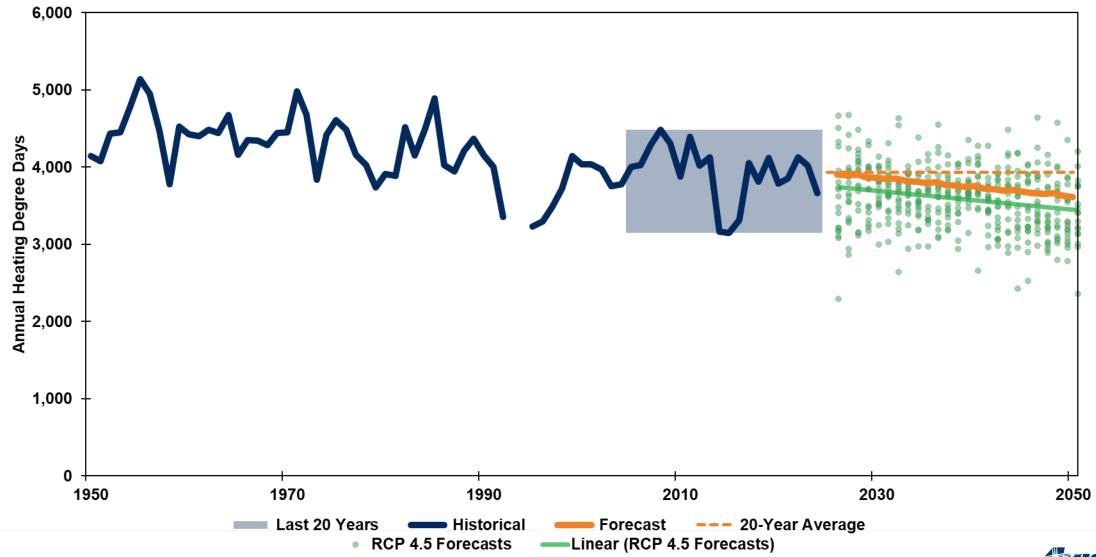


### **Annual Heating Degree Days – Spokane**




### **Annual Heating Degree Days – Klamath Falls**



### **Annual Heating Degree Days – La Grande**




### **Annual Heating Degree Days – Medford**





## **Annual Heating Degree Days – Roseburg**





### IRP Climate Change Approach Summary

- Using RCP 4.5
  - Description by Intergovernmental Panel on Climate Change (IPCC)
    - RCP2.6 stringent mitigation scenario
    - RCP4.5 & RCP6.0 intermediate scenarios
    - RCP8.5 very high GHG emissions
  - RCP4.5 & RCP6.0 are similar in IRP planning horizon
  - Regional recognition that resource adequacy issues are more challenging during cold periods.
- Hydrogeneration Using actuals from 1995 to 2025 and modeled generation for 2026 to 2049
- Peak Load Forecast Utilizing rate of change of forecasted temperatures impact on load rather than discrete modeled values for each year.

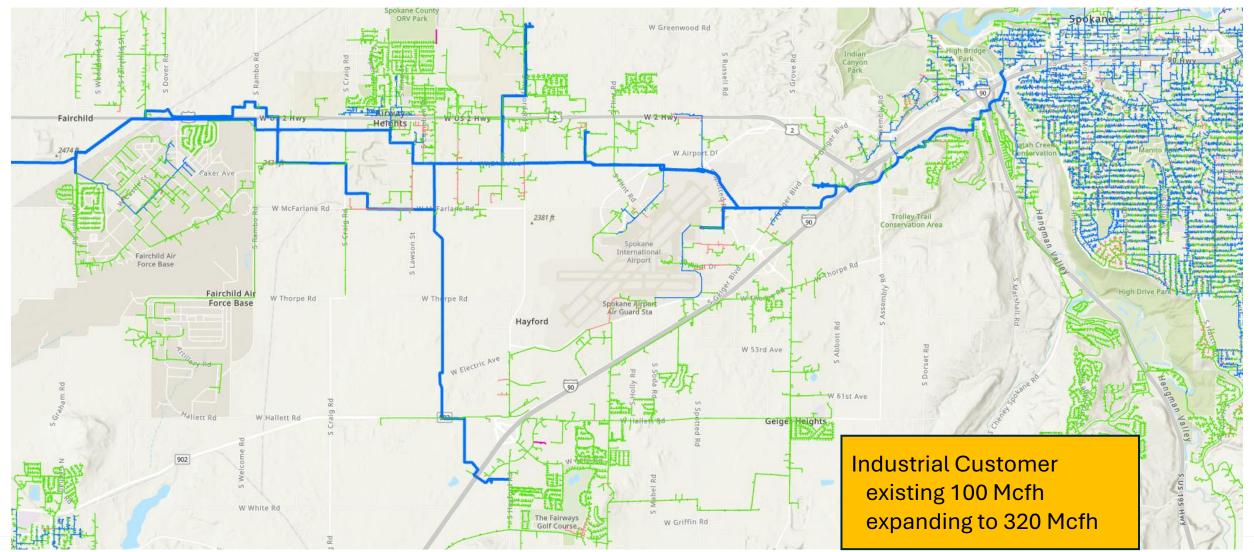




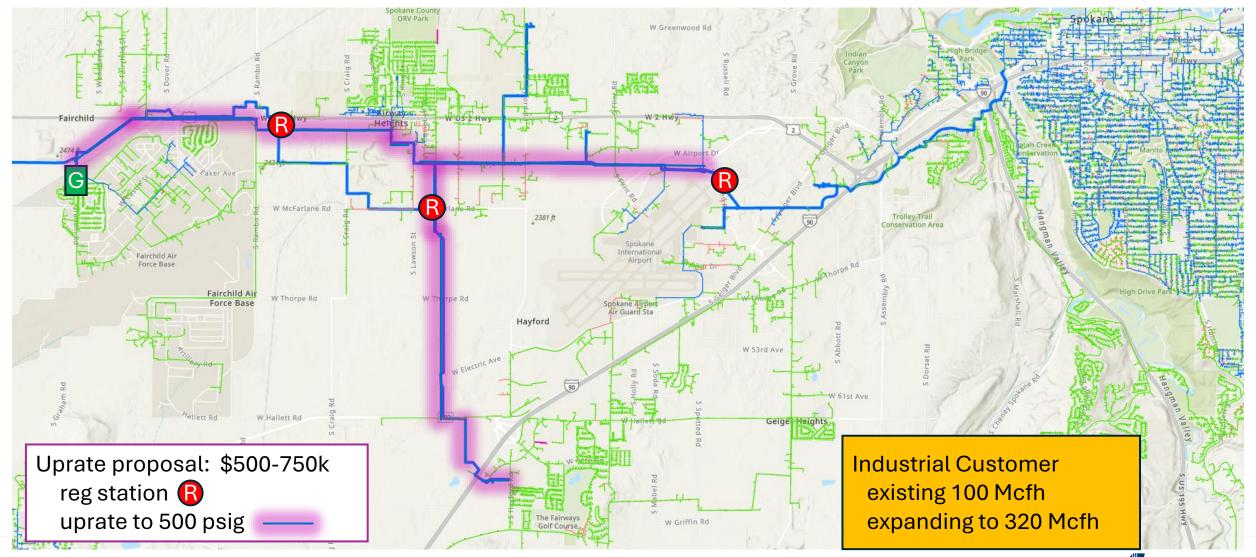
# Washington Non-Pipe Analysis

TAC 3 – November 20, 2025

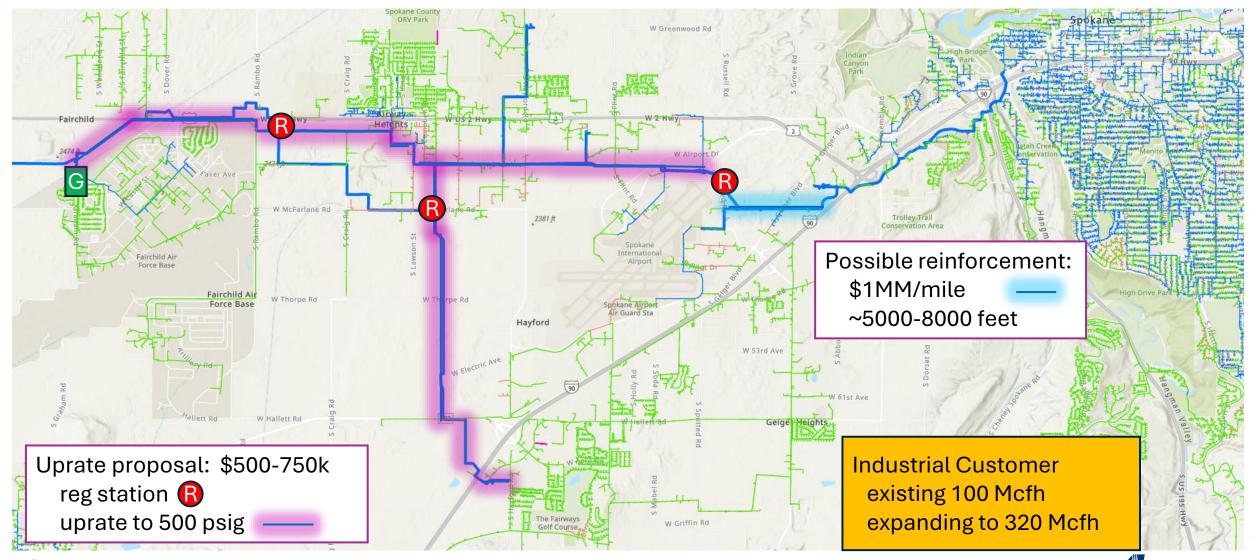
Terrence Browne, Principal Gas Planning Engineer Michael Brutocao, Natural Gas Planning Manager


#### <sup>1</sup>UE-24006 & UE-24007 - Corrected Final Order 08 - Avista

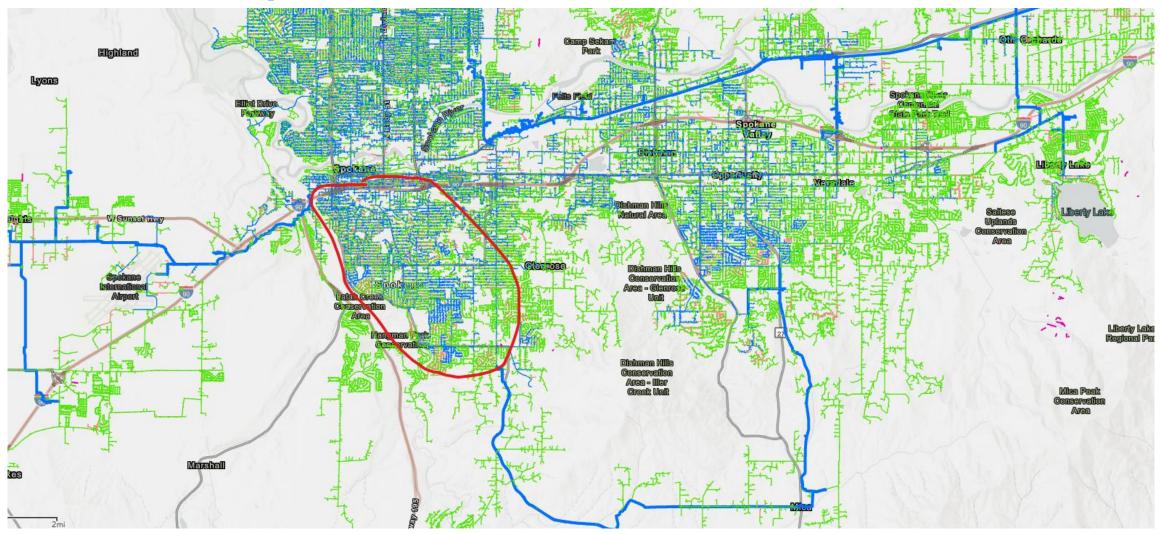
"As such, the Commission orders Avista to conduct two NPA analyses on natural gas distribution projects related to customer growth for any potential projects that exceed \$500,000 using the criteria otherwise adopted above. The Commission orders the Company to submit these analyses in a compliance filing for this docket no later than December 31, 2025."


Paragraph 312 (December 23, 2024)




# Airway Heights, Spokane WA

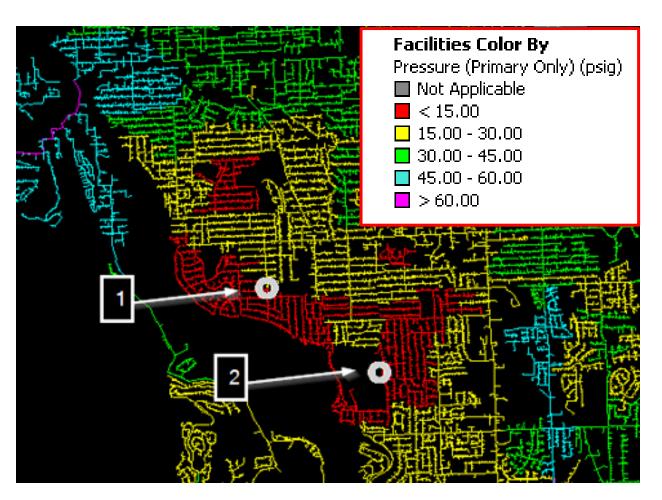



## **Airway Heights, Spokane WA**



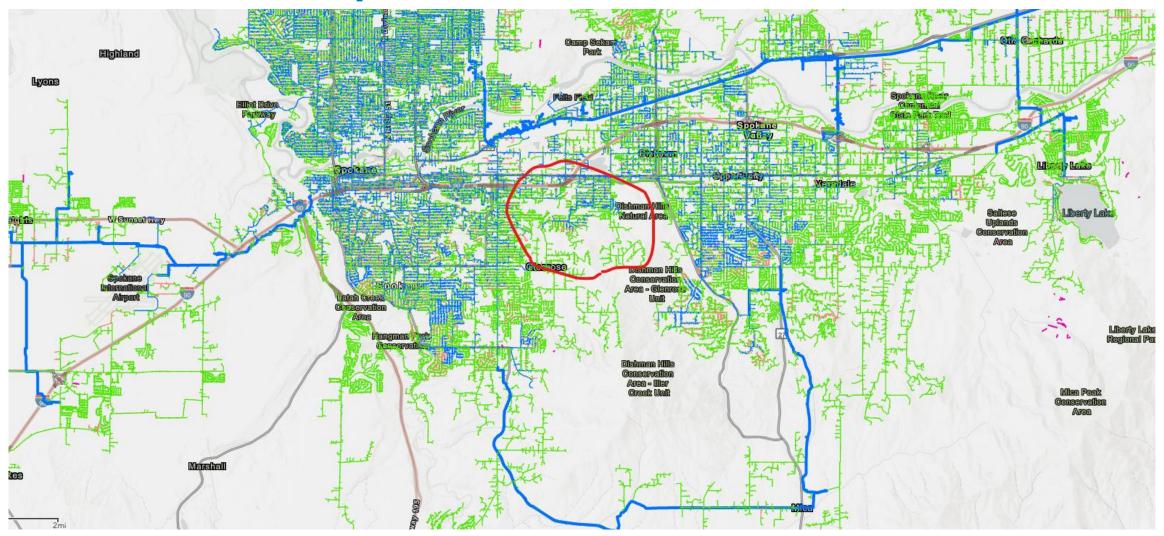
## Airway Heights, Spokane WA




# South Hill, Spokane WA



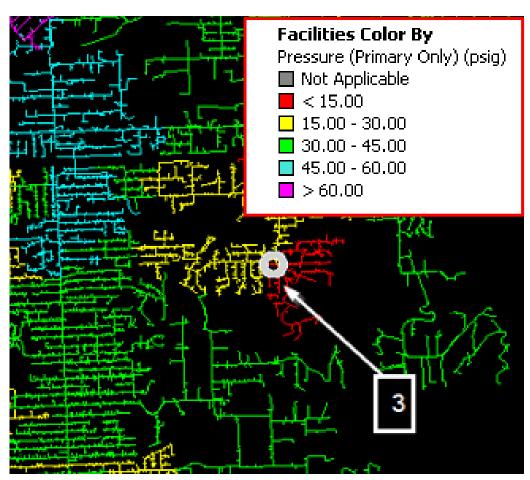



### South Hill, Spokane WA

- Rationale: approximately 1700 customers at risk
- Desired reduction: approximately 260 therms/hour
- Cost of pipeline reinforcements: \$250,000
- Recommended CNG injection sites shown (#1 and #2)






# Dishman Mica, Spokane WA





### Dishman Mica, Spokane WA

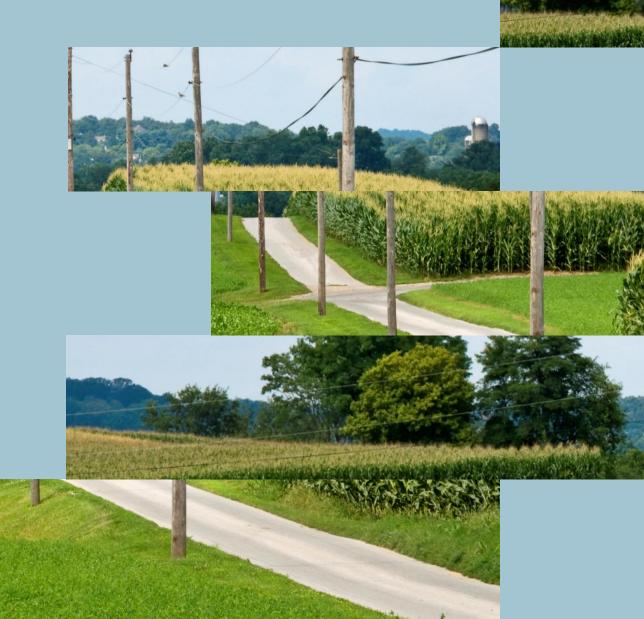
- Rationale: approximately 240 customers at risk
- Desired reduction: approximately 40 therms/hour
- Cost of pipeline reinforcements: \$30,000 to \$50,000
- Recommended CNG injection site shown (#3)





# **CNG** Deployment

Strategic locations...






...helping low pressure areas

# Avista Non-Pipeline Alternative Analysis

November 20, 2025







# Agenda

Non-Pipeline Alternative Overview

**Scenario Definitions** 

**Cost Assumptions** 

Results

# Non-Pipe Alternative (NPA) Overview

Two at-risk areas with the coldest temperatures to maintain minimum delivery pressure of 15 psig.

South Hill area
Spokane,
Washington

Customers: ~21,900 total, ~1,700 at risk

Constraint: 258.9 therms/hour

1,036 therms per 4-hr event

Expansion cost: \$250,000

**Dishman Mica area**Spokane,
Washington

Customers: ~3,300 total, ~ 240 at risk

Constraint: 38.5 therms/hour

154 therms per 4-hr event

Expansion cost: \$30K-\$50K

# Design NPA Study Objectives

Develop gas demand reduction scenarios

Technologies: conservation, gas to electric, demand response

Peak Period: Winter 6 a.m. to 10 a.m.

Reduction within 4 years



# NPA Approach

Building Area Selection NPA Impact NPA Cost **Stock Analysis** Characterization Analysis Data Customer sales and counts Segment and end-use load Retrofit savings calculations Incentive and program costs disaggregation Peak distribution constraints End-use hourly load Lost revenue End-use space heating and shape analysis Reinforcement costs Utility avoided costs water heating loads using Peak hour identification • Projected constraint timeline Assume early replacement CPA and customer sales data for existing equipment Assign adoption and ramp rates Bundles Scenario Analysis



#### **NPA Scenarios**

Baseline

Measure adoption ramp rates from the gas energy efficiency study (Council ramp rates) and moderate electrification adoption assumptions and demand response program participation assumptions.

Incentives = full installation cost

**Accelerated** 

Increase the baseline scenario with faster Council ramp rates. Increase measure and program administrative costs to reflect higher costs to accelerate adoption

**Least Cost** 

Optimize conservation, electrification, and demand response to keep gas demand under Avista's projected area capacity constraint. Adjust measure and program incentive costs according to the capacity reduction and minimize cost



# **Scenarios Inputs**

|                                  | Baseline                             | Accelerated                                    | Least Cost                        |  |
|----------------------------------|--------------------------------------|------------------------------------------------|-----------------------------------|--|
| EE Ramp Rate:                    | LO/Retro1Slow<br>(slowest ramp rate) | LO/Retro3Slow (slightly accelerated ramp rate) | Removed                           |  |
| EE Max Applicability:            | 85%                                  | 85%                                            | Removed                           |  |
| DR Only Ramp Rate:               | 10% per year                         | 20% per year                                   | Optimized ramp rate for each area |  |
| DR Only Max Applicability:       | 18% (Res)<br>9.5% (Com)              | 18% (Res)<br>9.5% (Com)                        | 18% (Res)<br>9.5% (Com)           |  |
| Program Costs/ Admin Multiplier: | 1.0                                  | 1.2                                            | 1.4                               |  |
| Incentive Cost Multiplier:       | 1.0                                  | 1.05                                           | 1.1                               |  |



# Cost Assumptions

**Measure Costs** 

Incentives set at full measure installation costs. Demand response measure costs reflect equipment and incentive estimates based on the Council Draft 9th Plan workbooks

Program/
Administration Costs

Program setup assumes 0.5 FTE per territory, per sector. O&M and marketing costs are assigned per participant (informed by Avista's 2023 Annual Conservation Report)

**Avoided Utility Cost** 

Net impacts of additional avoided utility costs for increased electric loads and decreased gas delivery cost. Avoided electric utility cost = \$42/MWh (\$2026). Decreased gas delivery cost at wholesale gas rate

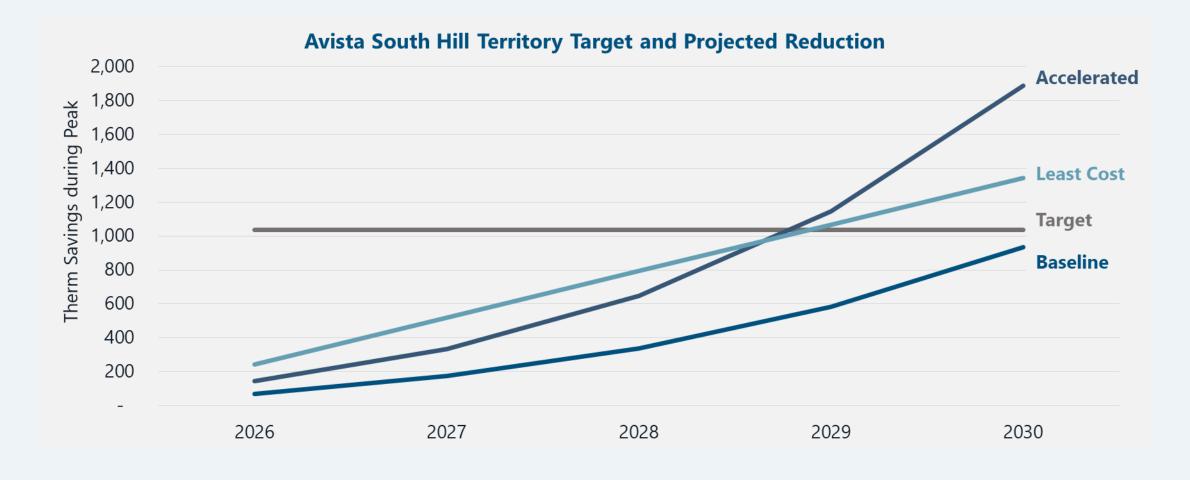
**Lost Revenue** 

Net impacts of additional electric sales and reduced gas sales.

Calculated annually using current Avista retail electric and gas rates

**Expansion Costs** 

Costs of alternate solution: reinforcement of existing gas distribution system (\$250,000 South Hill, \$30,000-\$50,000 Dishman Mica)






# Results

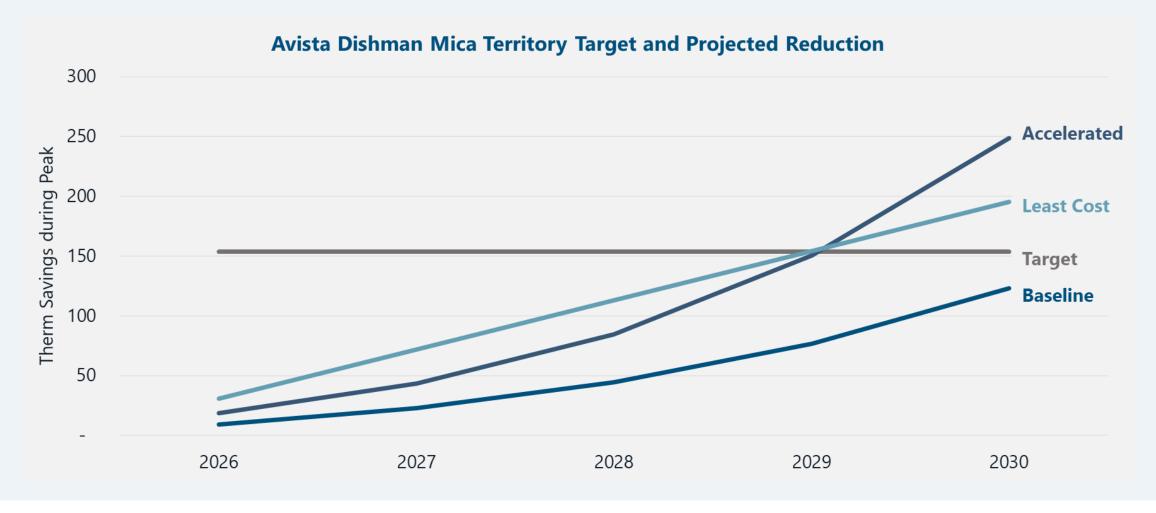


### South Hill





# South Hill


| Target Year                  | 2029                     |
|------------------------------|--------------------------|
| Target Period                | Winter 6 a.m. to 10 a.m. |
| Target Therms (4-hour total) | 1,036                    |
| <b>Expansion Cost</b>        | \$250,000                |

| Target Year Impacts   | Baseline    | Accelerated  | Least Cost  |  |  |
|-----------------------|-------------|--------------|-------------|--|--|
| NPA Achievement       | 582         | 1,148        | 1,068       |  |  |
| NPA Acquisition Cost  | \$5,980,000 | \$12,300,000 | \$1,030,000 |  |  |
| Net Commodity Impacts | \$73,400    | \$143,000    | n/a         |  |  |
| Net Revenue Impacts*  | \$(221,000) | \$(430,000)  | n/a         |  |  |

<sup>\*</sup>Includes energy revenue only (does not include capacity)



#### Dishman Mica





# Dishman Mica

| Target Year                  | 2029                     |
|------------------------------|--------------------------|
| <b>Target Period</b>         | Winter 6 a.m. to 10 a.m. |
| Target Therms (4-hour total) | 154                      |
| <b>Expansion Cost</b>        | \$30,000-\$50,000        |

| Target Year Impacts   | Baseline    | Accelerated | Least Cost |  |  |
|-----------------------|-------------|-------------|------------|--|--|
| NPA Achievement       | 76          | 151         | 154        |  |  |
| NPA Acquisition Cost  | \$1,060,000 | \$2,070,000 | \$351,000  |  |  |
| Net Commodity Impacts | \$9,300     | \$18,200    | n/a        |  |  |
| Net Revenue Impacts*  | \$(28,000)  | \$(55,000)  | n/a        |  |  |

<sup>\*</sup>Includes energy revenue only (does not include capacity)



# Thank You

Aquila Velonis

Principal Aquila. Velonis@cadmusgroup.com

Jeremy Eckstein

Senior Associate
Jeremy.Eckstein@cadmusgroup.com

Jordan Decker

Associate
Jordan.Decker@cadmusgroup.com





Appendix: Additional Slides



### NPA Measures: Residential

| # | Measure Bundle                                                                                 | Measures Included                                                                                                                                                                                                                                                                          |
|---|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Space and water heating electrification (no efficiency or load control)                        | <ul><li>Space heating electrification (CCHP)</li><li>Water heating electrification (HPWH)</li></ul>                                                                                                                                                                                        |
| 2 | Load control only<br>(no efficiency measures)                                                  | <ul><li>Space heating direct load control (DR)</li><li>Water heating direct load control (DR)</li></ul>                                                                                                                                                                                    |
| 3 | Load control plus weatherization (full weatherization)                                         | <ul> <li>Space heating direct load control (DR)</li> <li>Water heating direct load control (DR)</li> <li>Attic insulation (EE)</li> <li>Floor insulation (EE, single family only)</li> <li>Wall insulation (EE, multifamily only)</li> </ul>                                               |
| 4 | Load control plus weatherization and furnace upgrade (full weatherization and furnace upgrade) | <ul> <li>Space heating direct load control (DR)</li> <li>Water heating direct load control (DR)</li> <li>Attic insulation (EE)</li> <li>Floor insulation (EE, single family only)</li> <li>Wall insulation (EE, multifamily only)</li> <li>High-efficiency furnace upgrade (EE)</li> </ul> |
| 5 | Full weatherization<br>(no load control)                                                       | <ul> <li>Attic insulation (EE)</li> <li>Floor insulation (EE, single family only)</li> <li>Wall insulation (EE, multifamily only)</li> </ul>                                                                                                                                               |

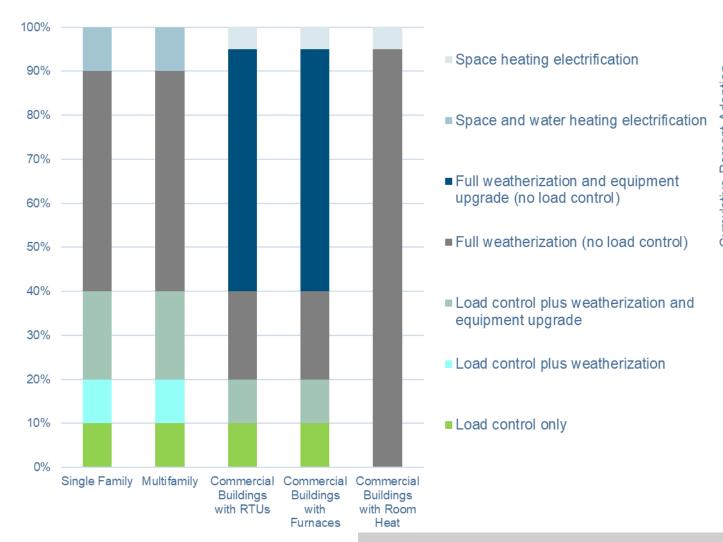


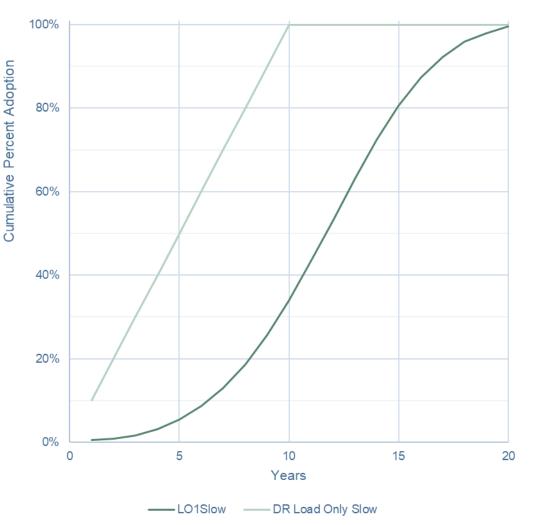
#### NPA Measures: Commercial

| #  | Measure Bundle                                                    | Measures Included                                                                                                                                                                                                                                    |
|----|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6  | Space heating electrification                                     | <ul> <li>Replacement of furnaces or RTUs with CCHPs (electrification, buildings with furnaces or RTUs only)</li> <li>Replacement of room heat with PTHPs (electrification, buildings with room heat only)</li> </ul>                                 |
| 7  | Load control only<br>(no efficiency measures)                     | Space heating direct load control (DR)                                                                                                                                                                                                               |
| 8  | Load control, weatherization, and furnace, boiler, or RTU upgrade | <ul> <li>Space heating direct load control (DR)</li> <li>Wall insulation</li> <li>Roof insulation</li> <li>High-efficiency furnace upgrade (buildings with furnaces only)</li> <li>High-efficiency RTU upgrade (buildings with RTUs only)</li> </ul> |
| 9  | Weatherization<br>(no load control)                               | <ul><li>Wall insulation</li><li>Roof insulation</li></ul>                                                                                                                                                                                            |
| 10 | Full weatherization and equipment upgrade (no load control)       | <ul> <li>Wall insulation</li> <li>Roof insulation</li> <li>High-efficiency furnace upgrade (buildings with furnaces only)</li> <li>High-efficiency RTU upgrade (buildings with RTUs only)</li> </ul>                                                 |



# **Building Counts and End-Use Consumptions**


|                                           | South Hill             |                  |                           |                               | Dishman Mica                   |                  |                  |                           |                               |                                |
|-------------------------------------------|------------------------|------------------|---------------------------|-------------------------------|--------------------------------|------------------|------------------|---------------------------|-------------------------------|--------------------------------|
|                                           | Residential Commercial |                  |                           | Resido                        | ential                         | Commercial       |                  |                           |                               |                                |
|                                           | Single<br>Family       | Multi-<br>family | Buildings<br>with<br>RTUs | Buildings<br>with<br>Furnaces | Buildings<br>with Room<br>Heat | Single<br>Family | Multi-<br>family | Buildings<br>with<br>RTUs | Buildings<br>with<br>Furnaces | Buildings<br>with Room<br>Heat |
| # Buildings with NG<br>Space Heating      | 19,845                 | 692              | 426                       | 105                           | 105                            | 3,064            | 79               | 71                        | 18                            | 18                             |
| # Buildings with NG<br>Water Heating      | 13,551                 | 167              |                           |                               |                                | 1,910            | 28               |                           |                               |                                |
| Average Annual NG<br>Usage: Space Heating | 625                    | 441              | 10,157                    | 9,443                         | 6,482                          | 533              | 489              | 6,831                     | 6,175                         | 4,239                          |
| Average Annual NG Usage: Water Heating    | 240                    | 199              |                           |                               |                                | 230              | 221              |                           |                               |                                |





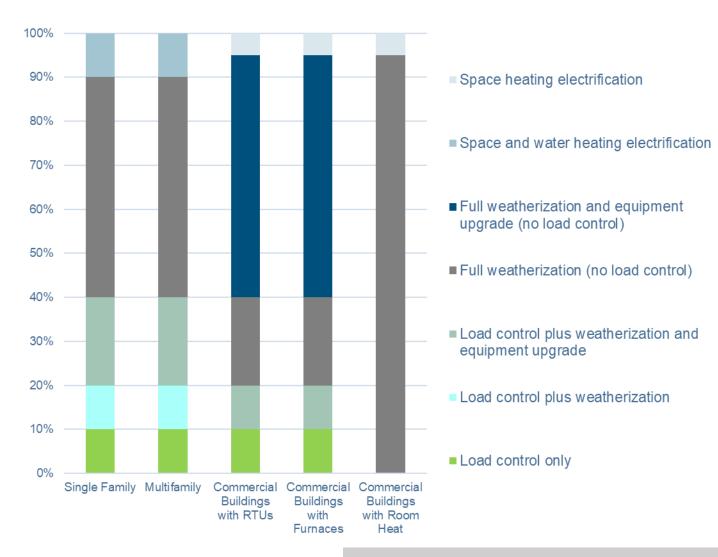

#### **Business as Usual**

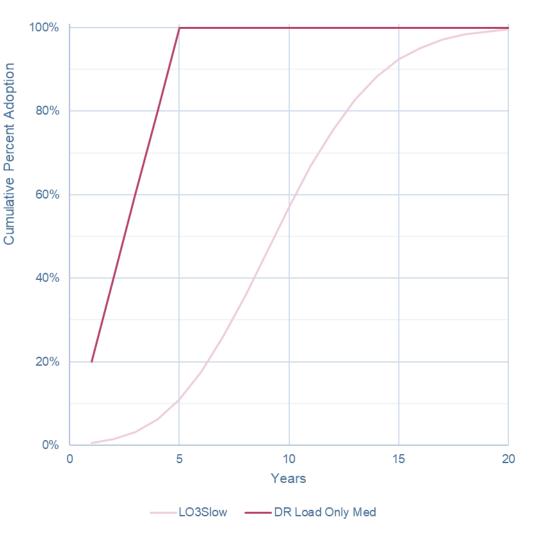
#### Ramp Rate





EE Max Applicability: 85%


DR Max Applicability: 9.5%-18%



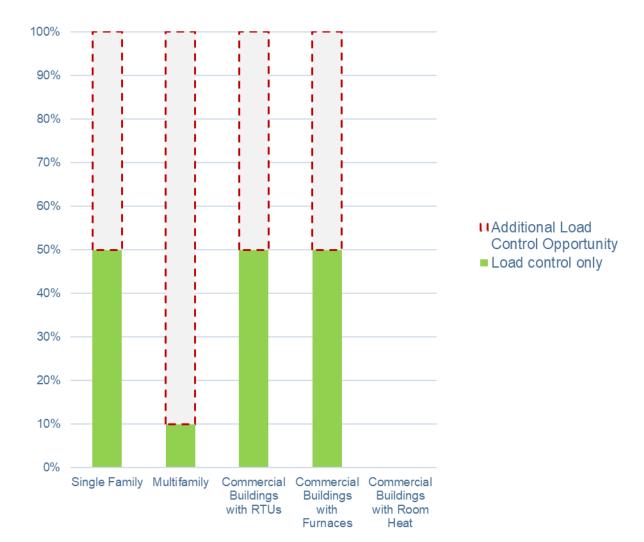



#### **Accelerated Adoption**

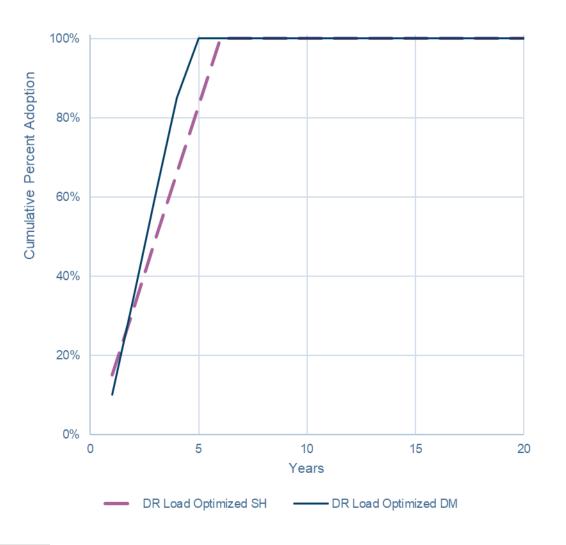
#### Ramp Rate






EE Max Applicability: 85%

DR Max Applicability: 9.5%-18%

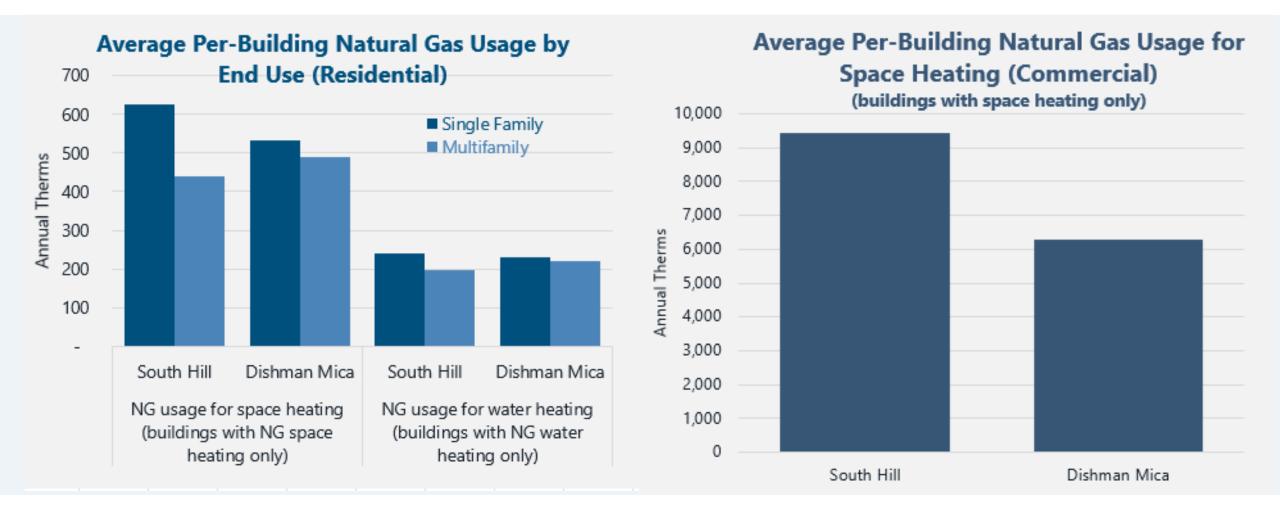



#### **Bundle Share**

#### **Capacity Constrained**



#### Ramp Rate




DR Max Applicability: 9.5%-18%



## **Energy Use and End-Use Estimates**

Resulting end-use consumption checked against total consumption by segment.





## Demand Response Assumptions: Benchmark Summary

Benchmarked data show savings from load control setpoint adjustments (typically 3 to 4 degrees) over 4- to 6-hour winter morning event period starting at 6 a.m. or 7 a.m.

Residential savings are typically 0.1 to 0.7 therms/event; C&I savings are 100+ therms/event.

| Residential DR Reference                                   | Event Length | Therms Shift<br>per Event |  |
|------------------------------------------------------------|--------------|---------------------------|--|
| Con Edison 2021/22 Winter DLC                              | 4-6 Hours    | 0.1-0.53 therms           |  |
| Con Edison 2019 Gas-Fired WH DLC                           | 4 Hours      | 0.24 therms               |  |
| Xcel Energy 2024 Heat Savers pilot                         | 4 Hours      | 0.74 therms               |  |
| KEDNY/KEDLI and NMPC territories National Grid 2024/5 BYOT | 3 Hours      | 0.44-0.51 therms          |  |
| National Grid 2022/2023                                    | 4 Hours      | 0.29 therms               |  |
| Washington Gas Pilot 2022/2023                             | 3.5 Hours    | 0.36 therms               |  |
| Consumers Energy 2021/2022                                 | 5 Hours      | 0.12 therms               |  |
| SoCalGas 2018/19 Smart Therm                               | 4 Hours      | 0.03 therms               |  |



#### Measure Detail Assumptions: Residential

| Measure                                                                                       | End Use                       | Building Type | NG Efficiency<br>Gain | Baseline Equipment                                          | Baseline<br>Consumption –<br>South Hill | Baseline<br>Consumption –<br>Dishman Mica |
|-----------------------------------------------------------------------------------------------|-------------------------------|---------------|-----------------------|-------------------------------------------------------------|-----------------------------------------|-------------------------------------------|
| Load control only (no efficiency                                                              | GasHeat - Heat Gas FAF        | Single Family | n/a                   | Federal Standard 2016 Furnace - 80% AFUE                    | 625 therms                              | 533 therms                                |
|                                                                                               | GasWater Heat GT 50 Gal NG    | Single Family | n/a                   | Standard 2015 and 2030 Condensing WH > 55 GAL<br>- UEF 0.77 | 240 therms                              | 230 therms                                |
| measures)                                                                                     | GasHeat - Heat Gas FAF        | Multifamily   | n/a                   | Federal Standard 2016 Furnace - 80% AFUE                    | 441 therms                              | 489 therms                                |
|                                                                                               | GasWater Heat GT LE 50 Gal NG | Multifamily   | n/a                   | Standard 2015 Storage WH ≤ 55 GAL - UEF 0.58                | 199 therms                              | 221 therms                                |
|                                                                                               | GasHeat - Heat Gas FAF        | Single Family | 17.2%                 | Federal Standard 2016 Furnace - 80% AFUE                    | 625 therms                              | 533 therms                                |
| Load control plus weatherization (full                                                        | GasWater Heat GT 50 Gal NG    | Single Family | n/a                   | Standard 2015 and 2030 Condensing WH > 55 GAL<br>- UEF 0.77 | 240 therms                              | 230 therms                                |
| weatherization)                                                                               | GasHeat - Heat Gas FAF        | Multifamily   | 22.3%                 | Federal Standard 2016 Furnace - 80% AFUE                    | 441 therms                              | 489 therms                                |
|                                                                                               | GasWater Heat GT LE 50 Gal NG | Multifamily   | n/a                   | Standard 2015 Storage WH ≤ 55 GAL - UEF 0.58                | 199 therms                              | 221 therms                                |
|                                                                                               | GasHeat - Heat Gas FAF        | Single Family | 26.4%                 | Federal Standard 2016 Furnace - 80% AFUE                    | 625 therms                              | 533 therms                                |
| Load control plus weatherization and furnace upgrade (full weatherization                     | GasWater Heat GT 50 Gal NG    | Single Family | n/a                   | Standard 2015 and 2030 Condensing WH > 55 GAL<br>- UEF 0.77 | 240 therms                              | 230 therms                                |
| and furnace upgrade) - Space Heating                                                          | GasHeat - Heat Gas FAF        | Multifamily   | 30.9%                 | Federal Standard 2016 Furnace - 80% AFUE                    | 441 therms                              | 489 therms                                |
|                                                                                               | GasWater Heat GT LE 50 Gal NG | Multifamily   | n/a                   | Standard 2015 Storage WH ≤ 55 GAL - UEF 0.58                | 199 therms                              | 221 therms                                |
|                                                                                               | GasHeat - Heat Gas FAF        | Single Family | n/a (100%)            | Federal Standard 2016 Furnace - 80% AFUE                    | 625 therms                              | 533 therms                                |
| Space and water heating electrification<br>(no efficiency or load control) - Space<br>Heating | GasWater Heat GT 50 Gal NG    | Single Family | n/a (100%)            | Standard 2015 and 2030 Condensing WH > 55 GAL<br>- UEF 0.77 | 240 therms                              | 230 therms                                |
|                                                                                               | GasHeat - Heat Gas FAF        | Multifamily   | n/a (100%)            | Federal Standard 2016 Furnace - 80% AFUE                    | 441 therms                              | 489 therms                                |
|                                                                                               | GasWater Heat GT LE 50 Gal NG | Multifamily   | n/a (100%)            | Standard 2015 Storage WH ≤ 55 GAL - UEF 0.58                | 199 therms                              | 221 therms                                |
| Full weatherization (no load control)                                                         | GasHeat - Heat Gas FAF        | Single Family | 17.2%                 | Federal Standard 2016 Furnace - 80% AFUE                    | 625 therms                              | 533 therms                                |
|                                                                                               | GasHeat - Heat Gas FAF        | Multifamily   | 22.3%                 | Federal Standard 2016 Furnace - 80% AFUE                    | 441 therms                              | 489 therms                                |

#### Measure Detail Assumptions: Commercial

| Measure                                                          | End Use         | Building Type | NG Efficiency<br>Gain | Baseline Equipment                            | Baseline<br>Consumption –<br>South Hill | Baseline<br>Consumption –<br>Dishman Mica |
|------------------------------------------------------------------|-----------------|---------------|-----------------------|-----------------------------------------------|-----------------------------------------|-------------------------------------------|
| Load control only (no efficiency                                 | Heat - Gas FAF  | Commercial    | n/a                   | Federal Standard 2016 Furnace - 80% AFUE      | 9,443 therms                            | 6,175 therms                              |
| measures)                                                        | Heat - Gas RTU  | Commercial    | n/a                   | Conventional Packaged Rooftop Unit - Et = 75% | 10,157 therms                           | 6,831 therms                              |
|                                                                  | Heat - Gas FAF  | Commercial    | 26.4%                 | Federal Standard 2016 Furnace - 80% AFUE      | 9,443 therms                            | 6,175 therms                              |
| Load control weatherization, and furnace, boiler, or RTU upgrade | Heat - Gas RTU  | Commercial    | 28.0%                 | Conventional Packaged Rooftop Unit - Et = 75% | 10,157 therms                           | 6,831 therms                              |
|                                                                  | Heat Room - Gas | Commercial    | 13.7%                 | Standard Radiant Heater                       | 6,482 therms                            | 4,239 therms                              |
|                                                                  | Heat - Gas FAF  | Commercial    | 13.7%                 | Federal Standard 2016 Furnace - 80% AFUE      | 9,443 therms                            | 6,175 therms                              |
| Weatherization (no load control)                                 | Heat - Gas RTU  | Commercial    | 13.7%                 | Conventional Packaged Rooftop Unit - Et = 75% | 10,157 therms                           | 6,831 therms                              |
|                                                                  | Heat Room - Gas | Commercial    | 13.7%                 | Federal Standard 2016 Furnace - 80% AFUE      | 6,482 therms                            | 4,239 therms                              |
| Full weatherization and equipment                                | Heat - Gas FAF  | Commercial    | 26.4%                 | Federal Standard 2016 Furnace - 80% AFUE      | 9,443 therms                            | 6,175 therms                              |
| upgrade (no load control)                                        | Heat - Gas RTU  | Commercial    | 28.0%                 | Conventional Packaged Rooftop Unit - Et = 75% | 10,157 therms                           | 6,831 therms                              |
| Space heating electrification                                    | Heat - Gas FAF  | Commercial    | n/a (100%)            | Federal Standard 2016 Furnace - 80% AFUE      | 9,443 therms                            | 6,175 therms                              |
|                                                                  | Heat - Gas RTU  | Commercial    | n/a (100%)            | Conventional Packaged Rooftop Unit - Et = 75% | 10,157 therms                           | 6,831 therms                              |
|                                                                  | Heat Room - Gas | Commercial    | n/a (100%)            | Standard Radiant Heater                       | 6,482 therms                            | 4,239 therms                              |



## Efficiency and Electrification Measure Assumptions

| Measure Bundle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Efficiency Improvement for End-Use                        | Full Cost                                                 |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|
| Residential Reside |                                                           |                                                           |  |  |  |  |  |
| Space and water heating electrification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100% removal of gas end-use consumption (electric backup) | Space heating: \$6,700-\$18,700<br>Water heating: \$2,300 |  |  |  |  |  |
| Weatherization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17%-22%                                                   | \$2,700-\$5,600                                           |  |  |  |  |  |
| Weatherization and furnace upgrade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26%-31%                                                   | \$4,200-\$9,900                                           |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commercial                                                |                                                           |  |  |  |  |  |
| Space heating electrification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100% removal of gas end-use consumption (electric backup) | \$37,000-\$48,000                                         |  |  |  |  |  |
| Weatherization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14%                                                       | \$35,000                                                  |  |  |  |  |  |
| Weatherization and space heating equipment upgrade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26%-28%                                                   | \$40,000-\$58,000                                         |  |  |  |  |  |



## Demand Response Assumptions

|                              | Space Heating     |             |               | Water Heating |      |  |
|------------------------------|-------------------|-------------|---------------|---------------|------|--|
|                              | Single Family     | Multifamily | Single Family | Multifamily   |      |  |
| Total Impact (therms/event)* | 0.5               | 0.4         | 25            | 0.24          | 0.20 |  |
| <b>Event Hours</b>           | 6 a.m. to 10 a.m. |             |               |               |      |  |

<sup>\*</sup> The event is applied and then refined to avoid (1) event shift that exceeds end use demand in event hours and (2) negatives in any single hour's total end-use consumption.

Model assumes zero net savings.







## Washington State Climate Commitment Act

TAC 3 – November 20, 2025

## **Climate Commitment Act Purpose & Application**

1"The Climate Commitment Act (CCA) caps and reduces greenhouse gas emissions from Washington's largest emitting sources and industries, allowing businesses to find the most efficient path to lower carbon emissions. This powerful program works alongside other critical climate policies to help Washington achieve its commitment to reducing greenhouse gas emissions by 95% by 2050."

How does this rule apply to Avista?

- Natural Gas (Local Distribution Company)
- Electric Power Entity

Why does this rule apply to Avista?

Emissions for each category meet or surpass the applicable threshold (>25k MT CO2e)



#### **Climate Commitment Act Basics**

- The statute requires the Washington Department of Ecology (Ecology) to set a programmatic *baseline for emissions* covered by the Cap-and-Invest Program
  - Based on 2015-2019 emissions baseline
  - Covered and opt-in entities for natural gas and electric
- Ecology must also set annual allowance budgets for GHG emissions from covered entities
  - Annual allowance budgets must decline annually to ensure emissions covered by the program reach the % reductions required for 2030, 2040, and 2050 in RCW 70A.45.020 (1 allowance for each 1 MTCO<sub>2</sub>e).



#### **Climate Commitment Act Basics**

- What is the emissions baseline (2015-2019) and how was it determined?
  - Prior to Cap-and-Invest, CCA and other recent landmark climate regulations, greenhouse gas reporting was (and is) required for specific entities:
    - 2012: required reporting for emitting specific sources including:
      - Exceedance of annual threshold (10,000 MT CO2e)
      - Federally registered qualifying industry (i.e., Fuel Suppliers, Facilities)
        - 2023: Additional industries added including electric power entities
- Why is this strategy impactful?
  - For applicable entities, does that timeframe use reasonable data?
    - Ex. Normal hydro conditions? Hotter summer than expected?



### **CCA Primary Components**





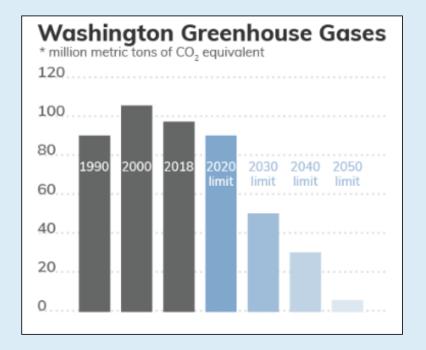
- Limits carbon across major sectors of the economy and any "opt-in" businesses
- Nearly 75% of Statewide emissions<sup>1</sup> (roughly 25% are exempt)



#### Reduce

- Drive towards emission goals with certainty
- By 2030: reduce emissions 45% below 1990 levels




#### **Invest**

 Market-based approach. Revenue used for funding clean energy and environmental justice projects for overburdened communities





 Large emitters are enforceable and collectively must limit emissions, buy credits to meet requirements or pay for violation (\$10,000/violation/day) "...The provisions of the cap and invest program implemented by this chapter establish a declining cap on GHG emissions from covered entities consistent with the limits established in RCW 70A.45.020, and a program to track, verify, and enforce compliance with the cap through the use of compliance." WAC 173-446-010(1)





## The Basics of Cap and Invest

- The cap and invest program is a trading program.
- The commodities traded in the program are compliance instruments.
  - Two types of compliance instruments:
    - Allowance may be given to specific industries based on their emissions either at no cost or purchased via other methods such as in an auction.
    - ¹Offset credits each one worth 1 MTCO<sub>2</sub>e (can only use for up to 8% compliance during first compliance period, including 3% for tribal projects)
- <sup>2</sup>Allowances may be obtained by:
  - Direct distribution from Ecology for utilities
  - Purchase at official auctions
  - Purchasing from other registered entities



#### **Auction Basics**

- <sup>1</sup>Quarterly Auctions
  - Held by Ecology on a third-party platform
  - Bids are submitted similarly to a silent auction
  - Qualified bidders may submit multiple bids at various price levels between the floor and ceiling price structure
- <sup>2</sup>Allowance Price Containment Reserve Auctions
  - Separate pool of allowances under the cap (2025: 3 million, 2026: 700k)
  - Conditional and triggered when:
    - Quarterly auction prices reach certain threshold
    - New entities enter program (+ additional circumstances)
    - At least once a year- prior to Nov. 1



## **Historic Pricing**

| Program Auction Pricing (cost per 1 MT CO2e) |         |          |             |          |       |                         |       |         |
|----------------------------------------------|---------|----------|-------------|----------|-------|-------------------------|-------|---------|
| Year                                         | Auction | Floor    | Ceiling     | Settling |       | eiling Settling APCR Pr |       | R Price |
|                                              | Q1      |          | \$          | 48.50    |       |                         |       |         |
| 2023                                         | Q2      | \$       | 56.01       | ф 5      | 51.90 |                         |       |         |
| 2023                                         | Q3      | \$ 22.20 | \$ 81.47    | \$       | 63.03 | \$                      | 51.90 |         |
|                                              | Q4      |          |             | \$       | 51.89 |                         |       |         |
|                                              |         |          |             |          |       |                         |       |         |
|                                              | Q1      | \$ 24.02 | 02 \$ 88.15 | \$       | 25.76 | \$                      | 56.16 |         |
| 2024                                         | Q2      |          |             | \$       | 29.92 |                         |       |         |
|                                              | Q3      |          |             | \$       | 29.88 |                         |       |         |
|                                              | Q4      |          | \$          | 40.26    |       |                         |       |         |
|                                              |         |          |             |          |       |                         |       |         |
| 2025                                         | Q1      |          |             | \$       | 50.00 |                         |       |         |
| 2025                                         | Q2      | \$ 25.85 | \$ 94.85    | \$       | 58.51 | \$                      | 60.43 |         |
|                                              | Q3      |          |             | \$       | 64.30 |                         |       |         |

Price caps are a compliance tool to meet programmatic emissions reductions goals

**Floor:** price for all allowances below which bids at auction are not eligible to be accepted.

**Price Ceiling Unit:** compliance instrument unit issued at a fixed price by Ecology to limit price increases and funding further investments in GHG reductions.

**Settlement:** price announced by Ecology at the conclusion of each auction that all successful bidders pay for each allowance.



#### **Electric**



Ecology grants free (no-cost) allowances covering
Washington share of electric portfolio emissions and administrative costs.

Why are allowances free?
Because the Clean Energy
Transformation Act (CETA)
regulates electric utility path to
de-carbonization.

#### Jurisdictional Allocation:

- Washington (approximately 65% of portfolio)
  - Free allowances for all generation <u>portfolio</u> emissions serving Washington customers
  - <u>Covered:</u> regulated Washington based plants (Boulder); all generation, owned and purchased imported with a final delivery point in Washington as well as for cost burden
  - Annual allocation adjustment from forecast to actual emissions
- Idaho (approximately 35% of portfolio)
  - No free allowances
  - <u>Covered</u>: regulated WA (owned) thermal plants (Boulder), all unspecified generation imported into and with a final delivery point in Washington (e.g., Mid-C sales)
- Consignment Requirements None



#### **Natural Gas**

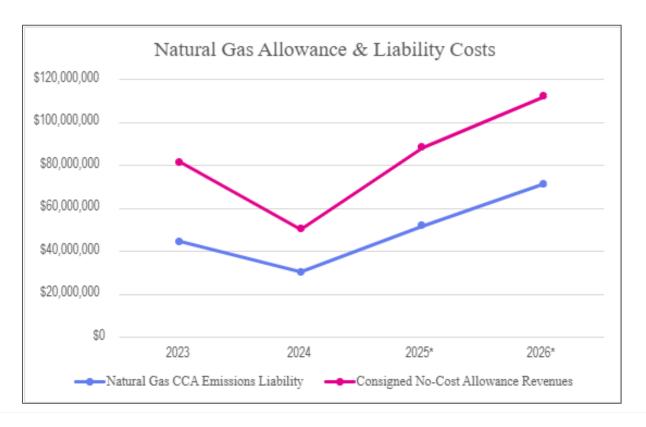
- No-cost allowances cannot be sold or traded to other entities. Must be used for compliance or consigned (sold) in quarterly auctions.
- Natural gas utilities are required to consign a portion of no-cost allowances under RCW 70A.65.130.

| Year                            | Required level of consignment of no cost allowances (minimum)       |
|---------------------------------|---------------------------------------------------------------------|
| 2023                            | 65 percent of allowances allocated for 2023                         |
| 2024                            | 70 percent of allowances allocated for 2024                         |
| 2025                            | 75 percent of allowances allocated for 2025                         |
| 2026                            | 80 percent of allowances allocated for 2026                         |
| 2027                            | 85 percent of allowances allocated for 2027                         |
| 2028                            | 90 percent of allowances allocated for 2028                         |
| 2029                            | 95 percent of allowances allocated for 2029                         |
| 2030, and every year thereafter | 100 percent of allowances allocated for 2030 (and subsequent years) |



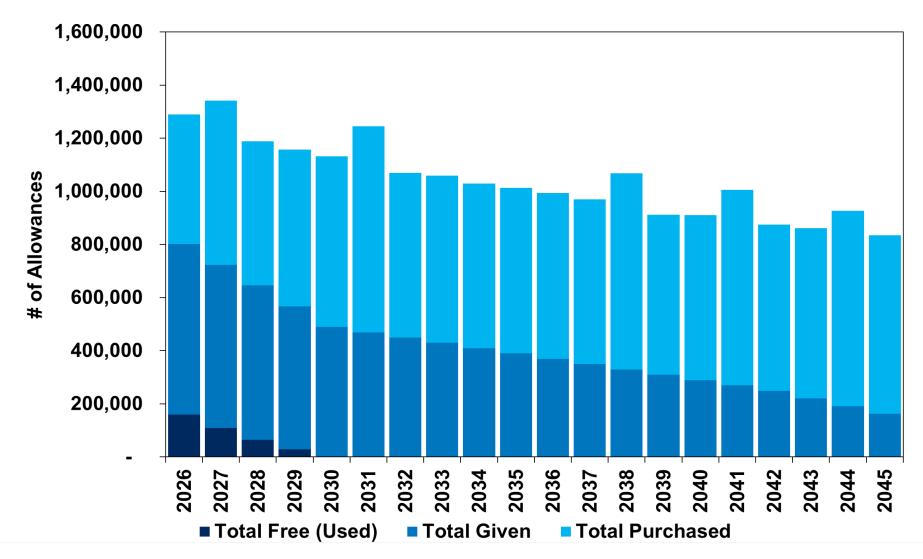
## Natural Gas Allowance Consignment Requirements

#### • Consignment Revenues:


All revenues shall be used for the benefit of customers, as determined by the WUTC, including at a minimum eliminating any additional cost burden to low-income customers from the CCA.

- Revenues must be returned to customers
  - Non-volumetric credits on ratepayer utility bills (prioritizing low-income customers)
  - Minimize cost impacts on low-income, residential, and small business customers through actions that include, but are not limited to, weatherization, decarbonization, conservation and efficiency services, and bill assistance.
    - <sup>1</sup>Except for low-income customers, any "new customer" (after July 25, 2021), is not allowed to receive a bill credit.
- The customer benefits provided must be in addition to existing requirements in statute, rule, or other legal requirements, as determined by the WUTC.




## Natural Gas Allowance & Consignment Costs

| Year  | Natural Gas CCA<br>Emissions<br>Liability | Consigned No-Cost<br>Allowance Revenues | Delta        | Year-Over-<br>Year<br>Increase |
|-------|-------------------------------------------|-----------------------------------------|--------------|--------------------------------|
| 2023  | \$44,443,884                              | \$36,896,188                            | \$7,547,696  | -                              |
| 2024  | \$30,385,861                              | \$19,965,465                            | \$10,420,396 | 38%                            |
| 2025* | \$51,925,536                              | \$36,419,248                            | \$15,506,288 | 49%                            |
| 2026* | \$71,272,856                              | \$40,888,953                            | \$30,383,903 | 96%                            |





## **Expected Natural Gas Allowance Need**





#### On the Horizon

- Linkage
  - Link with established markets in California and Quebec (2026-2027)
  - The most recent linkage agreement comment period ended in March of 2025. Ecology has stated another period will be available upon development of a new linkage agreement draft.





#### On the Horizon

- Washington Ecology
  - October 2025: information public comment period for Cap-and-Invest Program Updates and Linkage Rulemaking
  - Cap-and-Invest Allocation Workshop (11/13)
    - Seeking comments on increasing percentage requirements for allowance consignment
    - Changes to mitigation of administrative costs
- Washington Utility Commission
  - December: public meeting to address non-volumetric customer benefits under RCW 70A.65.130(2), percentage of a customer's CCA charge related to consignment of no-cost allowances, handling additional reserves of consignment revenue





# Oregon Climate Protection Program

TAC 3 – November 20, 2025

Janna Dubnicka, Clean Energy Policy & Implementation Manager Michael Brutocao, Natural Gas Planning Manager

## **Oregon Climate Policy**

Oregon Department of Environmental Quality (ODEQ) actions:

- 2021: Initially adopted Climate Protection Program (CPP)
- 2023: Rule amendments; adopted language
- 2024: Revised and adopted CPP (OAR 340-273)
  - Program compliance to begin in 2026 for emissions year 2025 (Jan 1- Dec 31)
- 2026: <sup>1</sup>Anticipated Cap and Invest bill for upcoming legislative session (February)
  - Connect with other programs including Washington's Climate Commitment Act





## **Present-Day Objectives**

"The CPP establishes a declining cap, or limit, on greenhouse gas emissions from fossil fuels used throughout Oregon, including diesel, gasoline, and natural gas. The program is designed to reduce these emissions by 50% by 2035 and 90% by 2050"

How does this rule apply to Avista?

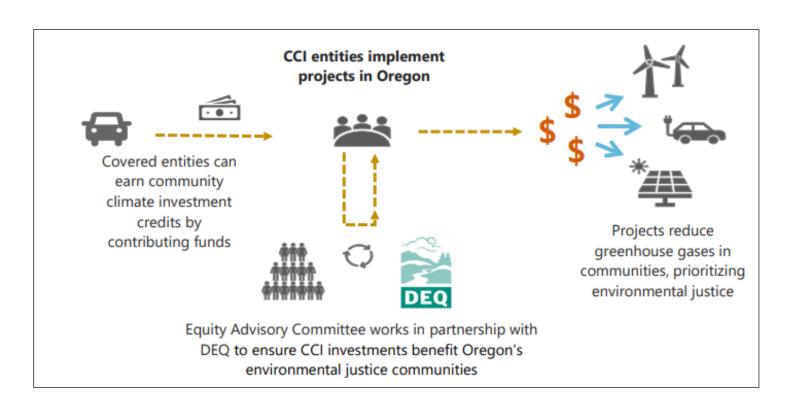
- Natural Gas
  - Supply delivered to customers for use in residential and commercial heating etc.



## **Climate Protection Program**

OAR 340-273 Adopted November 22, 2024

Purpose: "....to reduce greenhouse gas emissions from sources in Oregon, achieve cobenefits from reduced emissions of other air contaminants, support a strong statewide economy, and enhance public welfare for Oregon Communities, particularly environmental justice communities disproportionately burdened by the effects of climate change and air contamination"

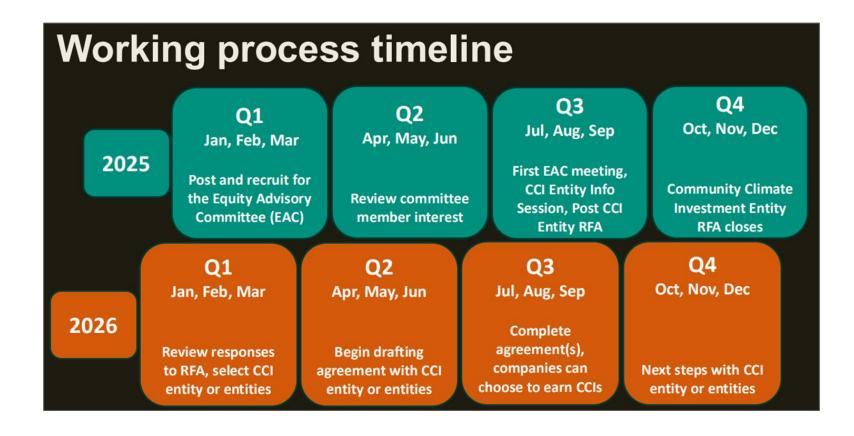

- Supports pollution reductions
- Enhances public welfare
- Provides regulated companies with compliance flexibility to manage costs
- Supports economic growth
- Prioritizes equity by reducing burdens for impacted communities



## **Climate Protection Program**

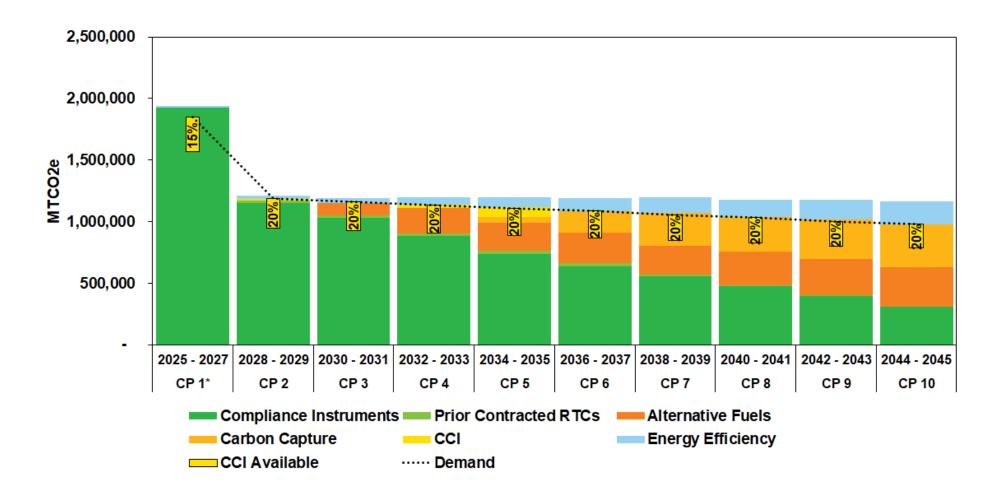
How does Avista meet the objectives of the CPP?

- Compliance is based around CCI's or Community Climate Investments
- CCI's are expected to be made available to entities in early 2026
  - Credits are a single price
  - No auction or similar requirements as seen in Cap-and-Invest






## **Climate Protection Program**


How does a regulated entity meet their obligation requirements?

- 1. Reduce emissions profile
- 2. Purchase compliance instruments to bridge the gap between distribution totals
  - limited quantity distributed annually
- 3. Earn CCI credits by contributing funds to DEQ-approved CCI entities





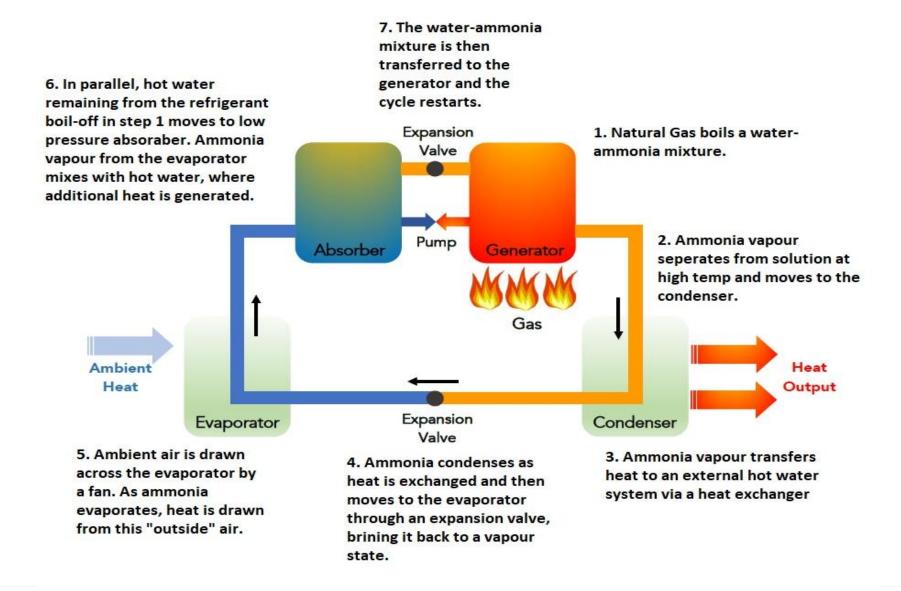
## **CPP Compliance by Compliance Period**







## Natural Gas-Fired Heat Pump Technology

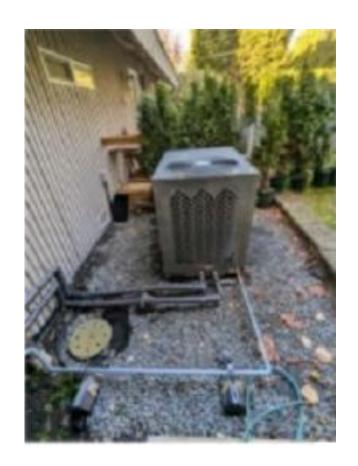

TAC 3 – November 20, 2025

## How do Gas Heat Pumps (GHPs) Work?

- Heat pumps in heating mode are effectively air conditioners running in reverse
  - Extracting heat from outdoors and moving it indoors
- There are Engine-driven GHPs and Gas Absorption GHPs.
  - Engine driven GHPs use a natural gas engine in place of the electric motor a electric heat pump uses
  - Gas absorption GHPs replace the motor and compressor with a generator and absorber



## **Gas Absorption Heat Pump Basics**






## Gas Absorption Gas Heat Pumps for Residential

#### Ongoing Pilots – Residential

- Residential GAHP Pilot
  - 3 single-family homes implemented the Anesi Gas Absorption Heat Pump
    - Each unit is 80,000 BTU/hr (~23 kW)
    - Supply up to 140 °F hot water
    - Manufacturer reported efficiency of 141% AFUE
  - Applications:
    - Space heating and domestic hot water





## **Avista Take Aways from Fortis Pilot**

- Prices are coming down but remain high for the moment (\$30k range for combined HVAC and Water Heater)
  - The price remains high due in part to long install times (up to 3 days)
  - Training for technicians remains an issue
  - The unit itself is very heavy (500lbs)
  - The unit is loud (as most HP's are), leading to siting issues
- ANESI Stone Mountain remains the leading manufacture in this space.
   They have only one size unit 80k Btu with only one form factor.
- While COP's are technically feasible in the 1.4 range, 1 to 1.3 is more likely and highly contingent on home size, shell and climate zone.
- ANESI has a 40k Btu unit in production that may be more cost effective



#### **Bottom Line**

- Residential Gas Heat Pump technology is proven, and it reduces green house gas emissions compared to the most efficient natural gas furnaces and hot water heaters.
- The adoption of this technology is hampered by the high capital cost and lack of a cooling feature.
- The market for this technology is expected to improve as more vendors enter this space, training and install times improve, unit size and form factor options increase.
- There is a large GTI pilot, started in 2025, with the goal of 75 units installed nationwide. This pilot is expected to expand to include 40k Btu GHP's when they become available. Avista is evaluating participation.

