INTERCONNECTION REQUEST FOR A LARGE GENERATING FACILITY

1. The undersigned Interconnection Customer submits this request to interconnect its Large Generating Facility with Transmission Provider's Transmission System pursuant to a Tariff.

2. This Interconnection Request is for (check one):
 _____ A proposed new Large Generating Facility.
 _____ An increase in the generating capacity or a Material Modification of an existing Generating Facility.

3. The type of interconnection service requested (check one):
 _____ Energy Resource Interconnection Service
 _____ Network Resource Interconnection Service

4. _____ Check here only if Interconnection Customer requesting Network Resource Interconnection Service also seeks to have its Generating Facility studied for Energy Resource Interconnection Service

5. Interconnection Customer provides the following information:
 a. Address or location or the proposed new Large Generating Facility site (to the extent known) or, in the case of an existing Generating Facility, the name and specific location of the existing Generating Facility;

 b. Maximum summer at _____ degrees C and winter at _____ degrees C megawatt electrical output of the proposed new Large Generating Facility or the amount of megawatt increase in the generating capacity of an existing Generating Facility;

 c. General description of the equipment configuration;
d. Commercial Operation Date (Day, Month, and Year);

e. Name, address, telephone number, and e-mail address of Interconnection Customer's contact person;

f. Approximate location of the proposed Point of Interconnection (optional); and

g. Interconnection Customer Data (set forth in Attachment A)

6. Applicable deposit amount as specified in the LGIP.

7. Evidence of Site Control as specified in the LGIP (check one)
 _____ Is attached to this Interconnection Request
 _____ Will be provided at a later date in accordance with this LGIP

8. This Interconnection Request shall be submitted to the representative indicated below:

 Transmission Provider: Avista Corporation
 Designated Contact Person: Randy Gnaedinger
 Address: 1411 E. Mission – MSC-16
 Spokane WA 99202-1902

 Telephone Number: (509) 495-2047
 FAX: (509) 777-5997
 Email Address: Randy.Gnaedinger@Avistacorp.com
9. Representative of Interconnection Customer to contact:

__
__
__
__
__

10. This Interconnection Request is submitted by:

Name of Interconnection Customer: __________________________

By (signature): __

Name (type or print): _______________________________________

Title: ___

Date: ___
LARGE GENERATING FACILITY DATA

UNIT RATINGS

kVA _____________ °F _____________ Voltage _____________

Power Factor _____________

Speed (RPM) _____________ Connection (e.g. Wye) _____________

Short Circuit Ratio _____________ Frequency, Hertz _____________

Stator Amperes at Rated kVA _____________ Field Volts _____________

Max Turbine MW _____________ °F ______

COMBINED TURBINE-GENERATOR-EXCITER INERTIA DATA

Inertia Constant, H = __________________________ kW sec/kVA

Moment-of-Inertia, WR² = __________________________ lb. ft.²

REACTANCE DATA (PER UNIT-RATED KVA)

<table>
<thead>
<tr>
<th>DIRECT AXIS</th>
<th>QUADRATURE AXIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous – saturated</td>
<td>X₁dv</td>
</tr>
<tr>
<td>Synchronous – unsaturated</td>
<td>X₁di</td>
</tr>
<tr>
<td>Transient – saturated</td>
<td>X'₁dv</td>
</tr>
<tr>
<td>Transient – unsaturated</td>
<td>X'₁di</td>
</tr>
<tr>
<td>Subtransient – saturated</td>
<td>X''₁dv</td>
</tr>
<tr>
<td>Subtransient – unsaturated</td>
<td>X''₁di</td>
</tr>
<tr>
<td>Negative Sequence – saturated</td>
<td>X₂v</td>
</tr>
<tr>
<td>Negative Sequence – unsaturated</td>
<td>X₂i</td>
</tr>
<tr>
<td>Zero Sequence – saturated</td>
<td>X₀v</td>
</tr>
<tr>
<td>Zero Sequence – unsaturated</td>
<td>X₀i</td>
</tr>
<tr>
<td>Leakage Reactance</td>
<td>X₁m</td>
</tr>
</tbody>
</table>
FIELD TIME CONSTANT DATA (SEC)

<table>
<thead>
<tr>
<th>Condition</th>
<th>T'\text{do}</th>
<th>T'\text{d3}</th>
<th>T'\text{d2}</th>
<th>T'\text{d1}</th>
<th>T'\text{d}</th>
<th>T'\text{qo}</th>
<th>T'\text{q}</th>
<th>T'\text{q}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Circuit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three-Phase Short Circuit Transient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line to Line Short Circuit Transient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line to Neutral Short Circuit Transient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Circuit Subtransient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Circuit Subtransient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ARMATURE TIME CONSTANT DATA (SEC)

<table>
<thead>
<tr>
<th>Condition</th>
<th>\text{T_a3}</th>
<th>\text{T_a2}</th>
<th>\text{T_a1}</th>
<th>\text{T_a}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three Phase Short Circuit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line to Line Short Circuit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line to Neutral Short Circuit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: If requested information is not applicable, indicate by marking "N/A."

MW CAPABILITY AND PLANT CONFIGURATION

LARGE GENERATING FACILITY DATA

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rotor Short Time Thermal Capacity \text{I}_2^2\text{t}</th>
<th>=</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Current at Rated kVA, Armature Voltage and PF</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>Field Current at Rated kVA and Armature Voltage, 0 PF</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>Three Phase Armature Winding Capacitance</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>Field Winding Resistance</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>Armature Winding Resistance (Per Phase)</td>
<td>=</td>
<td></td>
</tr>
</tbody>
</table>
CURVES

Provide Saturation, Vee, Reactive Capability, Capacity Temperature Correction curves. Designate normal and emergency Hydrogen Pressure operating range for multiple curves.

GENERATOR STEP-UP TRANSFORMER DATA RATINGS

Capacity
Self-cooled/
Maximum Nameplate
__________________________ / __________________kVA

Voltage Ratio(Generator Side/System side/Tertiary)
__________________________ / __________________ / ______________kV

Winding Connections (Low V/High V/Tertiary V (Delta or Wye))
__________________________ / __________________ / ______________

Fixed Taps Available ___

Present Tap Setting ___

IMPEDANCE

Positive
Z_1 (on self-cooled kVA rating) ______________ % __________ X/R

Zero
Z_0 (on self-cooled kVA rating) ______________ % __________ X/R
EXCITATION SYSTEM DATA

Identify appropriate IEEE model block diagram of excitation system and power system stabilizer (PSS) for computer representation in power system stability simulations and the corresponding excitation system and PSS constants for use in the model.

GOVERNOR SYSTEM DATA

Identify appropriate IEEE model block diagram of governor system for computer representation in power system stability simulations and the corresponding governor system constants for use in the model.

WIND GENERATORS

Number of generators to be interconnected pursuant to this Interconnection Request:

Elevation: ______________ _____ Single Phase _____ Three Phase

Inverter manufacturer, model name, number, and version:
__

List of adjustable setpoints for the protective equipment or software:

Note: A completed General Electric Company Power Systems Load Flow (PSLF) data sheet or other compatible formats, such as IEEE and PTI power flow models, must be supplied with the Interconnection Request. If other data sheets are more appropriate to the proposed device, then they shall be provided and discussed at Scoping Meeting.
INDUCTION GENERATORS

(*) Field Volts: _________________
(*) Field Amperes: ______________
(*) Motoring Power (kW): _________
(*) Neutral Grounding Resistor (If Applicable): ____________
(*) I^2t or K (Heating Time Constant): ____________
(*) Rotor Resistance: ___________
(*) Stator Resistance: ___________
(*) Stator Reactance: ___________
(*) Rotor Reactance: ___________
(*) Magnetizing Reactance: __________
(*) Short Circuit Reactance: __________
(*) Exciting Current: ______________
(*) Temperature Rise: ____________
(*) Frame Size: _________________
(*) Design Letter: ____________
(*) Reactive Power Required In Vars (No Load): __________
(*) Reactive Power Required In Vars (Full Load): __________
(*) Total Rotating Inertia, H: __________Per Unit on KVA Base

Note: Please consult Transmission Provider prior to submitting the Interconnection Request to determine if the information designated by (*) is required.